煤资源化学-费托合成
费托合成产物分布

费托合成产物分布1. 费托合成简介费托合成(Fischer-Tropsch synthesis)是一种通过合成气(合成气主要由一氧化碳和氢气组成)制造液体燃料和化工产品的过程。
费托合成是一种重要的工业化学反应,具有广泛的应用领域。
在费托合成过程中,合成气通过催化剂的作用,发生一系列的化学反应,生成各种有机化合物。
2. 合成气的制备合成气是费托合成的重要原料,通常由煤炭、天然气或生物质通过气化反应制备而成。
气化反应将固体或液体碳源转化为气体燃料,主要产物是一氧化碳和氢气。
3. 费托合成反应机理费托合成反应机理复杂,涉及多个反应步骤。
主要反应包括: - 一氧化碳和氢气的加氢反应生成醇类化合物; - 醇类化合物的脱水反应生成烯烃; - 烯烃的聚合反应生成烷烃。
4. 费托合成产物费托合成反应产物种类繁多,包括液体燃料和化工产品。
主要的产物有: - 烷烃:包括甲烷、乙烷、丙烷等,是费托合成的主要产品之一。
烷烃具有较高的热值和稳定性,可用作燃料和化工原料。
- 醇类化合物:包括甲醇、乙醇、丙醇等,是费托合成的中间产物。
醇类化合物具有较高的溶解性和反应活性,可用于合成其他有机化合物。
- 烯烃:包括乙烯、丙烯、丁烯等,是费托合成的重要产物之一。
烯烃具有较高的反应活性和催化活性,可用于合成聚合物和化工产品。
- 氧化物:包括醛、酮、酸等,是费托合成的副产物。
氧化物具有较高的化学活性,可用于合成其他有机化合物。
5. 费托合成产物分布费托合成产物的分布受多种因素影响,包括反应条件、催化剂选择、反应器设计等。
不同的反应条件和催化剂选择会导致产物分布的差异。
一般来说,低温和高压条件下,费托合成反应产物以烷烃为主。
随着反应温度的升高,烯烃和醇类化合物的产量逐渐增加。
此外,催化剂的选择也会对产物分布产生影响。
铁基催化剂通常偏向于产生烯烃和醇类化合物,而钴基催化剂则更倾向于产生烷烃。
在实际工业生产中,费托合成产物的分布通常通过优化反应条件和催化剂选择来实现。
合成气衍生产品——费托合成介绍

M n(1 )2nn 1
Mn 碳原子数为n的烃的质量分数; 为链增长几率
产物分布制约了产品的选择性,使得目的产品收率低,汽油产 品的收率不超过40%(wt%),而有些产品如石蜡收率高达80 % ----二次加工
直链的烷烯烃,尤其是α-烯烃含量较高,而异构烷烃与芳烃含量
较少-----汽油的辛烷值较低
合成气衍生产品——费托合成介绍化学 与化工
典型的F-T合成产品的组成与分布比较
反应器
产品,wt% 甲醇(C1)
液化石油汽(LPG) (C2-C4)
汽油(C5-C12) 柴油(C13—C19) 软蜡(C20-C30) 硬蜡(C30以上)
含氧化合物
固定床/ Arge
气流床/Synthol
5 12.5
22.5 15 23 18 4
提出FT合成在钴催化剂上最大程度上制备重质烃,然后再在加氢裂解与异构化催化剂上转 化为油品的概念
荷兰Shell公司
浆态床反应器技术、MTG工艺和ZSM-5催化剂开发成功 Sasol-Ⅱ建成投产,中压法,循环流化床反应器,熔融铁催化剂
美国Mobil公司
循环流化床反应器由美国M.W.凯洛格开发,SASOl 公司改进。
合成气衍生产品——费托合成介绍
3.4.2 F-T合成的基本原理
化学反应过程 ◦ 主反应化学计量式
CO 2 H 2 ( CH 2 ) H 2 O
H R ( 227 . C ) 165 KJ
CO H 2 O H 2 CO 2
H R ( 227 . C ) 39 . 8 KJ
10 33
39 5 4 2 7
合成气衍生产品——费托合成介绍
合成反应的热力学特征 F-T合成反应是一个强放热反应; 2721~2930kJ/m3(CO+H2)(如果考虑到原料 气中的惰性气体存在以及转化不完全等因素, 实际放热量约为1674kJ/m3(CO+H2)) ; 温度为 1500℃左右(绝热条件下,反应器温度), 可导致催化剂局部过热,降低反应选择性。
费托合成原理

