高三数学第一轮复习——数列(知识点很全)
新课标2023版高考数学一轮总复习第7章数列第1节数列的概念与简单表示法课件

所以 an=aan-n 1·aann- -12·…·aa21·a1=n+n 1·n-n 1·nn- -21·…·23=n+2 1.
2,n=1, 所以 an=2nn-1,n≥2.
已知 Sn 求 an 的步骤 (1)利用 a1=S1 求出 a1. (2)用 n-1 替换 Sn 中的 n 得到一个新的关系,利用 an=Sn-Sn- 1(n≥2)求出当 n≥2 时 an 的表达式. (3)检验 n=1 时的值是否符合 n≥2 时的表达式,再写出通项公 式 an.
式 an=59(10n-1).
1.错误地表示符号规律致误:项正负相间的数列可以用(-1)n, (-1)n+1 表示符号,要分清是先负后正还是先正后负.
2.未对项变形致误:若已知的项的形式不统一,则不便求通项 公式,因此可以先将项通过变形统一形式后再观察求通项公式,如题 (3).
3.求通项公式时要注意联想:对于如题(4)这样的数列,可以通 过联想 10,100,1 000,10 000→9,99,999,9 999→1,11,111,1 111 进而得 到通项公式.
考点2 由Sn与an的关系求通项——综合性
(1)若数列{an}的前 n 项和 Sn=n2-10n,则此数列的通项 公式为 an=________.
(2)若数列{an}的前 n 项和 Sn=2n+1,则此数列的通项公式为 an =________.
3,n=1, (1)2n-11 (2)2n-1,n≥2.
解:(1)这个数列的前 4 项的绝对值都等于序号与序号加 1 的乘 积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式 an=(- 1)n·nn1+1.
(2)这是一个分数数列,其分子构成偶数数列,而分母可分解为 1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数 的乘积,故所求数列的一个通项公式 an=2n-12n2n+1.
高三数学数列知识点归纳总结

高三数学数列知识点归纳总结数列是高中数学中的一个重要知识点,对于高三学生来说,熟练掌握数列的概念、性质和应用是至关重要的。
为了帮助同学们更好地复习和总结数列知识,下面将对高三数学数列知识点进行归纳总结,希望对同学们的学习有所帮助。
一、基础概念数列是按照一定的规律排列成的一列数,通常用字母a、b、c 等表示。
其中,a1为数列的第一个数,an为数列的第n个数,n为自然数。
二、等差数列1. 定义:等差数列是指数列中的相邻两项之差为常数,该常数称为公差,通常用字母d表示。
2. 求通项公式:设等差数列的首项为a1,公差为d,则第n项an可表示为an=a1+(n-1)d。
3. 求和公式:等差数列的前n项和Sn可表示为Sn=(a1+an)×n/2 或 Sn=n/2×[2a1+(n-1)d]。
三、等比数列1. 定义:等比数列是指数列中的相邻两项之比为常数,该常数称为公比,通常用字母q表示。
2. 求通项公式:设等比数列的首项为a1,公比为q,则第n项an可表示为an=a1×q^(n-1)。
3. 求和公式:等比数列的前n项和Sn可表示为Sn=a1×[1-q^n]/(1-q)。
四、等差数列与等比数列的比较1. 差别:等差数列的相邻两项之差为常数,等比数列的相邻两项之比为常数。
2. 公式:等差数列的通项公式中含有公差d,等比数列的通项公式中含有公比q。
3. 求和:等差数列的求和公式中含有首项a1、末项an和项数n,等比数列的求和公式中同样含有首项a1和项数n,但末项an与公比q有关。
五、数列的应用1. 等差数列的应用:等差数列常应用于描述一些增长或减少的情况,如成绩的变化、人口的增长等。
2. 等比数列的应用:等比数列常应用于描述指数增长或指数衰减的情况,如病毒传播、存款利息等。
六、数列的性质1. 递推关系:数列的递推关系是指通过前一项与公式计算得出后一项的关系。
2. 递归公式:数列的递归公式是指通过前一项与前两项计算得出后一项的关系。
高考第一轮复习之方法指导——《数列求和的方法》

高考第一轮复习之方法指导——《数列求和的方法》数列求和是高中数学中非常重要的一个概念,也是高考中经常会涉及到的内容。
