工业机器人控制系统组成及典型结构
工业机器人原理及应用实例

工业机器人原理及应用实例一、工业机器人概念工业机器人是一种可以搬运物料、零件、工具或完成多种操作功能的专用机械装置;由计算机控制,是无人参与的自主自动化控制系统;他是可编程、具有柔性的自动化系统,可以允许进行人机联系。
可以通俗的理解为“机器人是技术系统的一种类别,它能以其动作复现人的动作和职能;它与传统的自动机的区别在于有更大的万能性和多目的用途,可以反复调整以执行不同的功能。
”二、组成结构工业机器人由主体、驱动系统和控制系统三个基本部分组成。
主体即机座和执行机构,包括臂部、腕部和手部,有的机器人还有行走机构。
大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
三、分类工业机器人按臂部的运动形式分为四种。
直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。
工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。
点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。
工业机器人按程序输入方式区分有编程输入型和示教输入型两类。
编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。
示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。
在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。
abb工业机器人的结构组成

abb工业机器人的结构组成摘要:一、引言1.ABB工业机器人的概述2.本文目的和结构二、ABB工业机器人的机械结构系统1.机器人的主体结构2.关节和传动系统3.末端执行器三、ABB工业机器人的驱动系统1.电机和驱动器2.减速器3.伺服系统四、ABB工业机器人的控制系统1.控制器及其功能2.编程和编程语言3.控制系统的基本原理五、ABB工业机器人的传感器和执行器1.传感器的作用和类型2.执行器的分类和应用3.传感器和执行器的协同工作六、ABB工业机器人的环境交互系统1.工业机器人与外部设备的连接2.信息交流和协调3.工业网络和通信协议七、ABB工业机器人的编程和应用1.编程技术和方法2.典型应用领域3.工业机器人的性能和稳定性八、结论1.ABB工业机器人的优势和特点2.未来发展趋势和挑战正文:一、引言随着科技的飞速发展,工业机器人已成为现代制造业的重要装备。
在全球工业机器人市场中,ABB集团是一家具有领导地位的供应商。
本文将详细介绍ABB工业机器人的结构组成,以帮助读者更好地了解和应用这一技术。
二、ABB工业机器人的机械结构系统ABB工业机器人的机械结构系统是工业机器人的基础部分,它包括机器人的主体结构、关节和传动系统以及末端执行器。
1.机器人的主体结构:机器人的主体结构通常由立柱、横梁、底座等部分组成,它们共同支撑和固定机器人的其他部件。
2.关节和传动系统:关节是连接机器人各个部位的纽带,传动系统则负责实现关节的运动。
ABB工业机器人采用多种类型的关节和传动系统,如旋转关节、摆动关节、线性关节等。
3.末端执行器:末端执行器是机器人完成工作任务的工具,根据不同的应用场景,ABB提供了多种末端执行器,如抓手、焊枪、刷子等。
三、ABB工业机器人的驱动系统ABB工业机器人的驱动系统负责将电能转化为机械能,实现机器人的运动。
它包括电机、减速器和伺服系统。
1.电机和驱动器:电机是将电能转化为机械能的核心部件,ABB提供多种类型的电机,如交流电机、直流电机和无刷电机。
机器人控制系统设计与实现

机器人控制系统设计与实现摘要:机器人控制系统是机器人技术中的核心部分,它负责对机器人进行指令控制,实现各种复杂的动作和功能。
本文将介绍机器人控制系统的设计与实现,包括系统架构、硬件设计和软件编程等关键内容。
一、引言机器人技术在工业、医疗、军事等领域有着广泛的应用,其核心就是机器人控制系统。
机器人控制系统由硬件和软件两部分组成,硬件负责接收指令和控制机器人执行动作,软件则负责对机器人进行编程和算法实现。
二、系统架构设计机器人控制系统的架构设计是整个系统开发的基础。
一个典型的机器人控制系统可以分为三个层次:感知层、决策层和执行层。
1.感知层感知层是机器人获取环境信息的部分,包括传感器和摄像头等。
传感器可以用来检测机器人与周围环境的距离、位置以及其他物理参数,而摄像头可以用于识别物体和人脸等。
2.决策层决策层是机器人控制系统的核心,它负责根据感知层获取到的信息进行决策和算法处理。
在这一层次,需要设计和实现一些算法,如路径规划、运动控制等,来实现机器人的智能决策。
3.执行层执行层是机器人根据决策层的指令执行相应动作的部分,它包括电机、舵机、液压系统等。
这些执行机构可以根据决策层的指令控制机器人的运动、抓取物体、开关等动作。
三、硬件设计硬件设计是机器人控制系统的重要组成部分,它包括电路设计、电气连接和机械结构等。
1.电路设计电路设计的关键是选择合适的传感器和执行机构,并设计相应的电路板,以实现传感器与执行机构之间的连接和信号传递。
此外,还需要设计适配电池或外部电源供电的电路。
2.电气连接电气连接是将电路板和传感器、执行机构连接起来的步骤,需要注意合理布局和连接方式,以保证电路的稳定性和可靠性。
3.机械结构机械结构是机器人控制系统的物理框架,它包括机器人的外形设计和结构组装。
设计合理的机械结构可以提高机器人的稳定性、灵活性和运动能力。
四、软件编程软件编程是机器人控制系统的关键环节,它决定了机器人能否实现各种复杂的功能和动作。
机器人本体结构描述

