关于费托合成催化剂再生活化的问题

合集下载

费托合成技术研究开发与工业化应用

费托合成技术研究开发与工业化应用

费托合成技术研究开发与工业化应用的实际应用情况1. 应用背景费托合成技术是一种通过催化剂将碳氢化合物转化为合成气(一种含有一定比例的一氧化碳和氢气的混合物)的技术。

合成气在化工、能源等领域有着广泛的应用,包括合成燃料、化学品和润滑剂等。

费托合成技术的研究开发与工业化应用,可以提高能源利用效率,减少对传统石油资源的依赖,促进可再生能源的发展,降低碳排放,并在经济和环境方面带来多重效益。

2. 应用过程费托合成技术的应用过程主要包括原料准备、催化剂选择、反应器设计和产品分离等步骤。

2.1 原料准备费托合成技术的原料主要包括碳氢化合物,如煤、天然气、生物质等。

在煤的转化过程中,需要对煤进行破碎、干燥和热解等处理,以获得合适的反应物。

天然气和生物质等原料则需要进行气体净化和气体调节等处理,以满足合成气的要求。

2.2 催化剂选择催化剂是费托合成技术中关键的组成部分,它能够加速反应速率,提高产物选择性。

常用的费托合成催化剂包括铁基催化剂、铑基催化剂和钴基催化剂等。

不同催化剂具有不同的催化活性、稳定性和选择性,需要根据具体的应用需求选择合适的催化剂。

2.3 反应器设计费托合成反应器的设计对于反应效果和经济效益具有重要影响。

一般而言,费托合成反应器可以分为固定床反应器、流化床反应器和浆床反应器等。

固定床反应器具有结构简单、操作稳定的优点,但存在传质和热力学的限制;流化床反应器具有传质性能好、热力学条件宽松的优点,但需要解决固体循环和颗粒损失等问题;浆床反应器则结合了固定床反应器和流化床反应器的优点,但需要解决液固分离和催化剂损失等问题。

2.4 产品分离费托合成反应生成的产物主要包括石脑油、汽油、柴油和液化石油气等。

这些产物需要通过分离技术进行提纯,以获得高纯度的产品。

常用的分离技术包括蒸馏、吸附、萃取和膜分离等。

蒸馏是最常用的分离技术,通过不同组分的沸点差异实现分离;吸附、萃取和膜分离等技术则可以实现对特定组分的选择性分离。

费托合成工艺研究进展及现状

费托合成工艺研究进展及现状

费托合成工艺研究进展及现状作者:姜岳林来源:《中国化工贸易·上旬刊》2018年第10期摘要:为解决我国油品资源短缺的问题,开发了一种费托合成新工艺,将合成气(CO和H2)在催化剂的作用下合成各种碳数的烃类,为我国液体燃料的生产开发了新颖的合成方法。

本文分别综述了高温和低温下的费托合成工艺,并对固定床反应器、浆态床反应器和流化床反应器下的传统的工艺合成方法进行了分析和比较。

此外,提出了一种将费托合成融入到微反应器中的新方法,将成为未来的研究热点。

关键词:费托合成;固定床;浆态床;微反应器我国化石资源分布具有少油,有气,煤相对丰富的特点,据文献资料报道,未来我国即将成为最大的石油消费国[1]。

而近年来我国石油资源严重匮乏,仅依靠石油资源供应人类对油品的高度需求是不现实的,通过费托合成将煤、天然气和生物质转化的合成气在一定的温度条件和相应催化剂作用下生产某种液体燃料,对缓解资源消耗和人类需求具有很大的意义。

费托合成在反应过程中会放出大量的热,导致低碳数的烃类选择性变高而油品生成量降低,这对反应十分不利。

而且放出的热量同时也会造成催化剂局部过热,使催化剂失活或者积碳堵塞反应器床层。

因此,在实际的反应过程中需要及时的移走反应热,避免高温对反应的不利影响。

我国针对催化剂的设计方面和产物选择性分布方面开发了不同的费托合成工艺。

1 低温和高温合成工艺目前我国的费托合成工艺主要有高温费托合成工艺和低温费托合成工艺,所用到的催化剂有钴基催化剂和铁基催化剂。

低温合成工艺温度控制在200℃至240℃之间,主要包括固定床合成工艺和浆态床合成工艺,用于生产清洁柴油。

而高温合成工艺温度一般控制在300℃至350℃,适用氢碳比的范围比较广,催化剂一般用到熔铁催化剂,主要包括固定流化床合成工艺和循环流化床合成工艺,产物为汽油和烯烃。

