流体力学知识点大全 吐血整理
流体力学知识点大全-吐血整理讲解学习

流体力学知识点大全-吐血整理1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张力。
2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。
即τ=μ*du/dy 。
当n<1时,属假塑性体。
当n=1时,流动属于牛顿型。
当n>1时,属胀塑性体。
3. 流场: 流体运动所占据的空间。
流动分类 时间变化特性: 稳态与非稳态空间变化特性: 一维,二维和三维流体内部流动结构: 层流和湍流流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩流体运动特征: 有旋和无旋;引发流动的力学因素: 压差流动,重力流动,剪切流动4. 描述流动的两种方法:拉格朗日法和欧拉法拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动5. 迹线:流体质点的运动轨迹曲线流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与该曲线的速度方向一致性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱c .流线的形状和位置随时间而变化,稳态流动时不变迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线;迹线是同一质点在不同时刻经过的空间点构成的轨迹线。
稳态流动下,流线与迹线是重合的。
6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线构成的管状曲面。
性质:①流管表面流体不能穿过。
②流管形状和位置是否变化与流动状态有关。
7.涡量是一个描写旋涡运动常用的物理量。
流体速度的旋度▽xV 为流场的涡量。
有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。
无旋运动:流场中速度旋度或涡量处处为零。
涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方向一致。
8. 静止流体:对选定的坐标系无相对运动的流体。
不可压缩静止流体质量力满足 ▽x f=09. 匀速旋转容器中的压强分布p=ρ(gz -22r2ω)+c10. 系统:就是确定不变的物质集合。
流体力学重点概念总结(可直接打印版)资料讲解

流体力学重点概念总结(可直接打印版)第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
注意:只要平面面积与形心深度不变:1.面积上的总压力就与平面倾角θ无关;2.压心的位置与受压面倾角θ无直接关系,是通过yc表现的;3.压心总是在形心之下,在受压面位置为水平放置时,压心与形心重合。
作用在曲面壁上的总压力—水平分力作用于曲面上的静水总压力P的水平分力Px等于作用于该曲面的在铅直投影面上的的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。
(完整版)流体力学重点概念总结

第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学知识点大全-吐血整理

1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张力。
2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。
即τ=μ*du/dy 。
当n<1时,属假塑性体。
当n=1时,流动属于牛顿型。
当n>1时,属胀塑性体.3. 流场: 流体运动所占据的空间。
流动分类 时间变化特性: 稳态与非稳态空间变化特性: 一维,二维和三维流体内部流动结构: 层流和湍流流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩流体运动特征: 有旋和无旋;引发流动的力学因素: 压差流动,重力流动,剪切流动4. 描述流动的两种方法:拉格朗日法和欧拉法拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动5。
迹线:流体质点的运动轨迹曲线流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与该曲线的速度方向一致性质 a 。
除速度为零或无穷大的点以外,经过空间一点只有一条流线 b.流场中每一点都有流线通过,所有流线形成流线谱c .流线的形状和位置随时间而变化,稳态流动时不变迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线;迹线是同一质点在不同时刻经过的空间点构成的轨迹线。
稳态流动下,流线与迹线是重合的。
6。
流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线构成的管状曲面. 性质:①流管表面流体不能穿过.②流管形状和位置是否变化与流动状态有关。
7.涡量是一个描写旋涡运动常用的物理量.流体速度的旋度▽xV 为流场的涡量。
有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。
无旋运动:流场中速度旋度或涡量处处为零.涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方向一致。
8. 静止流体:对选定的坐标系无相对运动的流体.不可压缩静止流体质量力满足 ▽x f =09。
匀速旋转容器中的压强分布p=ρ(gz -22r2ω)+c10. 系统:就是确定不变的物质集合。
《流体力学总结大全》

