简谐运动的图像和公式

合集下载

3.简谐运动的图像和公式

3.简谐运动的图像和公式

靖西中学高级教师蒙培春
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时,
试:大致画出它的振动图像?
2020/6/3
靖西中学高级教师蒙培春
从平衡位置O(向B)开始计时
从B 开始计时
2020/6/3
靖西中学高级教师蒙培春
四、振动图象的实际运用
心电图仪
2020/6/3
T=4 s
B.质点振动的振幅是2 cm C.t=3 s时,质点的速度最大
斜率最大 速度最大
D.在t=3 s时,质点的振幅为零
仍为2cm
2020/6/3
靖西中学高级教师蒙培春
简谐运动图像的物理量 1、直接描述物理量
①振幅A:图像的峰值 ②周期T:相邻两个位移为正的最大值或负的最大值之间
的时间间隔 相邻两个振动情况完全相同的位置之间的时间。 ③任意时刻的位移x
D、第6s末摆球的加速度为正,速度为零
E、第9s末摆球的加速度为正,速度为正
F、4s末振子速度为负,加速度为零
G、第14s末振子的加速度为正,速度最大
2020/6/3
靖西中学高级教师蒙培春
11.3 简谐运动的图像和公式
例物B的2体、运B做动物简(体谐A做运) 简动CD谐的运振动动标的位量振移动xB=位5A移As是是ixn3A3(m=1m5,0m,30Bst是+iBn5m是(1200)tm+,比 6 较)mA,、
2020/6/3
靖西中学高级教师蒙培春
一、简谐运动的图像
11.3 简谐运动的图像和公式
2020/6/3
靖西中学高级教师蒙培春
11.3 简谐运动的图像和公式
一、简谐运动的图像 方案二:做一个盛沙的锥摆,让其摆动,同时在下边拉 动一块木板,则摆中漏下的沙子就显示出振动的图象。

简谐运动图象和公式教科ppt课件

简谐运动图象和公式教科ppt课件
6
一、简谐运动的图像
(3)从振动图象中分析有关物理量
从简谐运动的图像我们可以了解到物体在振动时的许多物 理量。比如,参看下图的振动图像可确定:
7
1.振幅A:图像的峰值。 2.周期T:相邻两个位移为正的最大值或负的最
大值之间的时间间。 3.任一时刻t的位移x:对应于图像上某一点的
坐标(t,x)。
8
22
课堂练习 1、右图中是甲乙两弹簧振子的振动图象,两
振动振幅之比为( 2∶1 ), 频率之比为( 1∶1 ),
甲和乙的相差为( )
2
23
练习:
已知:A=3cm,T=8s,规定向右方向为正 方向,从平衡位置O(向B)开始计时, 试:大致画出它的振动图像?
24
从平衡位置O(向B)开始计时
从B 开始计时
1、振动图象(如图)
2、x-t图线是一 条质点做简谐
运动时,位移
随时间变化的
图象,不是轨
迹。
3、振动图象是 正弦曲线还是 余弦曲线,这 决定于t=0 时刻的选择。
4
一、简谐运动的图像
(2)简谐运动图象描述的振动物理量
1、直接描述量: ①振幅A;②周期T;③任意时刻的位移x。
5
一、简谐运动的图像
2、间接描述量 ①频率f=1/T ② x-t图线上任一点的切线的斜率等于v。
选修3-4 第一章 机械振动 §1.3 简谐运动的图象和公式
1
温故知新——简谐运动的描述
1、如何反映简谐运动的强弱和振动快慢? 振幅(A) 周期和频率 2、单摆的周期与哪些因素有关?
与单摆的质量和振幅无关,与摆长有关
想一想还可怎么描述简谐运动? 2
3
一、简谐运动的图像