2.回转与俯仰机身
二、机身驱动力(力矩)计算 1. 垂直升降运动驱动力Pq 的计算 需克服摩擦力、总重力、惯性力:
Pq Fm Fg W
Fm为各支承处的摩擦力(N);
Fg 为启动时的总惯性力(N);
W 为运动部件的总重力(N) 。
2. 回转运动驱动力矩的计算
Mq Mm Mg
M m 为总摩擦阻力矩(N· m);
三、机器人手部 机器人的手部也叫做末端执行器,装在机器人手 腕上直接抓握工件或执行作业的部件。 手部是完成作业好坏以及作业柔性好坏的关键部 件之一。
1. 特点:
(1) 手部与手腕相连处可拆卸。
(2) 手部是机器人末端执行器。
(3) 手部的通用性比较差。
2. 手部的设计要求:
(1)具有足够的夹持力。 (2)保证适当的夹持精度: 手指应能顺应被夹持工件的形状,应对被夹持工 件形成所要求的约束。 (3)手部自身的大小、形状、机构和运动自由度: 主要是根据作业对象的大小、形状、位置、姿态、 重量、硬度和表面质量等来综合考虑。
3)运动要平稳、定位精度高 臂部高速运动,惯性力引起的冲击大,运动不平 稳,定位精度也不高,采用缓冲措施。 4)重量轻、转动惯量小。
为提高机器人的运动速度,要尽量减少臂部运动 部分的重量,以减少手臂对回转轴的转动惯量。
5)合理设计与腕和机身的连接部位。
臂部安装形式和位置不仅关系到机器人的强度、 刚度和承载能力,还直接影响机器人的外观。
第 6章
机器人本体结构
6.1
概
述
机器人主要由驱动系统、机械系统、感知系统、 控制系统四个系统组成。 机械系统又叫操作机,是工业机器人的执行机构。 可分成基座、腰部、臂部、腕部和手部。
工业机器人的典型结构

工业机器人的典型结构
工业机器人的典型结构包括机械臂、控制系统、传感器和执行器等基本部分。
其中:
1. 机械臂:是工业机器人的主要部分,通常包括可伸缩的臂、关节、末端执行器和触觉传感器等。
其结构复杂,设计灵活,能够执行各种不同的任务和功能。
2. 控制系统:是机器人的大脑,包括计算机、控制器和编程器等。
控制系统能够接收外部指令,对机械臂进行准确的控制和调度,调整机器人的运动和转向速度等。
3. 传感器:是机器人的“眼睛”和“耳朵”,能够感知环境和物体,通过视觉识别、声音识别、力量反馈和距离测量等方式获得信息,并传达给控制系统。
4. 执行器:是机器人的“手”和“脚”,能够根据控制系统的指令,执行各种不同的任务,比如移动、抓取、拆分、焊接和研磨等。
总之,工业机器人的典型结构是多种部件的综合体,具有复杂的功能和灵活的设计,能够满足不同领域和产业的机械化需求。
机器人的组成结构