1.1 低温合成工艺1.1.1 固定床合成工艺固定床反应器对催化剂本身的抗磨强度要求很低,同时受到原料合成气中微量硫化物的影响较小,而且催化剂与产品易于分离,因此可作为费托合成中一种首选的反应器。

浅谈费托合成催化剂研究

浅谈费托合成催化剂研究

浅谈费托合成催化剂研究李海军【摘要】本文介绍了费托合成催化剂的研究现状和助剂的作用,评述了Fe、Co基费托合成催化剂助剂:碱金属、贵金属、稀土氧化物、费托反应金属及其他金属等.分析了Fe、Co基费托合成催化剂助剂的效应和Fe、Co基催化剂的优缺点,对今后催化剂的发展提出了一点建议.【期刊名称】《内蒙古石油化工》【年(卷),期】2015(000)021【总页数】4页(P6-9)【关键词】费托合成;催化剂;助剂【作者】李海军【作者单位】中国神华煤制油化工有限公司鄂尔多斯煤制油分公司,内蒙古鄂尔多斯017209【正文语种】中文【中图分类】TQ529我国能源资源的基本特点是“富煤、贫油、少气”。

煤炭剩余探明储量1145亿t,居世界第三位,而石油和天然气剩余探明储量分别为33亿t和1.37万亿m3,其储采比都低于世界平均水平[1]。

在相当长时间内以煤作为我国一次能源主要来源的局面不会改变。

目前,我国石油消费严重依赖于进口。

在目前的进口中,中东占50%,最多的是沙特和伊朗。

非洲占25%,东南亚15%,中亚、俄罗斯10%。

我国进口石油严重依赖中东石油和马六甲海峡运输通道,虽然目前中石油、中海油等在积极实施走出去战略,但我国目前需求的石油来源苏丹、伊朗、中亚等地区都存在较大的政治风险。

因此,为了提高我国的能源自给率,必须在积极海外寻求新的石油来源的同时,实施煤炭液化替代能源就成为保证我国能源安全的战略选择。

所谓煤炭液化制合成油,是将煤中的有机质转化为液态产物,其目的就是获得和利用液态的碳氢化合物替代石油及其制品,来生产发动机用液体燃料和化学品。

煤炭液化有两种完全不同的技术路线,一种是直接液化,另一种是间接液化。

煤炭直接液化是指通过加氢使煤中复杂的有机高分子结构直接转化为较低分子的液体燃料,转化过程是在含煤粉、溶剂和催化剂的浆液系统中进行加氢、解聚,需要较高的压力和温度。

直接液化的优点是热效率较高、液体产品收率高,投资相对较少,100万t生产线大约需80~90亿元;缺点是煤加氢工艺过程的总体操作条件相对苛刻。

《2024年费托合成反应的催化剂制备和性能研究及其对生态环境的影响》范文

《2024年费托合成反应的催化剂制备和性能研究及其对生态环境的影响》范文

《费托合成反应的催化剂制备和性能研究及其对生态环境的影响》篇一一、引言费托合成反应(Fischer-Tropsch Synthesis, FTS)是一种重要的工业过程,用于将合成气(主要由一氧化碳和氢气组成)转化为液体燃料和化学品。

在这个过程中,催化剂起着至关重要的作用。

本文旨在研究费托合成反应的催化剂制备方法和性能,并探讨其对生态环境的影响。

二、费托合成反应催化剂的制备费托合成反应催化剂的制备过程涉及多个步骤,包括选择合适的催化剂材料、制备方法以及优化催化剂的结构和性能。

目前,常用的催化剂材料包括铁、钴、钌等过渡金属。

1. 催化剂材料的选择选择合适的催化剂材料是制备高效费托合成反应催化剂的关键。

过渡金属如铁、钴和钌具有较高的费托合成活性,因此常被用作催化剂的活性组分。

此外,还需要选择合适的载体和助剂,以提高催化剂的稳定性和抗中毒能力。

2. 制备方法制备费托合成反应催化剂的方法主要包括共沉淀法、浸渍法、溶胶-凝胶法等。

共沉淀法是一种常用的制备方法,通过将金属盐溶液与沉淀剂混合,得到前驱体,然后进行煅烧和还原处理,得到催化剂。

浸渍法和溶胶-凝胶法也是常用的制备方法,具有较高的比表面积和较好的分散性。

3. 催化剂的结构和性能优化为了进一步提高催化剂的性能,需要对催化剂的结构和性能进行优化。

这包括调整催化剂的组成、粒度、孔隙结构等。

此外,还可以通过添加助剂、改变载体等手段来提高催化剂的稳定性和抗中毒能力。

三、费托合成反应催化剂的性能研究费托合成反应催化剂的性能研究主要包括催化剂的活性、选择性、稳定性等方面。

通过对催化剂的制备过程和反应条件进行优化,可以提高催化剂的性能。

1. 活性催化剂的活性是评价其性能的重要指标。

通过调整催化剂的组成、粒度、孔隙结构等,可以优化催化剂的活性。

此外,反应条件如温度、压力、气体组成等也会影响催化剂的活性。

2. 选择性催化剂的选择性指的是在费托合成反应中,催化剂对不同产物的生成能力。

费托合成催化剂选择与处理—催化剂中毒与处理(煤制油技术课件)