1-3 简谐运动的图像和公式

1-3 简谐运动的图像和公式
时间t(s) 0 t0 2t0 3t0 4t0 5t0 6t0
位移x(m)
-20.0
-17.8
-10.1
0.1
10.3
17.7
20.0
第二个1/2周期:
时间t(s) 6t0 7t0 8t0 9t0 10t0 11t0 12t0
位移x(m)
20.0
17.7
10.3
0.1
-10.1
-17.8
-20.0
弹簧振子的位移x与时 间t成正弦规律变化。
π
针对训练 2
有两个简谐运动,其表达式分别是
π π x1=4sin100πt+3cm,x2=5sin100πt+6 cm,下列说法正
确的是( BC )
A.它们的振幅相同 C.它们的相位差恒定
B.它们的周期相同 D.它们的振动步调一致
例9
一弹簧振子 A 的位移 x 随时间 t 变化的关系式为 x = 0.1sin
两个摆长相同的单摆,周期相同,把它们朝相反的方向拉开相同角度, 如上图,放开后看到它们在各时刻的位移总相反,同时达到相反的最大 位移处,也相反方向经过平衡位置。在它们的x表达式中,相位一定相差π, 我们叫振动反相。
相位差:相同频率的两个简谐振动的相位之差。
(t 1 ) (t 2 ) 1 2
2.5πt,位移x的单位为m,时间t的单位为s.则( A.弹簧振子的振幅为0.2 m B.弹簧振子的周期为1.25 s C.在t=0.2 s时,振子的运动速度为零
CD )
D.若另一弹簧振子B的位移y随时间变化的关系式为
π x=0.2 sin 2.5πt+ 4 ,则振动A滞后B

例7
一个小球和轻质弹簧组成的系统按x1=5sin

简谐运动公式字母含义

简谐运动公式字母含义

简谐运动的公式和定义1公式:$x=A/sin(ωT+φ)$2公式中的参数:(1)式中,$x$是振动粒子相对于平衡位置的位移,t是振动时间。

(2)A是距振动粒子平衡位置的最大距离,即振幅。

(3)ω称为简谐运动的圆频率,也代表简谐运动的振动速度。

三。

定义:如果作用在质点上的力与质点离开平衡位置的位移成正比,且始终指向平衡位置,则质点的运动为简谐运动。

4特征:(1)简谐运动是最基本、最简单的振动。

(2)简谐运动的位移按正弦规律随时间变化,因此它不是匀速变速运动,而是在变力作用下的变加速度运动。

5特征:(1)力特性:恢复力$f=-KX$,$f$(或$a$)与$x$的大小成正比,方向相反。

(2)运动特性:接近平衡位置时,$a、F、x$减小,$V$增大;远离平衡位置时,$a、F、x$增大,$V$减小。

(3)能量特性:振幅越大,能量越大。

在运动过程中,动能和势能相互转化,系统的机械能守恒。

(4)周期性特征:质点的位移、回复力、加速度和速度随时间呈周期性变化,变化周期为简谐运动周期,动能和势能也随时间呈周期性变化,变化周期为$-fracT2$。

(5)对称特征:在平衡位置的两个对称点,加速度、速度、动能、势能相等,相对平衡位置的位移相等。

6平衡位置:物体在振动过程中恢复力为零的位置。

7恢复力的定义:使物体恢复到平衡位置的力。

8恢复力方向:始终指向平衡位置。

9恢复力的来源:属于效应力。

它可以是某个力,几个力的合力或某个力的分力。

2、简谐运动的例子关于简谐运动和简谐运动中物体的完全振动的意义,下面的说法是正确的____A、当位移减小时,加速度减小,速度增大B、位移方向总是与加速度方向相反,与速度方向相同C、动能或势能首先恢复到原来大小的过程D、速度和加速度第一次同时恢复到原来的大小和方向的过程E、当物体的运动方向指向平衡位置时,速度方向与位移方向相反;当物体偏离平衡位置时,速度方向与位移方向相同答案:阿德分析:当位移减小时,恢复力减小,加速度减小,物体移动到平衡位置,速度增大,a正确;恢复力与位移方向相反,加速度与位移方向相反,但速度和位移方向可以相同,也可以相反;当物体的运动方向指向平衡位置时,速度方向与位移方向相反;位置偏离平衡位置时,速度方向与位移方向相同,所以B是错误的,E是正确的;在一次完全振动中,动能和势能可以多次恢复到原来的尺寸,所以C是错误的;在第一次完全振动中,速度和加速度同时恢复到原来的尺寸和方向的过程是完全振动,所以D是正确的。