常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。
工业机器人的组成结构

工业机器人的组成结构
工业机器人一般由主构架(手臂)、手腕、驱动系统、测量系统、控制器及传感器等组成。
图1是工业机器人的典型结构。
机器人手臂具有3个自由度(运动坐标轴),机器人作业空间由手臂运动范围决定。
手腕是机器人工具(如焊枪、喷嘴、机加工刀具、夹爪)与主构架的连接机构,它具有3个自由度。
驱动系统为机器人各运动部件提供力、力矩、速度、加速度。
测量系统用于机器人运动部件的位移、速度和加速度的测量。
控制器(RC)用于控制机器人各运动部件的位置、速度和加速度,使机器人手爪或机器人工具的中心点以给定的速度沿着给定轨迹到达目标点。
通过传感器获得搬运对象和机器人本身的状态信息,如工件及其位置的识别,障碍物的识别,抓举工件的重量是否过载等。
图1 工业机器人的典型结构
工业机器人运动由主构架和手腕完成,主构架具有3个自由度,其运动由两种基本运动组成,即沿着坐标轴的直线移动和绕坐标轴的回转运动。
不同运动的组合,形成各种类型的机器人(如图2):①直角坐标型(如图2a是三个直线坐标轴);②圆柱坐标型(如图2b是两个直线坐标轴和一个回转轴);③球坐标型(如图2c是一个直线坐标轴和两个回转轴);④关节型(如图2d是三个回转轴关节和图2e是三个平面运动关节)。
a)直角坐标型 b)圆柱坐标型 c)球坐标型 d)多关节型 e)平面关节型
图2 工业机器人的基本结构形式。
第七章 工业机器人设计