费托合成催化剂选择与处理—催化剂中毒与处理(煤制油技术课件)

01
催化剂中毒、失活、再生
铁催化剂对硫中毒的灵敏度与制备时的还 原温度有关,在较低温度下还原的铁催化剂 (加有铜)不易中毒。原因是这种催化剂中的 Fe以高价氧化铁(为主)和低价氧化铁存在, 它们可以与H2S反应生成不同价态的硫化铁, 而有机硫化物可以在其作用下转化为硫化氢而 与其反应。在500℃高温下氢气还原后的铁催 化剂中主要是金属铁, FeO 含量很少,不到 1%。它很容易被硫化物中毒,仅吸收0.5%的 硫就完全丧失活性。
01
催化剂中毒、失活、再生
4. 由于析炭反应产生的炭沉积和合成 气中带入的有机物缩聚沉积使催化剂失活, 反应温度高和催化剂碱性强,容易积炭, 严重时可使催化剂床层堵塞。
01
催化剂中毒、失活、再生
5. 由于合成气中少量氧的氧化作用引 起的催化剂中毒,为此,一般规定合成气 中氧的含量不能超过0.3%。
01
催化剂中毒、失活、再生
6. Co催化剂和Ni催化剂在高压下可能 生成挥发性的羰基钴和羰基镍而造成活性 组分的损失,所以这类催化剂一般用于常 压合成。
01
催化剂中毒、失活、再生
7. 催化剂层温度升高,表面发生熔结, 再结晶和活性相转移造成其活性的下降。
Hale Waihona Puke 01催化剂中毒、失活、再生
对FT催化剂一般不像对其他贵重催化剂那 样,进行反复再生。因为通常主要是硫中毒, 可采用逐渐升高温度的操作方法在一定温度区 间内维持铁催化剂的活性。硫中毒后的催化剂 其再生是很不容易的,需要将全部硫彻底氧化 除尽,然后再还原才能有效。一般不采取这样 的再生方法。钴催化剂表面除蜡相对比较容易, 可以在200℃下用H2处理,也可以用合成油熘 分(170-274℃)在170℃下抽提处理。

浅析费托合成技术与反应的影响因素

浅析费托合成技术与反应的影响因素

浅析费托合成技术与反应的影响因素摘要:随着我国对生物质液体燃料需求量的不断增加,而已有的生产能力已经不能满足需要,在这样的背景下,研发生产该液体燃料的新技术也就显得尤为重要。

本文就费托合成技术进行分析,首先简单介绍了费托合成,包括其化学反应机理以及费托催化剂的失活与预处理,在此基础上进一步分析了费托催化剂的研究进展。

之后论述了费托合成反应器工艺,文章的最后就影响反应的因素进行了一一分析,包括反应温度、反应压力以及气速等。

费托合成技术之所以能够被广泛应用于各个领域,这主要是因为人们可以通过调控催化剂来适应不同的生产要求,而得到不同的产物,比如汽油、柴油或石蜡等。

关键词:费托合成技术催化剂影响因素1 引言随着我国经济的不断发展,现如今对于能源的需求量是越来越大,现有的化石燃料资源已经不能很好的满足我国对一次能源的需求,在这样的背景下,对于新能源和可再生能源的开发和利用显得尤为重要。

随着我国对生物质液体燃料需求量的不断增加,而已有的生产能力已经不能满足需要,在这样的背景下,研发生产该液体燃料的新技术也就显得尤为重要。

本文就费托合成技术就行分析,该技术指的是一氧化碳与氢发生一定的化学反应而最终生成烃类和含氧化合物的过程。

该技术的的主要原料是合成气,其主要成分分别是和,最初的费托合成技术主要应用领域是煤的气化,用于生产汽油、柴油、蜡液、化石油气等化工产品。

随着研究人员的不断深入研究,现如今该技术已经能够用于生物质的气化,即是利用生物质在费托合成技术下生产多种液体燃料。

2 费托合成简介2.1 费托合成反应所谓的费托合成反应指的是在高温高压的条件下,且存在加碱的铁屑作催化剂时,和会发生一定的化学反应,最终得到直链烃类。

值得注意的是,该反应的过程十分的复杂,得到的反应产物种类繁多,是一个十分复杂的反应体系。

对于该过程而言,主要应该抑制甲烷等副产物的生成,并选择性地合成目标烃类,比如液体燃料中的重质烃或烯烃等,所以应该研发不仅活性高、选择性高、且稳定性十分好工业应用性催化剂,该催化剂的存在对于实现工业化应用具有十分重要的意义。