下面给出一些数列求和的方法指导,希望对高考复习有所帮助。
1.等差数列求和:等差数列是高中数学中最基本的数列之一,求和方法也是最为简单的。
对于一个等差数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公差是d,则数列的和可以通过如下公式计算:S_n=(n/2)(a_1+a_n)其中,S_n表示数列的和,n表示数列的项数,a_n表示数列的最后一项。
2.等比数列求和:等比数列也是高中数学中常见的数列类型,求和方法相对于等差数列要稍复杂一些。
对于一个等比数列:a_1,a_2,a_3,...,a_n,如果首项是a_1,公比是q,则数列的和可以通过如下公式计算:S_n=(a_1(q^n-1))/(q-1)其中,S_n表示数列的和,n表示数列的项数,q表示数列的公比。
3.等差数列前n项和:如果需要计算等差数列的前n项的和,可以通过使用等差数列求和公式快速计算。
首先,计算数列的首项a_1和最后一项a_n,然后带入求和公式即可。
4.等差数列项数:如果需要计算等差数列的项数n,可以通过反推求解。
首先,计算数列的首项a_1和最后一项a_n,然后使用如下公式:n=(a_n-a_1)/d+1其中,n表示等差数列的项数,a_n表示最后一项,a_1表示首项,d表示公差。
5.等差数列的和等于0:如果一个等差数列的和等于0,可以应用等差数列的性质进行求解。
首先,计算数列的首项a_1和公差d,然后使用等差数列求和公式解方程:n/2(a_1+a_n)=0可得等差数列的项数n。
6.等差数列差数求和:如果需要计算等差数列的差数的和,可以使用差数求和公式进行计算。
该公式是等差数列求和公式的一个变形。
首先,计算差数的和:S_d=(n/2)(a_2-a_1)其中,S_d表示差数的和,n表示数列的项数,a_1表示首项,a_2表示第二项。
高三数学数列知识点总结大全

高三数学数列知识点总结大全一、数列的概念和基本性质数列是由一列有序的数按照一定规律排列而成的序列。
数列的基本性质包括:1. 通项公式:根据数列的规律可以得到通项公式,用来表示数列中任意一项的公式。
2. 递增和递减:如果数列中的每一项都比前一项大,则这个数列是递增数列;如果数列中的每一项都比前一项小,则这个数列是递减数列。
3. 公差:对于等差数列,相邻两项的差值是一个常数,称为等差数列的公差。
4. 公比:对于等比数列,相邻两项的比值是一个常数,称为等比数列的公比。
二、等差数列等差数列是指在数列中,从第二项开始,每一项与前一项的差值都相等的数列。
等差数列的常见性质有:1. 通项公式:设等差数列的首项为a₁,公差为d,则第n项的通项公式为:an = a₁ + (n-1)d。
2. 求和公式:等差数列的前n项和公式为:Sn = n/2(a₁ + an) = n/2(2a₁ + (n-1)d)。
三、等比数列等比数列是指在数列中,从第二项开始,每一项与前一项的比值都相等的数列。
等比数列的常见性质有:1. 通项公式:设等比数列的首项为a₁,公比为q,则第n项的通项公式为:an = a₁*q^(n-1)。
2. 求和公式:当公比q不等于1时,等比数列的前n项和公式为:Sn = a₁ * (1 - q^n)/(1 - q)。
四、数列的应用1. 数列在排列组合中的应用:通过分析排列组合问题中的数列规律,可以解决一些复杂的计数问题。
2. 数列在几何问题中的应用:数列常常用于解决几何中的问题,如等差数列可以用于求解等差数列的和,等比数列可以用于求解等比数列的和或比率等。
3. 数列在金融问题中的应用:数列在金融领域中有广泛应用,如利率计算中的等比数列,投资回报等问题都可以用数列进行分析和求解。
五、常见数列的分类1. 斐波那契数列:斐波那契数列是指从第三项开始,每一项都是前两项的和,即Fn = Fn-1 + Fn-2,其中F1 = 1,F2 = 1。
5.1 数列的概念课件-2023届广东省高职高考数学第一轮复习第五章数列

一、选 择 题
1.设数列 2, 5,2 2, 11,…则 2 5是这个数列的( B )
A.第 6 项
B.第 7 项 C.第 8 项 D.第 9 项
【解析】 该数列可以看成是 2, 5, 8, 11, 14, 17, 20=2 5,
观察得,2 5为数列的第 7 项,故选 B.