费托合成原理
费托合成是一种重要的工业化学反应,用于将一氧化碳和氢气转化为烃类化合物,通常是烷烃和芳烃。
这种反应是在高压和高温下进行的,通常使用铁、钴、镍等金属作为催化剂。
费托合成反应在石油化工工业中具有重要的应用,可以将天然气、煤炭等资源转化为燃料和化工原料。
费托合成反应的原理主要包括以下几个方面:
首先,一氧化碳和氢气在催化剂的作用下发生吸附,形成吸附态的中间体。
这
一步骤是费托合成反应的关键步骤,也是确定反应活性和选择性的重要因素。
其次,吸附态的中间体发生表面反应,产生烃类化合物。
这些化合物包括甲烷、乙烷、丙烷等烷烃,以及苯、甲苯、乙苯等芳烃。
在这一步骤中,催化剂起着至关重要的作用,它能够调控反应的速率和产物的选择性。
最后,产生的烃类化合物从催化剂表面脱附,进入反应器的出口。
在反应过程中,还会伴随着一些副反应,如甲烷的水蒸气重整反应和芳烃的裂解反应等。
这些副反应会影响反应的产物分布和收率。
费托合成反应的原理虽然相对简单,但是在工业应用中需要考虑的因素很多。
首先,催化剂的选择和设计对反应的活性和选择性有着重要影响。
不同的催化剂具有不同的特点,有的适用于高温高压条件下的反应,有的适用于低温低压条件下的反应。
其次,反应条件的控制也是关键,包括温度、压力、气体配比等参数的选择。
此外,催化剂的再生和废弃物处理也是需要考虑的问题。
总的来说,费托合成反应是一种重要的工业化学反应,具有广泛的应用前景。
通过对其原理的深入理解和工艺条件的优化,可以实现对天然气、煤炭等资源的有效利用,为能源和化工行业的发展做出贡献。
费托合成

费-托合成(煤间接液化介绍,包括催化技术、反应器以及国内正在进行项目介绍)间接液化概念间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T 命名的,简称F-T合成或费托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。
煤化工工艺学课件6.1 费托合成

②反应压力 P↗利于长链烃产物↗ (例:铁催化剂常压合成活性低,寿命短,一般0.7~3.0MP) ③温度 50~350℃,T↗利于甲烷等轻产物↗; (例:钴催化剂:170~210 ℃ ;铁催化剂:220~340 ℃ ) ④空速 空速增加,一般转化率低,产物变轻。 (例:钴催化剂:800~1200/h ;沉淀铁催化剂: 500~700/h;熔铁催化剂气流床: 500~1200/h ) ⑤催化剂
乙烯
乙烷 产 品 产 率 % 丙烯 丙烷
0.2
2.4 2.0 2.8
丁烯
丁烷 汽油C5~C12 柴油C13~C18
3.0
2.2 22.5 15.0
重 油
蜡
C19~C21
C22~C30
6.0
17.0 18.0 3.5
非酸性化合物
酸类
0.4
F-T合成反应器
②气流床反应器
(Synthol 反应器)
a:反应器特点: 熔铁催化剂随原料气一起 进入反应器,又随反应产物 排出反应器,催化剂在反应 器内不停地运动,循环于反 应器和催化剂沉降室之间。 是可以加入新催化剂,也可 以移走旧催化剂。 b:反应热的移出: 反应器上下两段设油冷却装 置,用以携出反应热(循环 流化床的反应段近乎处于等 温状态,催化剂床层的温差 一般小于2°C)。
2.8
3.0 2.2 22.5 15.0 6.0 17.0 18.0 3.5 0.4
2.0
8.0 1.0 39.0 5.0 1.0 3.0 2.0 6.0 1.0
费托合成(F-T)综述

费托合成(F-T)综述综述F-T合成的基本原料为合成⽓,即CO和H2。
F-T合成⼯艺中合成⽓来源主要有煤、天然⽓和⽣物质。
以煤为原料,通过加⼊⽓化剂,在⾼温条件下将煤在⽓化炉中⽓化,然后制成合成⽓(H2+CO),接着通过催化剂作⽤将合成⽓转化成烃类燃料、醇类燃料和化学品的过程便是煤的间接液化技术。
煤间接液化⼯艺主要有:Fischer-Tropsch ⼯艺和莫⽐尔(Mobil)⼯艺。
典型的Fischer-Tropsch⼯艺指将由煤⽓化后得到的粗合成⽓经脱硫、脱氧净化后,根据使⽤的F-T合成反应器,调整合成⽓的H2/CO ⽐,在反应器中通过合成⽓与固体催化剂作⽤合成出混合烃类和含氧化合物,最后将得到的合成品经过产品的精制改制加⼯成汽油、柴油、航空煤油、⽯蜡等成品。
F-T合成早已实现⼯业化⽣产,早在⼆战期间,德国的初产品⽣产能⼒已到达每年66万吨[1] (Andrei Y Khodakov, Wei Chu, Pascal Fongarland. Chem. Rev. Advances in the Development of Novel Cobalt Fischer?Tropsch Catalysts for Synthesis of Long-Chain Hydrocarbons and Clean Fuels. 2007, 107, 1692?1744 )。
⼆战之后,由于⽯油的迅述兴起,间接液化技术⼀度处于停滞状态。
期间,南⾮由于种族隔离制度⽽被“禁油”,不得不⼤⼒发展煤间接液化技术。
但是随着70年代⽯油危机的出现,间接液化技术再次受到强烈关注。
同时,由间接液化出来的合成液体燃料相⽐由原油得到的燃料产品具有更低的硫含量及芳烃化合物[1],更加环保。
80年代后,国际上,⼀些⼤的⽯油公司开始投资研发GTL相关技术和⼯艺[1]。
⽬前南⾮建有3座间接液化⼚。
马来西亚(Shell公司)和新西兰(Mobil 公司)各建有⼀座天然⽓基间接液化⼚。
费托合成(FT合成)工艺说明

