10kV配电网中性点接地方式的选择
10kV发电机组中性点经电阻接地方式

中性点经电阻接地方式——适宜于以电缆线路为主配电网的中性点接地方式一、前言三相交流电系统中性点与之间电气连接的方式,称为电网中性点接地方式。
中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。
中性点接地方式直接影响到系统设备绝缘水平的选择、系统过电压水平及过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。
在选择电网中性点接地方式时必须进行具体分析、全面考虑。
我国110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4倍运行相电压;暂态过电压水平也相对较低;故障电流很大继电保护装置能迅速断开故障线路,系统设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。
这里对中性点直接接地系统不做过多的讨论,下面主要讨论6~35kV配电网的接地方式。
配电网中性点的接地方式主要可分为以下三种:●不接地●经消弧线圈接地●经电阻接地自1949年至80年代我国基本上沿用前联的规定,6~35KV电网均采用中性点不接地或经消弧线圈(谐振)接地方式。
近10多年来沿海一些大城市经济飞速发展,电网的容量和规模急剧扩大,配电线路逐步实现电缆化,系统电容电急剧增加、特别是近几年大规模城市电网改造,电缆线路逐步代替架空线路,电网结构大大加强。
在电缆线路为主的城市电网中采用不接地或经消弧线圈接地方式,因单相接地过电压烧坏设备的事故概率大大增加,为了解决这一矛盾,许多城市电力部门广泛考察了国外配电网的中性点接地方式,结合本地电网的具体情况,经过充分的分析、研究,发现采用中性点经低电阻接地方式是解决这一矛盾的有效措施,20世纪80年代后期开始在、试用、推广,并很快推广到其他城市(如、、、、、天津、、、工业园区、、讪头、、、等),同时,也在发电厂,机场、港口、地铁、钢厂、有色金属冶炼厂等行业被广泛采用。
10kV系统不同接地方式的优缺点比较

10kV系统不同接地方式的优缺点比较摘要:本文简要研究比较了10kV系统不同接地方式之间的优缺点,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。
关键词:10kV系统;接地方式;优缺点一、前言本文针对工作中遇到的多个变电站10kV系统由中性点不接地系统或经消弧线圈接地系统改造为中性点经小电阻接地系统。
简要研究了10kV系统的不同接地方式的优缺点比较,主要研究比较中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地和中性点经消弧线圈并联小电阻接地四种方式。
中性点接地的方式对电力系统稳定运行会产生影响,考虑供电的可靠性和连续性、设备安全和人身安全、过电压和设备绝缘水平、继电保护和是否准确跳闸等因素。
近年来,10kV配电网中的接地故障或者线路断线造成的社会人员伤亡等事故时有发生。
10kV配电网中,中性点接地方式不同,有的线路接地故障发生时,该线路未能及时切除,故障点未能及时与电源断开。
二、10kV系统的不同接地方式的优缺点比较1、中性点不接地方式主要优点:(1)在单相接地故障发生时,故障点流过的电流只是系统等值的电容电流。
在接地故障电流小于10A的情况下,一般息弧能自动发生。
(2)故障发生时,该相电压将降低至零,非故障相线电压将保持不变,相电压升为原来的倍,故障线路可保持1~2小时运行状态,供电的可靠性相对地提高了。
主要缺点:(1)在单相接地故障发生时,非故障相的电压会上升到线电压,且因为过电压会保持较长的一段时间,在选择设备的耐压水平时需要按线电压的电压水平考虑,提高了设备绝缘水平要求。