2.已知数列{an}满足 an=2n2+n23,则 a5=( D )
1.已知数列{an}的通项公式是 an=3n+2,则 a5=( C )
A.14
B.15
C.17
D.34
【解析】 由题意,得 a5=3×5+2=17,故选 C.
2.已知数列{an}的前 4 项分别为:12,-13,14,-15,…则数列的通项
公式 an=( D )
1 A.n+1
B.-n+1 1
C.(-1)n·n+1 1 D.(-1)n+1·n+1 1
知识点1 知识点2 知识点3 知识点4 知识点5
4.数列的分类 按项数是否有限分为:有穷数列(项数有限)、无穷数列(项数无限). 按单调性分为:递增数列(an<an+1)、递减数列(an>an+1)、常数数 列、摆动数列. 常数数列:数列的所有项都是同一个常数.
知识点1 知识点2 知识点3 知识点4 知识点5
知识点1 知识点2 知识点3 知识点4 知识点5
3.数列的递推公式 如果已知数列的初始项(第一项或前几项),且往后的任意一项an与 前一项an-1(或前几项)(n≥2,n∈N*)的关系都可以用一个公式来表 示,那么这个公式就叫做这个数列的递推公式,如:a1=1,a2= 1,an+2=an+1+an.已知初始项和递推公式,就能确定一个数列.
例2 已知数列{an}满足 a1=3,an=-an1-1(n≥2,且 n∈N*),求 a5. 【分析】 本题考查递推公式.
数列高三理科知识点归纳

数列高三理科知识点归纳数列是高中数学中的重要内容,也是高三数学考试中常见的知识点。
理解和掌握数列的性质及相关概念对于高考数学的顺利解题至关重要。
本文将对高三数学中与数列相关的知识点进行归纳和概述。
一、数列的基本概念:数列是由一串按特定规律排列的数所组成的有序集合。
数列的一般形式为:an=a1+(n-1)d,其中an表示第n个数,a1为首项,d 为公差。
二、等差数列:等差数列是最基本的数列之一,其特点是每一项与前一项之差都相等。
常见的等差数列有以下几个重要概念:1. 公差:等差数列中相邻两项之间的差值,用d表示。
2. 通项公式:等差数列的通项公式为an=a1+(n-1)d,通过该公式可以求得任意一项的值。
3. 求和公式:等差数列的前n项和公式为Sn=n/2(a1+an),通过该公式可以求得前n项的和。
三、等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的等比数列有以下几个重要概念:1. 公比:等比数列中相邻两项之比,用q表示。
2. 通项公式:等比数列的通项公式为an=a1*q^(n-1),通过该公式可以求得任意一项的值。
3. 求和公式:等比数列的前n项和公式为Sn=a1(1-q^n)/(1-q),通过该公式可以求得前n项的和。
四、数列的性质:数列具有一些重要的性质和特点,这些性质对于解题和理解数列的本质起到了重要的作用。
1. 有界性:数列可以是有界的,即存在上界和下界,也可以是无界的。
2. 单调性:数列可以是递增的,即每一项都比前一项大,也可以是递减的,即每一项都比前一项小。
还可以是常数列,即每一项都相等。
3. 极限:数列可能有极限,即当项数趋近于无穷时,数列的值趋于一个确定的常数。
4. 递推关系:数列的每一项都可以通过前一项或前几项来确定。
五、常见数列:高三数学中常见的数列有以下几种:1. 等差数列:每一项与前一项之差相等。
2. 等比数列:每一项与前一项之比相等。
3. 斐波那契数列:每一项等于前两项之和。
数列高三知识点总结

数列高三知识点总结数列在高中数学中占据重要地位,是许多高考数学题的基础。
本文将对高三数学中涉及的数列知识点进行总结,包括数列的概念、常见数列的特点和求解方法等。
一、数列的概念及基本术语数列是按照一定顺序排列的一组数,通常用字母表示。
数列中的每一个数称为该数列的项,而项的位置称为项数。
根据项数的不同,数列可以分为首项、末项、通项和项数等几个基本术语。
首项(a₁)是数列中的第一个数,末项(aₙ)则是数列中的最后一个数。
通项(aₙ)是数列中任意一项的一般表示形式,通常用数学表达式来表示。
项数(n)表示数列中某一项的位置,可以是自然数或整数。
二、常见数列的特点和求解方法1.等差数列(Arithmetic Progression, AP)等差数列指的是数列中任意两项之差都相等的数列。
其通项公式为:aₙ = a₁ + (n-1)d,其中a₁为首项,d为公差,n为项数。
求解等差数列有以下几个常用方法:- 求首项和公差:已知数列的前几项,可通过观察找规律,利用已知项之间的关系来确定首项和公差。
- 求前n项和:使用等差数列的部分和公式 Sₙ = (a₁ + aₙ) * n / 2,其中Sₙ表示前n项和。
- 求任意一项:利用通项公式,根据已知的首项、公差和项数,计算出所需的项。
2.等比数列(Geometric Progression, GP)等比数列指的是数列中任意两项之比都相等的数列。