《流体力学总结大全》2、连续介质假设。
把流体当做是由密集质点构成的、内部无空隙的连续体。
3、相对密度:物体质量与同体积4摄氏度蒸馏水质量比4、体胀系数。
压强不变时每增加单位温度时,流体体积的相对变化率(α),温度越高越大。
5、压缩率。
当流体温度不变时每增加单位压强时,流体体积的相对变化率,压强越大压缩率越小压缩越难(kt)。
6、体积模量。
温度不变,每单位体积变化所需压强变化量,(k),越大越难压缩。
7、不可压缩流体。
体胀系数与压缩率均零的流体。
8、粘性:流体运动时内部产生切应力的性质,是流体的内摩擦特性,或者是流体阻抗剪切变形速度的特性,动力黏度μ:单位速度梯度下的切应力,运动黏度:流体的动力黏度与密度的比值。
9、速度梯度。
速度沿垂直于速度方向y的变化率。
10、牛顿内摩擦定律。
切应力与速度梯度成正比。
符合牛顿内摩擦定律的流体;不符合牛顿内摩擦定律的流体。
11、三大模型:连续介质模型、不可压缩模型、理想流体模型。
连续介质假设是流体力学中第一个带根本性的假设。
连续介质模型:认为液体中充满一定体积时不留任何空隙,其中没有真空,也没有分子间隙,认为液体是连续介质,由此抽象出来的便是连续介质模型。
不可压缩流体模型:在忽略液体或气体压缩性和热胀性时,认为其体积保持不变以简化分析,流体密度随压强变化很小,可视为常数的流体。
理想流体模型。
连续介质模型和不可压缩模型的总和。
12、质量力与表面力之间的区别:①作用点不同质量力是作用在流体的每一个质点上表面力是作用在流体表面上;②质量力与流体的质量成正比(如为均质体与体积成正比)表面力与所取的流体的表面积成正比③质量力是非接触产生的力,是力场的作用表面力是接触产生的力13、简述气体和液体粘度随压强和温度的变化趋势及不同的原因。
答:气体的粘度不受压强影响,液体的粘度受压强影响也很小;液体的粘度随温度升高而减小,气体的粘度却随温度升高而增大,其原因是:分子间的引力是液体粘性的主要因素,而分子热运动引起的动量交换是气体粘性的主要因素。
流体力学总题库内部吐血整理-知识归纳整理

求知若饥,虚心若愚。 第 2 页/共 20 页
千里之行,始于足下。 第 3 页/共 20 页
求知若饥,虚心若愚。 第 4 页/共 20 页
千里之行,始于足下。 第 5 页/共 20 页
求知若饥,虚心若愚。 第 6 页/共 20 页
千里之行,始于足下5 页/共 20 页
求知若饥,虚心若愚。 第 16 页/共 20 页
千里之行,始于足下。 第 17 页/共 20 页
求知若饥,虚心若愚。 第 18 页/共 20 页
千里之行,始于足下。 第 19 页/共 20 页
求知若饥,虚心若愚。 第 20 页/共 20 页
求知若饥,虚心若愚。 第 8 页/共 20 页
千里之行,始于足下。 第 9 页/共 20 页
求知若饥,虚心若愚。 第 10 页/共 20 页
千里之行,始于足下。 第 11 页/共 20 页
求知若饥,虚心若愚。 第 12 页/共 20 页
千里之行,始于足下。 第 13 页/共 20 页
求知若饥,虚心若愚。 第 14 页/共 20 页
(整理)流体力学基本知识

第一章流体力学基本知识解析第一节流体及其空气的物理性质流动性是流体的基本物理属性。
流动性是指流体在剪切力作用下发生连续变形、平衡破坏、产生流动,或者说流体在静止时不能承受任何剪切力。
易流动性还表现在流体不能承受拉力。
(一) 流体的流动性通风除尘与气力输送涉及的流体主要是空气。
流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。
但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。
这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。
实际上质点包含着大量分子,例如在体积为10-15cm3的水滴中包含着3×107个水分子,在体积为1mm3的空气中有2.7×1016个各种气体的分子。
质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。
然而,也不是在所有情况下都可以把流体看成是连续的。
高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。
而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。
所谓连续性的假设,首先意味着流体在宏观上质点精品文档精品文档是连续的,其次还意味着质点的运动过程也是连续的。
有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。
(二)惯性(密度)流体的第一个特性是具有质量。
流体单位体积所具有流体彻底质量称为密度,用符号ρ表示。
在均质流体内引用平均密度的概念,用符号ρ表示:Vm =ρ 式中: m ——流体的质量[Kg];V ——流体的体积[m 3];ρ——流体密度Kg/m 3。
但对于非均质流体,则必需用点密度来描述。
所谓点密度是指当ΔV →0值的极限(dV dm V m V 0 lim ),即: dV dm V m lim V =∆∆=→∆0ρ精品文档 公式中,ΔV →0理解为体积缩小为一点,此点的体积可以忽略不计,同时,又必须明确,这点和分子尺寸相比必然是相当大的,它必定包括多个分子,而不至丧失流体的连续性。
流体力学知识点大全