(2)因为线路对地的电容中积蓄的能量得不到释放,电容电压伴随每个循环会升高,因而在弧光接地过程中,中性点不接地系统的电压能达到比较高的倍数,极大地危害了系统设备的绝缘。
(3)在一定条件下,由于故障或者倒闸操作,线性谐振或铁磁谐振可能引起谐振过电压,电压互感器的绝缘容易被击穿。
10kV配电网中性点经消弧线圈接地系统的故障选线方法探讨

10kV配电网中性点经消弧线圈接地系统的故障选线方法探讨摘要:伴随我国整个电力系统的持续发展,选用电缆线路的中低压配电网日渐增多;需要指出的是,因电缆线路在具体电容上,要明显大于架空线,所以增加电缆线路会迅速增大系统的电容电流,最终会影响设备绝缘安全与设备保护。
针对此情况,做好故障选线工作尤为重要。
本文围绕10kV配电网中性点经消弧线圈接地系统,就其故障选线方法作一探讨。
关键词:10kV配电网;中性点;经消弧线圈接地系统;故障选线在我国所应用的3~10kV电力系统当中,如果出现单相接地故障,且电容电流>30A,或者是35~60kV系统电容电流>10A,都需要采用的接地方式为中性点经消弧线圈方式。
针对此方式而言,其有着比较多的优点,比如能实现瞬时性接地故障的自动消除、较小的线路接地故障电流等,因而被广泛应用在10kV配电网系统当中。
但需要指出的是,受消弧线圈所具有的补偿作用的影响,使得原本用于区分非故障线路与故障线路的电气特性消失,而且在相电压过零点时、过峰值时发生故障存在不同特征,使得常规故障选线方法已较难满足现实需要。
本文基于小波变换中信号奇异性检测原理,分析故障发生后的暂态零序电流,并通过对比暂态零序电流最大模极大值比值与其既定阀值,来实现选线。
1.中性点经消弧线圈接地系统故障特征分析针对中性点经消弧线圈接地电网来讲,当其出现单相接地故障后,其在具体的特征量上,主要有两部分构成,其一为故障等效电源作用所形成的故障分量,其二是对称三相电源作用所形成的正常分量。
还需要指出的是,因电力系统各个元件能够在参数元件中等效分布,因此,该过程与一个分布参数网络所对应的零状态响应过程处于等效状态。
因线路当中存在有分布电容、电感,因此,在整个故障暂态分量当中,会充斥大量的故障信息,而且还囊括有许多频率成分,所以,可通过得到暂态特征量,来促进选线精度的提升。
2.小波变换信号奇异性检测的基本原理小波分析乃是傅里叶变换的重要部分,能够实现时-频的同时局部化,而且还能分解信号,使之处于各频带上,也就是在低频部分上,时间分辨率低,且频率分辨率的高;而在高频部分,则频率分辨率较低,且时间分辨率较高,尤其适用于暂态信号、非平稳信号的分析。
10kV电网中性点接地方式分析与探讨

10kV电网中性点接地方式分析与探讨摘要:在电力系统中中性点的接地方式综合性与技术性比较强,其是避免系统发生事故的关键技术,和系统接地装置、供电的可靠性与设备安全息息相关。
本文就中性点的接地方式分类进行分析,探讨10kV电网中性点的接地方式,以期提高电网运行经济性和可靠性。
关键词:10kV电网;中性点;接地方式1.前言在选择中性点的接地方式时,需要充分考虑到电网异常与正常运行的两种情况,保障供电的可靠性。
此外,还要重视故障发生时对供电设备的影响,不断加强继电保护的技术与设计技术,确保10kV电网供电的安全性与及时性。
2.中性点的接地方式分类2.1中性点的不接地方式中性点的不接地电网主要指中性点和大地间没有设置任何连接,但实际的系统中三相电和大地间存在着电容的分布。
通常在电网正常运行的过程中,中性点不会对大地产生电压,一旦产生单相接地的故障,电流与电容就会经过故障点,保证掉闸现象不会发生,还可以保证系统带故障运行两个小时。
中性点不接地方式主要优势就是能够连续供电,存在较低跨步电压与接触电压,在某种程度能减小弱电设备损坏率,可保证设备安全性与可靠性。
2.2中性点通过电阻接地电网中性点通过电阻来接地的方式,主要指中性点与大地间接入值,与标准阻值相符合的电阻。