其通项公式为:aₙ = a₁ * r^(n-1),其中a₁为首项,r为公比,n为项数。
求解等比数列的方法如下:- 求首项和公比:根据题目中已知的条件,可以得到首项和公比的值。
- 求前n项和:利用等比数列的部分和公式 Sₙ = a₁ * (1 - rⁿ) / (1 - r),其中 Sₙ 表示前n项和。
- 求任意一项:根据通项公式和已知的首项、公比以及项数,计算出所要求的项。
3.斐波那契数列(Fibonacci Sequence)斐波那契数列是一种特殊的数列,前两项都是1,后续的每一项都是其前两项之和。
数列知识点 高三数学

数列知识点高三数学数列是数学中非常重要的一个概念,广泛应用于各个领域。
在高三数学中,数列是一个重点内容,本文将针对数列的定义、性质和应用进行论述。
一、数列的定义数列是由一系列有序的数字按照一定规律排列而成的。
通常用字母表示数列的第n项,如a₁、a₂、a₃...。
数列可以分为等差数列和等比数列,其中:1. 等差数列:若一个数列的任意两个相邻项之差都相等,则称该数列为等差数列。
我们可以用常数d表示等差数列的公差。
2. 等比数列:若一个数列的任意两个相邻项的比值都相等,则称该数列为等比数列。
我们可以用常数q表示等比数列的公比。
二、数列的性质1. 通项公式:数列的通项公式是指能够表示数列第n项的公式。
对于等差数列,通项公式为an = a₁ + (n-1)d;对于等比数列,通项公式为an = a₁ * q^(n-1)。
2. 首项和末项:数列的首项是指数列的第一项,用a₁表示。
数列的末项是指数列的最后一项,用an表示。
3. 数列的和:数列的前n项和是指数列的前n项相加的结果,用Sn表示。
对于等差数列,前n项和公式为Sn = (a₁ + an) * n / 2;对于等比数列,前n项和公式为Sn = a₁ * (1 - q^n) / (1 - q)。
三、数列的应用数列在实际问题中有很多应用,以下列举几个例子说明:1. 财务规划:在财务规划中,人们需要根据未来的收入和支出情况来制订自己的理财计划。
如果收入或支出呈等差数列增长或减少,可以利用数列的概念和性质来计算出未来的财务状况。
2. 人口统计:在人口统计中,常常需要研究不同年份的人口数量变化情况。
如果人口数量呈等比数列增长或减少,可以通过数列的特点来预测未来的人口变化趋势。
3. 物理运动:在物理学中,许多物理量的变化规律可以通过数列来描述。
例如,自由落体运动中,物体每秒钟下落的距离就是一个等差数列;指数衰减过程中,物质的剩余量可以表示成一个等比数列。
综上所述,数列是高三数学中一个重要的知识点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学第一轮复习——数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n=.3.递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,12,11+==n na a a ,其中12+=n n a a 是数列{}n a 的递推公式.4.数列的前n 项和与通项的公式①n n a a a S +++= 21; ②⎩⎨⎧≥-==-)2()1(11n S S n S a n nn .5. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 --- ④常数数列:例如:6,6,6,6,……. ⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前n 项和公式⑴通项公式d n a a n)1(1-+=,1a 为首项,d 为公差.⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=.3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法 ⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.5.等差数列的常用性质⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n)(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列;⑹当项数为)(2+∈N n n ,则nn a a S S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. 等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(≠q q ,这个数列叫做等比数列,常数q 称为等比数列的公比.2.