第一节
绪 论
四、工业机器人的基本设计方法 1、工业机器人的设计方法 与机床设计方法基本相同,但具体的设计内容、设计要求 和设计技术有很大差别。工业机器人总体方案的设计可分为分 析式设计和创成式设计。 2、设计内容与步骤 总体设计:基本技术参数设计、总体方案设计; 详细设计:装配图设计、零件图设计、控制系统设计; 总体评价:检测其是否能满足所需设计指标的要求;
第三节
工业机器人的控制
二、工业机器人的位置伺服控制 伺服系统的构成方法大体分为关节伺服和坐标伺服。
① 关节伺服控制
关节伺服系统把每一个关节作为单纯的单数输出系统来处 理,所以结构简单,现在工业机器人大部分由这种关节伺服系 统来控制。 ② 作业坐标伺服控制
对软件伺服来说,取样时间较短,所以是工业机器人经常
4 、工业机器人的传动系统设计 机器人操作机是由若干个构件和关节组成的多自由度空间
机构,其运动都是由驱动器经各种机械传动装置减速后驱动负
载。
机器人中常用的机械传动机构有齿轮传动、蜗杆传动、滚
珠丝杠传动、同步齿形带传动、链传动、行星齿轮传动等。
第二节
5、驱动方式选择
工业机器人机械系统设计
工业机器人的驱动系统是带动操作机各运动副的动力源。 常用的驱动方式包括电动机驱动、液压、气动三种。 ① 电动机驱动方式 应用类型大致分为普通交、直流电动机驱动、流伺服电动 机驱动、交流伺服电动机驱动、步进电动机驱动等。 优点:不需能量转换、控制灵活、使用方便、噪声较低、
第二节
工业机器人机械系统设计
一、工业机器人的位姿描述 工业机器人的位姿是指其末端执行器在指定坐标系中的位 置和姿态。 1、作业功能姿态描述法 所谓用作业动作功能要求来描述机器人位姿,就是直接用 末端执行器和机座之间的齐次坐标变换来描述。 2、运动功能姿态描述法 坐标变换:坐标系采用右手系坐标 运动矩阵:机器人各个关节的运动都是坐标运动,坐标运 动可以用齐次坐标变换矩阵表示。机器人末端执行器与机座之 间的相对运动可以用运动矩阵来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业机器人控制系统组成及典型结构
一、工业机器人控制系统所要达到的功能
机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下:
1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。
2、示教功能:离线编程,在线示教,间接示教。
在线示教包括示教盒和导引示教两种。
3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。
4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。
5、人机接口:示教盒、操作面板、显示屏。
6、传感器接口:位置检测、视觉、触觉、力觉等。
7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。
8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。
二、工业机器人控制系统的组成
1、控制计算机:控制系统的调度指挥机构。
一般为微型机、微处理器有32位、64位等如奔腾系列CPU以及其他类型CPU。
2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。
3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。
4、硬盘和软盘存储存:储机器人工作程序的外围存储器。
5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。
6、打印机接口:记录需要输出的各种信息。
7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。
8、轴控制器:完成机器人各关节位置、速度和加速度控制。
9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。
10、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。
11、网络接口
1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。
2)Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。
三、工业机器人控制系统分类
1、程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。
2、自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。
这种系统的结构和参数能随时间和条件自动改变。
3、人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。
4、点位式:要求机器人准确控制末端执行器的位姿,而与路径无关。
?
5、轨迹式:要求机器人按示教的轨迹和速度运动。
6、控制总线:国际标准总线控制系统。
采用国际标准总线作为控制系统的控制总线,如VME、MUL TI-bus、STD-bus、PC-bus。
7、自定义总线控制系统:由生产厂家自行定义使用的总线作为控制系统总线。
8、编程方式:物理设置编程系统。
由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。
9、在线编程:通过人的示教来完成操作信息的记忆过程编程方式,包括直接示教模拟示教和示教盒示教。
10、离线编程:不对实际作业的机器人直接示教,而是脱离实际作业环境,示教程序,通过使用高级机器人,编程语言,远程式离线生成机器人作业轨迹。
四、机器人控制系统结构
机器人控制系统按其控制方式可分为三类。
1)集中控制系统(CentralizedControlSystem):用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构,其构成框图,如图2所示。
基于PC的集中控制系统里,充分利用了PC资源开放性的特点,可以实现很好的开放性:多种控制卡,传感器设备等都可以通过标准PCI插槽或通过标准串口、并口集成到控制系统中。
集中式控制系统的优点是:硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的系统硬件扩展较为方便。
其缺点也显而易见:系统控制缺乏灵活性,控制危险容易集中,一旦出现故障,其影响面广,后果严重;由于工业机器人的实时性要求很高,当系统进行大量数据计算,会降低系统实时性,系统对多任务的响应能力也会与系统的实时性相冲突;此外,系统连线复杂,会降低系统的可靠性。
2)主从控制系统:采用主、从两级处理器实现系统的全部控制功能。
主CPU实现管理、坐标变换、轨迹生成和系统自诊断等:从CPU实现所有关节的动作控制。
其构成框图,如图3所示。
主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
3)分散控制系统(DistributeControlSystem):按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。
这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。
其主要思想是“分散控制,集中管理”,即系统对其总体目
标和任务可以进行综合协调和分配,并通过子系统的协调工作来完成控制任务,整个系统在功能、逻辑和物理等方面都是分散的,所以DCS系统又称为集散控制系统或分散控制系统。
这种结构中,子系统是由控制器和不同被控对象或设备构成的,各个子系统之间通过网络等相互通讯。
分布式控制结构提供了一个开放、实时、精确的机器人控制系统。
分布式系统中常采用两级控制方式。
两级分布式控制系统?通常由上位机、下为机和网络组成。
上位机可以进行不同的轨迹规划和控制算法,下位机进行插补细分、控制优化等的研究和实现。
上位机和下位机通过通讯总线相互协调工作,这里的通讯总线可以是RS-232、RS-485、EEE-488以及USB总线等形式。
现在,以太网和现场总线技术的发展为机器人提供了更快速、稳定、有效的通讯服务。
尤其是现场总线,它应用于生产现场、在微机化测量控制设备之间实现双向多结点数字通信,从而形成了新型的网络集成式全分布控制系统—现场总线控制系统 FCS(FiledbusControlSystem)。
在工厂生产网络中,将可以通过现场总线连接的设备统称为“现场设备/仪表”。
从系统论的角度来说,工业机器人作为工厂的生产设备之一,也可以归纳为现场设备。
在机器人系统中引入现场总线技术后,更有利于机器人在工业生产环境中的集成。
分布式控制系统的优点在于:系统灵活性好,控制系统的危险性降低,采用多处理器的分散控制,有利于系统功能的并行执行,提高系统的处理效率,缩短响应时间。
对于具有多自由度的工业机器人而言,集中控制对各个控制轴之间的藕合关系处理得很好,可以很简单的进行补偿。
但是,当轴的数量增加到使控制算法变得很复杂时,其控制性能会恶化。
而且,当系统中轴的数量或控制算法变得很复杂时,可能会导致系统的重新设计。
与之相比,分布式结构的每一个运动轴都由一个控制器处理,这意味着,系统有较少的轴间祸合和较高的系统重构性。