和中性点通过消弧线圈来接地方式相比,中性点通过电阻进行接地的方式能够成功避开因间歇弧光接地或者是谐振的过电压,而且一旦系统产生单相的接地故障时,相关接地电阻能够产生感应的电流,从而启动零序的电压对系统进行保护,同时将故障线路切断,也就不会产生故障相电压大幅度上升的现象。
如果出现单相接地的故障,不管这种故障是不是永久性的故障,该段线路都会出现跳闸,使系统供电可靠性降低[1]。
2.3中性点通过消弧线圈进行接地电网中性点通过消弧线圈进行接地,一般指在中性点与大地间设置了电感的线圈,以此来保护电网。
一旦出现单相接地的故障,电网中就会出现零序电压,而电感线圈会提供感应电流来补偿电容电流,减小故障点的残余电流值,进而达到灭弧效果,彻底消除故障。
浅谈10KV配电网中性点接地方式

编号:AQ-JS-06625( 安全技术)单位:_____________________审批:_____________________日期:_____________________WORD文档/ A4打印/ 可编辑浅谈10KV配电网中性点接地方式Discussion on neutral point grounding mode of 10kV distribution network浅谈10KV配电网中性点接地方式使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。
1.三种不同接地方式在我国的10kV配电系统中,中性点的接地方式基本上有三种:中性点绝缘接地方式、中性点经小电阻接地方式和中性点经消弧线圈接地方式。
这三种接地方式各有优缺点,特别对于小电阻接地和消弧线圈接地方式孰优孰劣问题,一直存在不同的观点。
1.1中性点不接地中性点不接地方式是我国10KV配电网采用得比较多的一种方式。
这种接地方式在运行当中如发生了单相接地故障,由于流过故障点的电流仅为电网对地的电容电流,当10kV配电系统Ijd限制在10A以下时,接地电弧一般能够自动熄灭,此时虽然健全相电压升高,但系统还是对称的,故可允许带故障连续供电一段时间(规程规定为2小时),相对地提高了供电可靠性。
这种接地方式不需任何附加设备,只要装设绝缘监察装置,以便发现单相接地故障后能迅速处理,避免单相故障长期存在发展为相间短路故障。
由于中性点不接地方式中性点对地是绝缘的,当发生弧光接地时,由于对地电容中的能量不能释放,因此会产生弧光接地过电压或谐振过电压,其值一般可达2—3.5Uxg,会对设备绝缘造成威胁。
另一方面,由于目前普遍使用的小电流接地系统选线装置的选线准确率比较低,还未能够准确地检测出发生接地故障的线路。
发生单相接地故障后,一般采用人工试拉的方法寻找接地点,因此会造成非故障线路的不必要停电。
10kV配电网中性点接地方式相关分析

10kV配电网中性点接地方式相关分析发表时间:2017-11-13T10:20:30.047Z 来源:《基层建设》2017年第23期作者:周静[导读] 摘要:随着我国经济快速发展,人们生活水平有了不断提高,社会生产和日常生活的用电需求不断扩大广东电网有限责任公司梅州大埔供电局广东省梅州市 514200 摘要:随着我国经济快速发展,人们生活水平有了不断提高,社会生产和日常生活的用电需求不断扩大,需要完善接地系统以确保配电网稳定运行,满足供电可靠性的需要。
选用恰当的中性点接地方式非常重要,不但对电力系统的电流起到一定的抑制作用,还可以对过电压的水平进行有效的控制。
文章针对10kV配电系统小电流接地方式进行分析,对国内中性点接地方式及应用情况进行了梳理总结,以供参考。
关键词:中压配网;中性点;接地引言中性点接地方式影响企业供电系统的运行、发展,是涉及安全、技术、经济的综合性问题。
电力系统中性点接地是指电力系统中各设备的中性点接地方式,一般,因为电力系统中变压器的接地方式决定了系统的接地方式,所以一般也将电力系统中变压器中性点的接地方式理解为对应的电力系统的中性点接地。