流体力学-笔记参考书籍:《全美经典-流体动力学》《流体力学》张兆顺、崔桂香《流体力学》吴望一《一维不定常流》《流体力学》课件清华大学王亮主讲目录:第一章绪论第二章流体静力学第三章流体运动的数学模型第四章量纲分析和相似性第五章粘性流体和边界层流动第六章不可压缩势流第七章一维可压缩流动第八章二维可压缩流动气体动力学第九章不可压缩湍流流动第十章高超声速边界层流动第十一章磁流体动力学第十二章非牛顿流体第十三章波动和稳定性第一章绪论1、牛顿流体:剪应力和速度梯度之间的关系式称为牛顿关系式,遵守牛顿关系式的流体是牛顿流体。
2、理想流体:无粘流体,流体切应力为零,并且没有湍流?。
此时,流体内部没有内摩擦,也就没有内耗散和损失。
层流:纯粘性流体,流体分层,流速比较小;湍流:随着流速增加,流线摆动,称过渡流,流速再增加,出现漩涡,混合。
因为流速增加导致层流出现不稳定性。
定常流:在空间的任何点,流动中的速度分量和热力学参量都不随时间改变,3、欧拉描述:空间点的坐标;拉格朗日:质点的坐标;4、流体的粘性引起剪切力,进而导致耗散。
5、无黏流体—无摩擦—流动不分离—无尾迹。
6、流体的特性:连续性、易流动性、压缩性 不可压缩流体:0D Dtρ= const ρ=是针对流体中的同一质点在不同时刻保持不变,即不可压缩流体的密度在任何时刻都保持不变。
是一个过程方程。
7、流体的几种线流线:是速度场的向量线,是指在欧拉速度场的描述; 同一时刻、不同质点连接起来的速度场向量线; (),0dr U x t dr U ⇒⨯=迹线:流体质点的运动轨迹,是流体质点运动的几何描述; 同一质点在不同时刻的位移曲线; 涡线:涡量场的向量线,(),,0U dr x t dr ωωω=∇⨯⇒⨯=涡线的切线和当地的涡量或准刚体角速度重合,所以,涡线是流体微团准刚体转动方向的连线,形象的说:涡线像一根柔性轴把微团穿在一起。
第二章 流体静力学1、压强:0limA F dFp A dA ∆→∆==∆静止流场中一点的应力状态只有压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 从力学角度看,流体区别于固体的特点是:易变形性,可压缩性,粘滞性和表面张力。
2. 牛顿流体: 在受力后极易变形,且切应力与变形速率成正比的流体。
即τ=μ*du/dy 。
当n<1时,属假塑性体。
当n=1时,流动属于牛顿型。
当n>1时,属胀塑性体。
3. 流场: 流体运动所占据的空间。
流动分类 时间变化特性: 稳态与非稳态
空间变化特性: 一维,二维和三维
流体内部流动结构: 层流和湍流
流体的性质: 黏性流体流动和理想流体流动;可压缩和不可压缩
流体运动特征: 有旋和无旋;
引发流动的力学因素: 压差流动,重力流动,剪切流动
4. 描述流动的两种方法:拉格朗日法和欧拉法
拉格朗日法着眼追踪流体质点的流动,欧拉法着眼在确定的空间点上考察流体的流动
5. 迹线:流体质点的运动轨迹曲线
流线:任意时刻流场中存在的一条曲线,该曲线上各流体质点的速度方向与该曲线的速
度方向一致
性质 a.除速度为零或无穷大的点以外,经过空间一点只有一条流线
b.流场中每一点都有流线通过,所有流线形成流线谱
c .流线的形状和位置随时间而变化,稳态流动时不变
迹线和流线的区别:流线是同一时刻不同质点构成的一条流体线;
迹线是同一质点在不同时刻经过的空间点构成的轨迹线。
稳态流动下,流线与迹线是重合的。
6. 流管:流场中作一条不与流线重合的任意封闭曲线,通过此曲线的所有流线构成的管状
曲面。
性质:①流管表面流体不能穿过。
②流管形状和位置是否变化与流动状态有关。
7.涡量是一个描写旋涡运动常用的物理量。
流体速度的旋度▽xV 为流场的涡量。
有旋流动:流体微团与固定于其上的坐标系有相对旋转运动。
无旋运动:流场中速度旋
度或涡量处处为零。
涡线是这样一条曲线,曲线上任意一点的切线方向与在该点的流体的涡量方向一致。
8. 静止流体:对选定的坐标系无相对运动的流体。
不可压缩静止流体质量力满足 ▽x f =0
9. 匀速旋转容器中的压强分布p=ρ(gz -22r2
ω)+c
10. 系统:就是确定不变的物质集合。
特点 质量不变而边界形状不断变化
控制体:是根据需要所选择的具有确定位置和体积形状的流场空间。