简谐运动的描述ppt课件

简谐运动的描述ppt课件
2.2
简谐运动的描述
目录
CONTENTS
1
简谐运动的表达式
2
描述简谐运动的物理量
3
简谐运动的周期性和对称性
4
简谐运动振幅与路程的关系
有些物体的振动可以近似为简谐运
动,做简谐运动的物体在一个位置附近
不断地重复同样的运动。如何描述简谐
运动的这种独特性呢?
知识回顾:
简谐运动的位移图像是一条正弦曲线。
全振动的特点:①位移和速度都会到初状态 ②路程等于4A
②周期:做简谐运动的物体完成一次全振动所需要的时间,用T表示,
单位:s.
③ 频率:单位时间内完成全振动的次数,用f表示,单位:Hz.
周期T与频率f的关系是T=
知道即可:弹簧振子的周期由哪些因素决定?
周期公式: T 2
m
k
弹簧振子周期(固有周期)和频率由振动系统本身的因素决定(振子的质量m和弹
②若△ = 2 − 1<0,振动2的相位比1落后△ 。
4.同相与反相:
(1)同相:相位差为零



△ = 2( = 0,1,2, … )


(2)反相:相位差为
△ = (2 + 1)( = 0,1,2, … )

A与B同相
A与C反相
A与D异相
相位差90°
=( + )
一、简谐运动的表达式
相位
x A sin(t )
振幅
圆频率
初相位
二、描述简谐运动的物理量
=( + )
1.振幅:(1)定义:振动物体离开平衡位置的最大距离。
振幅
O
振幅
(2)物理意义:振幅是描述振动强弱的物理量。

第一章 第3节 简谐运动的图像和公式

第一章 第3节 简谐运动的图像和公式

第3节简谐运动的图像和公式1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点做简谐运动时位移x 随时间t 的变化规律,并不是质点运动的轨迹。

2.由简谐运动图像可以直接得出物体振动的振幅、周期、某时刻的位移及振动方向。

3.简谐运动的表达式为x =A sin(2πTt +φ)或x =A sin(2πft+φ),其中A 为质点振幅、(2πTt +φ)为相位,φ为初相位。

1.建立坐标系以横轴表示做简谐运动的物体的时间t ,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x 。

2.图像的特点一条正弦(或余弦)曲线,如图所示。

3.图像意义表示物体做简谐运动时位移随时间的变化规律。

4.应用由简谐运动的图像可找出物体振动的周期和振幅。

[跟随名师·解疑难]1.图像的含义表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。

2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。

(2)任意时刻质点的位移的大小和方向。

如图甲所示,质点在t 1、t 2时刻的位移分别为x 1和-x 2。

甲 乙(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图乙中a 点,下一时刻离平衡位置更远,故a 此刻向上振动。

(4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。

如图乙中b 点,从正位移向着平衡位置运动,则速度 为负且增大,位移、加速度正在减小;c 点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。

[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)如图所示为某质点做简谐运动的图像,则质点在前6 s 内通过的路程为________ cm ,在6~8 s 内的平均速度大小为________ cm/s ,方向________。

3.简谐运动的图像和公式

3.简谐运动的图像和公式

旋 转 矢量 A的
x 端点在
轴上的投
影点的运
动为简谐
运动.
x Acos(t )
简谐运动的位移公式:
x Acos( t )
其中A表示振幅, 是圆频率(或称角频率),( t + )称
为物体在t时刻振动的相位(或相)。 是t =0时的相位,
称为初相位,简称为初相。
物体振动状态由相位( t + )决定
旋转矢量
为了直观地表明简谐运动的三个特征量的物理意义,
可用一个旋转矢量来表 示简谐运动。
A
t=t
t = 0
t+
A
o

x
x Aco(s t )
因此,以o为圆点,旋转矢量A的末端在ox轴上的
投影点的运动是简谐运动。
参考圆
用旋转矢量图画简谐运动的 x t 图
T 2π (旋转矢量旋转一周所需的时间)
2:1 1:1 0
1.相位是用来描述一个周期性运动的物体在一个周期内所 处的不同运动状态的物理量.
2.
x=Asin(ωt+ φ )
其中x代表质点对于平衡位置的位移,t代表时间,ω叫做 圆频率,ωt+φ表示简谐运动的相位.
3.两个具有相同圆频率w的简谐运动,但初相分别为φ1 和φ2,它们的相位差就是 (ωt+ φ 2)-(ωt+ φ 1)= φ 2- φ 1
知识应用: 1.一质点作简谐运动,图象如图所示,在0.2s 到0.3s这段时间内质点的运动情况是 ( CD )
A.沿负方向运动,且速度不断增大 B.沿负方向运动的位移不断增大 C.沿正方向运动,且速度不断增大 D.沿正方向的加速度不断减小
弹力、动能、 势能、机械能、 动量呢?