电力系统中变压器中性点接地方式的选择的合适不合适,关系着电网能否安全运行。
我国中压配电网中性点接地方式主要有:大电流接地方式和小电流接地方式。
其中以小电流接地方式应用最为广泛。
随着配电网尤其是城市配电网的发展,配电网开始采用中性点经小电阻接地的运行方式,此外,也有一些配电网中性点经高电阻接地、经消弧线圈并联小电阻接地的运行方式。
1、10kV配电网中性点接地方式类型电力系统按照中性点接地方式的不同可划分为两大类:大电流接地方式和小电流接地方式。
简单的说大电流接地方式就是指中性点有效接地方式,包括中性点直接接地和中性点经低阻接地等。
小电流接地方式就是指中性点非有效接地方式,包括中性点不接地、中性点经高阻接地和中性点经消弧线圈接地等。
在大电流接地系统中发生单相接地故障时,由于存在短路回路,所以接地相电流很大,会启动保护装置动作跳闸。
对10kV配电网中性点接地方式的选择浅谈
扰 等 都 有 着密 切 的 关 系 。 与此 同时 , 电 网 配 络 结 构 和 运 行 方 式 简 单 的 情 况 下 , 用 传 采
中性 点 接 地 方式 还 是 人 们 防 止 电 力 系统 故 统 小 电流 接 地 方 式有 着 明 显 的 优 点 。 是 , 一
这 是 一 种 较 为 简 单 的 接 地 方 式 , 即 它 可 降 低 单 相 接 地 时 非 故 障 相 的 过 电压 、 抑
是 在 抑 制 过 电 压 、 偿 单 相 接 地 电 容 电 流 补
和 继 电保 护 等 方 面 的 问 题 还 有 待 解 决 。 因
此 对 1 k  ̄电 网 而 言 , 择 一 种 既 能 抑 制 O Vi 选
1 3经补 偿 消弧 线 圈接地 .
作不 可 靠。 因此 , 常情 况下 , 通 中性 点 电阻的
内容 。
电感 和 电容 形 成 了 谐 振 回路 而 引 起 的 。 这 1 0 A, 0 0 因此 以 电缆 为 主 的配 电 网适 宜采 用
种 间 歇 性 电 弧 较 易 引起 弧 光 接 地 过 电压 , 中性 点 经低 电 阻接 地 的方 式 。 与 消 弧 线 圈 接 地 方 式 相 比 , 用 中 性 采 进 一 步 危 及 到 整 个 电 网 的绝 缘 水 平 。 接 若
障 的 一 项 重 要 技 术 , 电 力 系 统 实 行 经 济 由于 接 地 电流 很 小 , 是 电弧 可 以瞬 间熄 灭 , 其 制 弧 光 接 地 过 电 压 , 可 消 除 谐 振 过 电压 又 安 全 运 行 的技 术 基 础 , 因此 , 须把 理论 与 供 电 的 可 靠 性 高 , 于 单 相 永 久 性 接 地 故 和 大 多数 的 断 线过 电 压 , 而 避 免 单 相 接 必 从 对 实践有效结合起来 。
10kV配电网中性点接地方式的研究
10kV配电网中性点接地方式的研究摘要:配电网中性点接地方式的选择对供电的正常运行起着重大的作用,因此对10kV配电网中性点接地方式的研究是至关重要的。
本文介绍了中性点三种不同接地方式,对经消弧线圈接地系统和经小电阻接地系统存在的问题进行分析,并探讨了联络密切的配电网系统接地方式、配电自动化系统接地故障研判功能和智能多模接地方式的思路。
关键词: 10kV;中性点接地;经消弧线圈接地;主要问题引言10kV配电网中性点接地方式是一个涉及电力系统各个方面的综合性问题,与整个电力系统的供电可靠性、人身安全、设备安全、继电保护、绝缘水平、过电压保护、电磁兼容、经济性等问题有密切关系,对电力系统的设计与运行有着重大的影响。
随着我国电力系统的发展和完善,10kV配电网安全可靠供电要求提高,其采用的电缆线路越来越多,电缆线路的增加导致系统电容电流急剧增加,因此,这就需要我们对配电网中性点接地方式进一步进行研究,以寻求适合电网特点的安全可靠、经济合理的中性点接地方式,以保持电网系统的稳定性和安全性。