其表面称为控制面。
特点 边界形状不变而内部质量可变
运输公式:系统的物理量随时间的变化率转换成与控制体相关的表达式。
含义:任一瞬时系统内物理量(如质量、动量和能量等)随时间的变化率等
于该瞬时其控制体内物理量的变化率与通过控制体表面的净通量之和。
11. 伯努力方程 g
v g p z g v g p z 222
2222111αραρ++=++ 12. 常见边界条件:1、固壁—流体边界2、液体—液体边界3、液体—气体边界
13. 流动条件说明:稳态——流动过程与时间无关。
不可压缩——流体密度ρ为常数。
一维
流动——流体只在一个坐标方向上流动,且流体速度分布仅与一个空间
坐标有关。
层流——平行流动的流体层之间只有分子作用,牛顿剪切定
理只有在层流条件下才成立 充分发展的流动——流体速度沿流动方向
没有变化的流动 。
狭缝流动——两块足够大的平行平板(或板间距大大小于板宽的平行平板)间的流动 两
种形式——压差流(进出口压力差产生的流动)、剪切流(两壁面相对运
动产生的流动)。
14. 流量:单位时间通过流管内某一横截面的流体
15. 狭缝流动切应力与速度分布一般方程
y yx ∂∂τ= 1C y L
p +∆-*
βρcos 21gL p p p +-=∆* 21221C y C y L p u ++∆-=*μ
μ 管内和套管流动切应力与速度分布一般方程
r
C r L p rz 12+∆-=*τ 212ln 4C r C r L p u ++∆-=*μμ 16. 连续性方程一般式
0t z )ρν (y )ρν (x )ρν (z y x =∂∂+∂∂+∂∂+∂∂ρ 柱坐标中0)(z
)(r 1)r (r r 1t z r =∂∂+∂∂+∂∂+∂∂ρνρνθνρρθ 对不可压缩流体有
0z ν y ν x ν z y x =∂∂+∂∂+∂∂ 0z r 1r )r (r 1z r =∂∂+∂∂+∂∂νθννθ 17. 以应力表示运动方程: X 方向
⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+∂∂z y x
f z ννy ν νx ννt νzx yx xx x x z x yx x x ττσρρ 18. 常粘度下的N -S 方程 )(3
1p 1f Dt D 2ννννρν⋅∇∇+∇+∇-= 不可压缩流体的N -S 方程
ννρν2p 1-f Dt D ∇+∇= 19. 平面运动: 这个流场中流体速度都平行于某一平面,且流体各物理量在与该平面垂
直的方向上没有变化的流动。
线流量:是线段与通过线段的法向速度的乘积。
速度环量:封闭曲线上的切向速度v s 沿封闭曲线的积分
20. 速度势函数 或 θ
ϕϕθ∂∂=∂∂=r 1,v r v r 流函数 或θ
ψψθ∂∂=∂∂=-,r 1v r v r 等势线:令速度势函数等于常数的曲线簇。
流线: 流函数为常数的曲线。
流网:流线与等势线交叉组成的表示流动特性的网线。
21. 点源——在无限平面上流体从一点沿径向直线均匀地向各方流出。
点汇——在无限平面上流体沿径向直线均匀地从各方流入一点。
点涡——流体在平面上的纯环流运动
偶极流:点源和点汇的叠加 源环:点源与点涡的叠加 汇环:点汇与点涡的叠加
22. 流动相似 包括几何相似,运动相似,动力相似
雷诺数 Re=μρυμυρυL L L F F ==22黏性力惯性力// 欧拉数 Eu=22惯性力压力//P ρυ
ρυP L L F F == 佛鲁德Fr=Lg g L F F 22重力惯性力/υρρυ== 斯特哈尔数 St=t L L
t F F υρυρυυ==//2惯性力t 惯性力 23. 层流,流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。
湍流,也叫紊流,是一种微观上不规则的流动状态。
24. 边界层厚度:流体速度从u=0到u=0.99uo 对应的流体层厚度
卡门涡街,在80~90<Re<150时,边界层分离点在圆柱体背流面出现稳定的,非对称的,排列有规律的,旋转方向相反的,交替从物体脱落的漩涡,形成两行排列整齐向下运动的涡列。
x y v v x y φ
φ∂∂==∂∂,x y v v y x ψ
ψ∂∂==-∂∂。