单摆简谐运动的图像PPT课件

单摆简谐运动的图像PPT课件

能力·思维· 方法
【例3】将某一在北京准确的摆钟,移到南 极长城站,它是走快了还是慢了?若此钟在 北京和南极的周期分别为T北、T南,一昼夜 相差多少?应如何调整?
能力·思维·
方法
【解析】单摆周期公式T= 2
l ,由于北京和南极
g
的重力加速度g北、g南不相等,且g北<g南,因此
周期关系为:T北>T南.
(5)单摆的等时性:在小振幅摆动时,单摆的 振动周期跟振幅和振子的质量都没关系.
要点·疑点· 考点
2.简谐运动图像
(1)物理意义:表示振动物体的位移随时间变化 的规律.注意振动图像不是质点的运动轨迹.
(2)特点:简谐运动的图像是正弦(或余弦)曲线 .
要点·疑点·
考点
(3)作图:以横轴表示时间,纵轴表示位移.如 图7-2-2所示.
能力·思维·
方法
【例1】如图7-2-4所示,一块涂有 碳黑的玻璃板,质量为2kg,在拉 力F的作用下,由静止开始竖直向 上做匀变速运动,一个装有水平振 针的振动频率为5Hz的固定电动音 叉在玻璃板上画出了图示曲线,量 得OA=1cm,OB=4cm,OC=9cm,求外 力的大小.(g=10m/s2)
说明在南极振动一次时间变短了,所以在南极摆 钟变慢了.
设此钟每摆动一次指示时间为t0s,在南极比在 北京每天快(即示数少)△ts.
能力·思维· 方法
则在北京(24×60×60/T北)t0=24×60×60①
在南极(24×60×60/T南)t0=24×60×60-△t②
由①②两式解得△t=24×60×60(T北-T南)/T南.
为使该钟摆在南极走时准确,必须将摆长加长.
摆钟是单摆做简谐运动的一个典型应用,其快慢 不同是由摆钟的周期变化引起的,分析时应注意:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.
x/m
写出振动方程 x=10sin(2π t)cm .
3.某弹簧振子的振动图象如图所示,根据图象判断。下列说法正 确的是( D ) A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同,但瞬时 速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相同,瞬时 速度方向相反。
周期、路程、振动情况关系
①1T内,路程s=4A
②T/2内,路程s=2A
③T/4内,路程s有可能大于A,也可能小于A,也
可能等于A
④t2 - t1=NT时,两时刻物体的运动情况一样 ⑤t2 - t1=(2n+1)T/2时,两时刻物体以相反的速 度通过两对称点。
例1.如图所示为某质点简谐运动的振动图像,根据图像回答:
⑴振幅、周期; ⑵具有正向最大速度的时刻; ⑶具有正向最大加速度的时刻; ⑷在3~4s内,质点的运动情况; ⑸1~4s内质点通过的路程。
二、简谐运动的表达式
简谐运动的图像为正弦(或余弦)曲线,也 就是说振动物体离开平衡位置的位移x与时间t的关 系可用正弦函数(或余弦函数)来表示,即
x A sin(t )
x/cm
1 2 3 4 5 6 t/s
-5
-10
【板书设计】
1.3 简谐运动的图像和公式 1.简谐运动的振动图像 都是正弦或余弦曲线。 表示振动物体相对平衡位置的位移随时间变化的规律。 2、图像中的信息:
(1)任一时刻的位移
(2)T、A、f (3)回复力和加速度大小方向的变化 (4)速度方向和大小的变化 3.简谐运动的表达式:
x A sin(t )
(2)间接描述物理量 ①频率f=1/T
②不同时刻v的大小和方向判定: x-t图线上任一点的切线的
斜率大小等于v。正负表方向,正表示与x方向相同,负表示 与x方向相反 。 ③任一时刻t的回复力F和加速度a:总是指向平衡位置(或 平行于x轴指向t轴).
x=0时,F回=0 、a=0;
x=±A时,F回和a达最大值.
同相:频率相同、初相相同(即相差为0) 的两个振子振动步调完全相同 反相:频率相同、相差为π的两个振子 振动步调完全相反
【课堂小结】
1.简谐运动的图像:正弦或余弦曲线 2.物理图像的意义:偏离平衡位置的位移随时间变化的关