通项公式与前n 项和公式⑴通项公式:11-=n nq a a ,1a 为首项,q 为公比 .⑵前n 项和公式:①当1=q时,1na S n =②当1≠q 时,qqa a q q a S n n n --=--=11)1(11.3.等比中项如果b G a ,,成等比数列,那么G 叫做a 与b 的等比中项. 即:G 是a 与b 的等差中项⇔a ,A ,b 成等差数列⇒b a G ⋅=2.4.等比数列的判定方法 ⑴定义法:q a a nn =+1(+∈N n ,0≠q 是常数)⇔{}n a 是等比数列; ⑵中项法:221++⋅=n n n a a a (+∈N n )且0≠n a ⇔{}n a 是等比数列.5.等比数列的常用性质⑴数列{}n a 是等比数列,则数列{}n pa 、{}n pa (0≠q 是常数)都是等比数列;⑵在等比数列{}n a 中,等距离取出若干项也构成一个等比数列,即 ,,,,32k n k n k n n a a a a +++为等比数列,公比为kq .⑶),(+-∈⋅=N m n q a a m n m n⑷若),,,(+∈+=+N q p n m q p nm ,则q p n m a a a a ⋅=⋅;⑸若等比数列{}n a 的前n 项和n S ,则k S 、k k S S -2、k k S S 23-、k k S S 34-是等比数列.二、典型例题A 、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ;2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S .3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ;2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) 4、等差数列{}n a ,{}nb 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b =( )5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。
7、已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++=且13k a =,则k =_________。
8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 .9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a 12、等差数列{}n a 中,已知848161,.3S S S S =求B 、求数列通项公式1) 给出前几项,求通项公式1,0,1,0,……,,21,15,10,6,3,13,-33,333,-3333,33333……2)给出前n 项和求通项公式1、⑴n n S n 322+=; ⑵13+=n n S . 2、设数列{}n a 满足2*12333()3n na a a a n N +++=∈n-1…+3,求数列{}n a 的通项公式3)给出递推公式求通项公式a 、⑴已知关系式)(1n f a a n n +=+,可利用迭加法或迭代法;11232211)()()()(a a a a a a a a a a n n n n n n n +-++-+-+-=-----例:已知数列{}n a 中,)2(12,211≥-+==-n n a a a n n ,求数列{}n a 的通项公式; b 、已知关系式)(1n f a a n n ⋅=+,可利用迭乘法.1122332211a a aa a a a a a a a a n n n n n n n ⋅⋅⋅⋅⋅⋅=-----例、已知数列{}n a 满足:111(2),21n n a n n a a n --=≥=+,求求数列{}n a 的通项公式; c 、构造新数列1°递推关系形如“q pa a n n +=+1”,利用待定系数法求解例、已知数列{}n a 中,32,111+==+n n a a a ,求数列{}n a 的通项公式.2°递推关系形如“,两边同除1n p+或待定系数法求解例、n n n a a a 32,111+==+,求数列{}n a 的通项公式.3°递推已知数列{}n a 中,关系形如“n n n a q a p a ⋅+⋅=++12”,利用待定系数法求解 例、已知数列{}n a 中,n n n a a a a a 23,2,11221-===++,求数列{}n a 的通项公式.4°递推关系形如"11n n n n a pa qa a ---=≠(p,q 0),两边同除以1n n a a -例1、已知数列{}n a 中,1122n n n n a a a a ---=≥=1(n 2),a ,求数列{}n a 的通项公式.