费托合成技术应用现状与进展

费托合成技术应用现状与进展

费托合成技术应用现状与进展1概述费托合成是以合成气为原料生产各种烃类以及含氧有机化合物的方法。

1923年,德国的Fischer和Tropsch利用碱性铁屑作催化剂,在温度400℃~455℃,压力10~15MPa条件下,发现CO和H2可反应生成烃类化合物与含氧化合物的混合液体。

1925年至1926年他们又使用铁或钴催化剂,在常压和250℃~300℃下得到几乎不含有含氧化合物的烃类产品。

此后,人们把合成气在铁或钴催化剂作用下合成烃类或醇类燃料的方法称为费托合成法[1]。

第二次世界大战期间,采用德国开发的钴催化剂固定床费托合成技术在世界上建有15座合成油厂,其中9座在德国,4座在日本,1座在法国,1座在中国。

二战结束后这些合成油厂被关闭,随后由于石油和天然气的大量开发,费托合成的研究势头减弱[1]。

由于上世纪70年代的石油危机和近年来石油价格的不断上涨,费托合成技术再次成为研究热点。

本文对现有费托合成工业化应用技术和工业化开发情况进行了介绍,为了解现有的费托合成技术特点及其发展方向提供参考。

2主要费托合成技术体系2.1南非SASOL公司的费托合成技术南非于上世纪50年代初成立SASOL公司建设煤间接液化合成油厂,最初采用的是德国的铁催化剂固定床费托合成技术,但随后逐渐开发出自己的费托合成催化剂和费托合成技术。

经过半个世纪的发展,SASOL现已成为世界上最大的工业化合成油生产商和间接液化技术开发商。

南非SASOL公司共掌握有五种费托合成技术,即低温铁系催化剂固定床费托合成技术、低温铁系催化剂浆态床费托合成技术、高温铁系催化剂循环流化床费托合成技术、高温铁系催化剂固定流化床费托合成技术和低温钴系催化剂浆态床费托合成技术,其工艺特点及发展历程见表1。

从表中可以看出,SASOL目前主要采用和发展的是高温铁系催化剂固定流化床费托合成技术和低温钴系催化剂浆态床费托合成技术。

需要指出的是,SASOL在卡塔尔Oryx工厂采用的钴系催化剂浆态床费托合成技术使用的是以天然气为气头的合成气。

费托合成催化剂选择与处理—催化剂还原工艺原理(煤制油技术课件)

费托合成催化剂选择与处理—催化剂还原工艺原理(煤制油技术课件)

01
铁基催化剂还原工艺原理
研究表明:不同还原气氛如纯H2、纯CO、H2+CO混合气体对催化剂活性的影响不同。 结果表明,使用富H2合成气、纯CO或富CO合成气还原低温沉淀铁催化剂,都可以获得令人 满意的催化活性。在研究不同还原气氛对负载Cu/K/Si 的Fe基催化剂费托合成性能影响时发 现,纯H2还原的催化剂能最快达到稳定状态,其次是(H2 +CO)还原的催化剂,而未还原 和纯CO还原的催化剂经过很长时间才能达到稳定状态。初始活性顺序为:(H2 +CO)还原 >H2还原>CO还原>未还原,而稳定活性顺序为:CO还原>(H2 +CO)还原>H2还原> 未还原。未还原和H2还原催化剂的甲烷选择性随反应时间的延长而增加,而CO还原和(H2 +CO)还原催化剂的甲烷选择性随反应时间的延长而降低。(H2 +CO)还原的催化剂甲烷选择 性最大, H2还原的催化剂起始甲烷选择性小于CO还原的催化剂,超过60h后甲烷选择性却 反超。
钴基催化剂组成不同,其最佳还原温度也不同,如对于负载SiO2/Al2O3 或负载ZrO2-SiO2-Al2O3的Co基催化剂,费托合成活性还原温度为350-450℃。
01
铁基催化剂还原工艺原理
铁基催化剂还原主要反应
3Fe2O3 + H2
2 Fe3O4 + H2O
Fe3O4 +4H2
3Fe+ 4H2O
3Fቤተ መጻሕፍቲ ባይዱ2O3 +CO
2 Fe3O4 +CO2
xFe3O4 +(4x+6)CO
3FexC+(4x+3)CO2
2CO
C+CO2
(3-1) (3-2) (3-3) (3-4) (3-5)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 对于催化剂再生有很多说法。