费-托合成(煤或天然气间接液化)介绍间接液化是先把煤炭在高温下与氧气和水蒸气反应,使煤炭全部气化、转化成合成气(一氧化碳和氢气的混合物),然后再在催化剂的作用下合成为液体燃料的工艺技术。
间接液化首先将原料煤与氧气、水蒸汽反应将煤全部气化,制得的粗煤气经变换、脱硫、脱碳制成洁净的合成气(CO+H2),合成气在催化剂作用下发生合成反应生成烃类,烃类经进一步加工可以生产汽油、柴油和LPG等产品。
在煤炭液化的加工过程中,煤炭中含有的硫等有害元素以及无机矿物质(燃烧后转化成灰分)均可脱除,硫还可以硫磺的形态得到回收,而液体产品品质较一般石油产品更优质。
煤间接液化技术的发展煤间接液化中的合成技术是由德国科学家Frans Fischer 和Hans Tropsch 于1923首先发现的并以他们名字的第一字母即F-T命名的,简称F-T合成或费-托合成。
依靠间接液化技术,不但可以从煤炭中提炼汽油、柴油、煤油等普通石油制品,而且还可以提炼出航空燃油、润滑油等高品质石油制品以及烯烃、石蜡等多种高附加值的产品。
自从Fischer和Tropsch发现在碱化的铁催化剂上可生成烃类化合物以来,费-托合成技术就伴随着世界原油价格的波动以及政治因素而盛衰不定。
费-托合成率先在德国开始工业化应用,1934年鲁尔化学公司建成了第一座间接液化生产装置,产量为7万吨/年,到1944年,德国共有9个工厂共57万吨/年的生产能力。
在同一时期,日本、法国、中国也有6套装置建成。
二十世纪五十年代初,中东大油田的发现使间接液化技术的开发和应用陷入低潮,但南非是例外。
南非因其推行的种族隔离政策而遭到世界各国的石油禁运,促使南非下决心从根本上解决能源供应问题。
考虑到南非的煤炭质量较差,不适宜进行直接液化,经过反复论证和方案比较,最终选择了使用煤炭间接液化的方法生产石油和石油制品。
SASOL I厂于1955年开工生产,主要生产燃料和化学品。
20世纪70年代的能源危机促使SASOL建设两座更大的煤基费-托装置,设计目标是生产燃料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
费托合成的反Βιβλιοθήκη 机理费托合成的反应机理复杂,目前仍在探究 之中。认可度较大的费托合成机理共有4种: 碳化物机理,含氧中间体缩聚机理,CO插入机 理和双中间体机理。
2020/4/21
费 托 合 成 四 种 经 典 机 理
2020/4/21
费托合成的催化剂
在费托合成中催化剂是非常重要的一个环节,催化剂的不同能够很 大程度上影响合成效率。除此之外,它还能够影响产物成分的比例。 因此,费托合成的改进主要也集中于新型催化剂的开发,这也是在催 化剂领域研究的一个热点。
nCO (2n 1)H 2 Cn H2n 2 nH2O
2nCO (n 1)H 2 Cn H2n2 nCO 2
费
2.烯烃的生成
nCO (2n 1)H 2 Cn H2n nH2O
2nCO nH2 Cn H 2n nCO 2
托 反 应
主
3.醇类的生成
nCO 2H 2 Cn H 2n1OH (n 1)H 2O
第四章 费托合成的工艺流程
1.合成气的制备 2.F-T合成制备烃类
1. 合成气的制备
除德国之外, 我国是研究开发与 应用煤气化技术最多的国家, 涉 及到固定床、流化床、气流床等 各种方法。下面便分别介绍几种 以煤作为原料制备合成气的工艺 流程。
壳 牌 公 司 煤 气 化 工 艺 流 程
兖矿集团煤气化工艺流程
1955年至1984年,南非共建成3座间接液化厂,年处理煤炭座 间接液化厂,年处理煤炭4600万吨,产品760多万吨,其中油品占 60%。