3.图像中的信息: (1)任一时刻的位移 (2)T、A、f (3)回复力和加速度大小方向的变化
(4)速度方向和大小的变化
4.简谐运动的表达式: x、、、、、、、、、 A sin(t )
课堂训练 1.如图所示,是质点的振动图象,则振幅是 ______m,频率是_______Hz, 0-4s内质点 通过路程是______m,6s末质点位移是 _______m。 x/m
答案:0.02、0.125、0.04、—0.02
当它们的位移总相反时,我们可以从振动表达式推知它们
的相位一定相差π,就说它们的相位相反,振动相反.
两个单摆的振动步调不相同,就是因为它们具有相位差. 所以用来描述简谐运动的物理量有:周期、频率、相位与 相位差.
实际上经常用到的是两个相同频率的简谐运动的 相位差,简称相差
t 1 t 2 1 2
向睿
一、简谐运动的图像
方案一:在水平弹簧振子的小球上安置一支记 录用的笔,在下面放一条白纸带,当小球振动时, 沿垂直于振动方向匀速拉动纸带,笔就在带上画 出一条振动图,让其摆 动,同时在下边拉动一块木板,则摆中漏下的 沙子就显示出振动的图象。
1、简谐运动的图像
x/cm
20
0 1
-20
2
3
4
5 6
7
t/s
4.某一弹簧振子的振动图象如图所示,则由图象 判断下列说法正确的是( AB ) A、振子偏离平衡位置的最大距离为10cm B、1s到2s的时间内振子向平衡位置运动 C、2s时和3s时振子的位移相等,运动方向也相同 D、振子在2s内完成一次往复性运动
10 5 0
在式 x A sin(2 π ft π ft ) 中, 2

”这个量叫做简谐运动的相位.
t=0时的相位φ 叫做初相位,简称初相.
相位
相位是表示物体振动步调的物理量 ,用相位来描述简谐运动在一个全振动 中所处的阶段。
用单摆演示当两个摆长与振幅都一样的单摆在振动步调总
一致时,我们就说它们的相位相同,振动相同.
说明:
1、简谐运动的图像是质点做简谐运动时,质点的位 移随时间变化的图象. 2、简谐运动的图像是正弦曲线还是余弦曲线,这决 定于t=0时刻的选择。即图像形状与计时起点有关. 3、从图中可得振幅A 、周期T 、任意时刻的位移x; 注:相邻两个振动情况完全相同的位置之间的时间 为一个周期T . 4振动图象不是运动轨迹.
匀速拉动薄板,因为每一时刻都有细沙从漏斗中漏出, 所以落在薄板上的细沙就记录下各个时刻摆球(漏斗)的 位置. 以00'表示时间轴,以垂直于00'的坐标x表示摆球相对 于平衡位置的位移,薄板上细沙形成的曲线就是单摆做简 谐运动时,位移x随时间t变化的图像,称为简谐运动的图 像(或称振动图像). 可以看出,简谐运动图像 是一条正弦(或余弦)曲线. 严格的理论和实验也都证 明所有简谐运动的运动图像都 是正弦(或余弦)曲线. 讨论交流
其中
2 π T
1 f T
综合可得
2 π x A sin( t ) A sin( 2 π ft ) T
式中A表示振动的振幅,T和f分别表
示物体振动的周期和频率.物体在不同的
初始位置开始振动,φ值不同.
例题:见教材P10 “结合图像写表达式”
三、简谐运动的相位、相位差
2、简谐运动图像的意义
简谐运动的图像表示了振动质点的位移随时 间变化的规律。即简谐运动的位置坐标x是时刻t 的正弦或余弦函数。
3、思考:从简谐运动图象得出描述振动的哪些物 理量?
(1)直接描述物理量: ①振幅A:图像的峰值 ②周期T:相邻两个位移为正的最大值或负的最 大值之间的时间间隔 ③任意时刻的位移x
相关文档
最新文档