例2、数列{}n a 中,)(42,211++∈+==N n a a a a nnn ,求数列{}n a 的通项公式.d 、给出关于n S 和m a 的关系例1、设数列{}n a 的前n 项和为n S ,已知)(3,11++∈+==N n S a a a n n n ,设nn n S b 3-=,求数列{}n b 的通项公式.例2、设n S 是数列{}n a 的前n 项和,11=a ,)2(212≥⎪⎭⎫⎝⎛-=n S a S n n n . ⑴求{}n a 的通项; ⑵设12+=n S b nn ,求数列{}n b 的前n 项和n T .C 、证明数列是等差或等比数列1)证明数列等差例1、已知n S 为等差数列{}n a 的前n 项和,)(+∈=N n nS b nn .求证:数列{}n b 是等差数列. 例2、已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2),a 1=21. 求证:{nS 1}是等差数列;2)证明数列等比例1、设{a n }是等差数列,b n =na ⎪⎭⎫⎝⎛21,求证:数列{b n }是等比数列;例2、数列{a n }的前n 项和为S n ,数列{b n }中,若a n +S n =n .设c n =a n -1,求证:数列{c n }是等比数列;例3、已知n S 为数列{}n a 的前n 项和,11=a ,24+=n n a S .⑴设数列{}n b 中,n n n a a b 21-=+,求证:{}n b 是等比数列; ⑵设数列{}n c 中,nnn a c 2=,求证:{}n c 是等差数列;⑶求数列{}n a 的通项公式及前n 项和.例4、设n S 为数列{}n a 的前n 项和,已知()21nn n ba b S -=- ⑴证明:当2b =时,{}12n n a n --⋅是等比数列; ⑵求{}n a 的通项公式例5、已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈⑴证明:数列{}1n n a a +-是等比数列; ⑵求数列{}n a 的通项公式; ⑶若数列{}n b 满足12111*44...4(1)(),n n b b b b n a n N ---=+∈证明{}n b 是等差数列.D 、求数列的前n 项和基本方法: 1)公式法, 2)拆解求和法.例1、求数列n{223}n +-的前n 项和n S . 例2、求数列 ,,,,,)21(813412211n n +的前n 项和n S . 例3、求和:2×5+3×6+4×7+…+n (n+3)2)裂项相消法,数列的常见拆项有:1111()()n n k k n n k=-++;n n n n -+=++111;例1、求和:S =1+n ++++++++++ 32113211211 例2、求和:nn +++++++++11341231121 .3)倒序相加法,例、设221)(x x x f +=,求: ⑴)4()3()2()()()(213141f f f f f f +++++;⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++4)错位相减法,例、若数列{}n a 的通项nn n a 3)12(⋅-=,求此数列的前n 项和n S .5)对于数列等差和等比混合数列分组求和例、已知数列{a n }的前n 项和S n =12n -n 2,求数列{|a n |}的前n 项和T n .E 、数列单调性最值问题例1、数列{}n a 中,492-=n a n ,当数列{}n a 的前n 项和n S 取得最小值时,=n . 例2、已知n S 为等差数列{}n a 的前n 项和,.16,2541==a a 当n 为何值时,n S 取得最大值;例3、数列{}n a 中,12832+-=n n a n ,求n a 取最小值时n 的值.例4、数列{}n a 中,22+-=n n a n ,求数列{}n a 的最大项和最小项.例5、设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.例6、已知n S 为数列{}n a 的前n 项和,31=a ,)2(21≥=-n a S S n n n . ⑴求数列{}n a 的通项公式;⑵数列{}n a 中是否存在正整数k ,使得不等式1+>k k a a 对任意不小于k 的正整数都成立?若存在,求最小的正整数k ,若不存在,说明理由. 例7、非等比数列{}n a 中,前n 项和21(1)4n n S a =--, (1)求数列{}n a 的通项公式; (2)设1(3)n n b n a =-(*)n N ∈,12n n T b b b =+++,是否存在最大的整数m ,使得对任意的n 均有32n mT >总成立?若存在,求出m ;若不存在,请说明理由。