1985年,新西兰间接液化厂建成,年产57万吨汽油。 1993年,马来西亚建成天然气基SMDS技术间接液化厂,年产 50万吨合成油。 2004年,我国神华集团和宁煤集团与南非索沃公司和荷兰壳 牌公司达成协议,分别在陕西和宁夏分别初步建设两座年产300万 吨的间接液化厂,目前正在建设之中。这一合作有望填补我国在这 一方面的空白。
2. F-T合成工艺流程
目前世界上掌握合成油技术的生产商主要有两家,其中一家是南非的 Sasol公司,另一家是荷兰Shell公司。
Saol开发的先进循环流化床合成工艺,简称SAS。每年消耗4590万吨 低质煤,生产458万吨燃油(15万桶/日)和310万吨化工产品。合成油占南 非总燃油市场的40%。
费托合成催化剂的活性金属主要是第Ⅷ族过渡金属元素,由于价格 和催化性能等原因,目前工业化的催化剂主要是 Fe系催化剂和 Co 系 催化剂。
Fe系催化剂对水煤气变换反应具有高活性,链增长能力较差,有利 于生成低碳烯烃,反应温度高时催化剂易积炭中毒。Co系加氢活性与Fe系 相似,具有较高的F-T链增长能力,反应过程中稳定且不易积炭和中毒, 产物中含氧化合物极少,水煤气变换反应不敏感等特点,但钴系催化剂必 须在低温下操作,使反应速率下降,而且价格较高。目前在费托合成中使 用的催化剂主要是多金属复合型催化剂。
南非沙索间接液化厂
2020/4/21
荷兰壳牌公司间接液化厂
第三章 费托合成的原理
费托合成的主要原料是合成气。合成气的主要成分是 CO和H2 ,可以通过煤、天然气、生物质等为原料经气化获 得。CO和H2在催化剂和高温高压条件下反应得到直链烷烃、 烯烃,还有的醇、醛、少量芳香烃类等。
1.烷烃的生成
煤的费托合成
制作人:
1、费托合成的概念
2、费托合成的历史
目
3、费托合成的原理
录
4、费托合成的工艺流程
5、费托合成的前景展望
第一章 费托合成的定义
费托合成(Fischer-Tropsch synthesis)是煤间接液 化技术之一,简称为FT反应,它以合成气(CO和H2)为 原料在催化剂和适当反应条件下合成以烃类为主的液 体燃料的工艺过程。
荷兰Shell公司经多年开发,已拥有世界先进的天然气制合成油技术, 即中间馏分油合成技术,简称SMDS。该工艺将传统 FT 技术和分子筛裂 化或加氢裂化相结合生产高辛烷值汽油或优质柴油。
Sasol公司SAS工艺流程
SMDS
壳 牌 公 司 工 艺 流 程
第五章 费托合成的前景展望
众所周知,我国是一个“富煤、少气、贫油”的国 家。近年来随着经济的高速发展,我国对石油的需求越 来越大,2012年中国石油总消费量为4.9亿吨,其中进口 量便达到了2.7亿吨。对于石油进口的依赖性给我国的经 济安全、能源安全和国防安全带来了隐患。
第二章 费托合成的发展历史
费托合成是由德国化学家Franz Fischer 和Hans Tropsch开发。早在第二次的世界大战期间,德国便实 现了大规模生产,年生产能力达66万吨。但在随后的几 十年 ,由于经济原因这些装置大都停产。到了20 世纪 70年代 ,随着石油危机的出现和环保要求的不断提高 , 合成气经费托法制合成油(GTL)又重新进入了人们的视 野。
(2n 1)CO (n 1)H 2 Cn H 2n1OH (n 1)CO2
要 化 学
反
4.醛类的生成
(n 1)CO (2n 1) H 2 Cn H 2n1COH nH2O
应
(2n 1)CO (n 1)H 2 Cn H 2n1COH nH2O
5.积炭反 应
2CO C C C CO O22
因此,大力发展以煤为原料,将其转变成液体油品并 尽快实现产业化是缓解我国石油供需矛盾、保障能源安 全的重要战略举措。而费托合成便是实现这一目标的重 要途径之一。除此之外,费托合成的油制品具有无硫、 无氮、低芳烃含量等优点。在环境保护日益重视的将来, 费托合成将越来越受到人们的重视。