在F-T反应中,Co基催化剂的活性与其粒径有很大关系,由于Co催化剂在10nm左右有相变过程即催化剂堆积方式,FCC和HCP的变换转折点),因此不同的再生条件可能对催化剂造成不同的活性。

对于氧再生过程:积碳燃烧是一个放热过程,如果氧量太大造成催化剂热点温度太高(当然这与催化剂载体也有关,若载体的导热性非常好,利于催化剂热点消除;反之,则不利!),热点温度造成催化剂表面纳米颗粒烧结。

因此,如果载体的导热性较差,要选用低浓度氧进行长时间再生;若载体导热性好,也不能选用太高浓度的氧,10%为最佳!
对于H2再生,易于造成催化剂团聚长大,主要与氢分压有关!
2. 催化剂的失活原因一般分为中毒、烧结和热失活、结焦和堵塞三大类。

2.1 中毒引起的失活
(1)暂时中毒(可逆中毒)
毒物在活性中心上吸附或化合时,生成的键强度相对较弱可以采取适当的方法除去毒物,使催化剂活性恢复而不会影响催化剂的性质,这种中毒叫做可逆中毒或暂时中毒。

(2)永久中毒(不可逆中毒)
毒物与催化剂活性组份相互作用,形成很强的化学键,难以用一般的方法将毒物除去以使催化剂活性恢复,这种中毒叫做不可逆中毒或永久中毒。

(3)选择性中毒
催化剂中毒之后可能失去对某一反应的催化能力,但对别的反应仍有催化活性,这种现象称为选择中毒。

在连串反应中,如果毒物仅使导致后继反应的活性位中毒,则可使反应停留在中间阶段,获得高产率的中间产物。

2.2 结焦和堵塞引起的失活
催化剂表面上的含碳沉积物称为结焦。

以有机物为原料以固体为催化剂的多相催化反应过程几乎都可能发生结焦。

由于含碳物质和/或其它物质在催化剂孔中沉积,造成孔径减小(或孔口缩小),使反应物分子不能扩散进入孔中,这种现象称为堵塞。

所以常把堵塞归并为结焦中,总的活性衰退称为结焦失活,它是催化剂失活中最普遍和常见的失活形式。

通常含碳沉积物可与水蒸气或氢气作用经气化除去,所以结焦失活是个可逆过程。

与催化剂中毒相比,引起催化剂结焦和
堵塞的物质要比催化剂毒物多得多。

在实际的结焦研究中,人们发现催化剂结焦存在一个很快的初期失活,然后是在活性方面的一个准平稳态,有报道称结焦沉积主要发生在最初阶段(在0.15s 内),也有人发现大约有50%形成的碳在前20s内沉积。

结焦失活又是可逆的,通过控制反应前期的结焦,可以极大改善催化剂的活性,这也正是结焦失活研究日益活跃的重要因素。

2.3 烧结和热失活(固态转变)
催化剂的烧结和热失活是指由高温引起的催化剂结构和性能的变化。

高温除了引起催化剂的烧结外,还会引起其它变化,主要包括:化学组成和相组成的变化、半熔、晶粒长大、活性组分被载体包埋、活性组分由于生成挥发性物质或可升华的物质而流失等。

事实上,在高温下所有的催化剂都将逐渐发生不可逆的结构变化,只是这种变化的快慢程度随着催化剂不同而异。

烧结和热失活与多种因素有关,如与催化剂的预处理、还原和再生过程以及所加的促进剂和载体等有关。

当然催化剂失活的原因是错综复杂的,每一种催化剂失活并不仅仅按上述分类的某一种进行,而往往是由两种或两种以上的原因引起的。

3. 一般的工业催化剂这个范围有点广,炼油工业的FCC(催化裂化):加氢处理、加氢精制、加氢裂化、催化重整,随原料的不同以及工艺设计的不同,催化剂使用寿命从一年到六年不等,加氢处理目前一般不经过再生处理,加氢精制以及加氢裂化会经过再生,在一定温度下烧掉表面的积碳,再生技术也是很重要的。

FCC 都有再生器的,反应后直接再生,再使用。

加氢催化剂3-5年,合成氨催化剂可长达十年。

相关文档
最新文档