1 中性点不同接地方式我国目前采用的中性点接地方式有:中性点不接地、经消弧线圈接地和经小电阻接地三种方式。
以下对这三种方式进行分析比较。
1.1 中性点不接地方式中性点不接地方式的主要特点是结构简单,投资较少。
发生单相接地故障时,故障相电压降为零,非故障相电压升高1.732倍,流经故障点的电流是全系统对地电容电流。
系统对地电容较小时,故障电流较小,系统可继续运行1~2h。
中性点不接地系统的根本弱点在于中性点绝缘,电网对地电容储存的能量没有释放通道,弧光接地时易产生间歇性电弧过电压,对绝缘危害很大,同时容易引发铁磁谐振。
因此该方式不能适应配电网发展,已逐渐被经消弧线圈接地和经小电阻接地方式取代。
1.2 中性点经消弧线圈接地方式经消弧线圈接地方式需要通过接地变压器提供中性点。
为避免出现谐振过电压,消弧线圈一般运行在过补偿状态。
10kV配电网中性点接地方式选择及转供电技术措施研究
10kV配电网中性点接地方式选择及转供电技术措施研究发布时间:2021-06-01T12:00:55.763Z 来源:《基层建设》2021年第3期作者:姜培亚[导读] 摘要:对于中性点不接地的方式而言,主要是指配电网中中性点没有进行人为的与大地相连接。
身份证号码:41108119851011XXXX摘要:对于中性点不接地的方式而言,主要是指配电网中中性点没有进行人为的与大地相连接。
实际上,这种类型的配电网主要是通过电网之后与对地的电容进行接地的。
在当配电网中性点不接地的系统产生了单相的接地问题时,相应的能够承受线电压的有关电气设备其供电的能力并没有受到影响时整个系统仍然可以继续运行。
本文对10kV配电网中性点接地方式选择及转供电技术措施进行分析,以供参考。
关键词:10kV配电网;中性点接地方式;转供电引言根据中性点接地方式不同,电力系统可以分为有效接地系统和非有效接地系统。
凡是系统的零序等值电抗X0与正序等值电抗X1的比X0/X1>3且零序等值电阻R0与正序等值电抗X1的比R0/X1>3,就属于非有效接地系统。
一般情况下有效接地系统主要是指中性点直接接地、中性点经小电抗和中性点经小电阻接地的系统;非有效接地系统主要指的是中性点不接地、中性点经消弧线圈接地和中性点经大电阻接地的系统。
配电网一般属于非有效接地系统。
1中性点不接地方式分析中性点不接地系统正常运行对称三相系统中的三相电源供应三相负载。
因为电路具有相对容量,所以三相电源供应器使用三相配线。
中立点o用于三相电源,中立点o用于三相负载,电流电位o用于地理位置电位。
在正常操作中,施加在相位负荷主绝缘上的电压是相位电压。
三相电源电压通常具有顺序电压,不超过不平衡相电压的5%。
由于电源的中性点的容量大大低于线路和设备的容量,因此不需要的中性线电压将移至电源的零线容量和中性点。
对于使用AC电容器的缆线。
每公里1-5 A电缆为35kv 60km 300 a电容,容量22Mvar,电路末端有轻度充电电路。
浅谈10KV配电网中性点接地方式
浅谈10KV配电网中性点接地方式摘要:配电网中性点接地方式是涉及电力系统许多方面的综合性技术问题,中性点接地方式的不同,会对配网供电可靠性产生一定程度的影响。
总结了确定10kV配电网中性点接地方式时应考虑的因素,合理地选择电网中性点接地方式已称为关系电网运行可靠性的关键技术问题。
关键词:10 kV配电;网中性点;接地;影响因素1、影响中性点接地方式的主要因素1.1接地故障类型10kV中性点接地过程中非常容易出现单相接地导致的瞬时故障,尤其是在以电缆为主的电网中,这类故障发生率非常高。
而常规架线为的主的电网中多为相间短路导致的永久性故障。
在永久性故障中电缆本体故障发生率较低,其多为电缆接头造成,故障处理难度较大。
因此,在对10kV配电网进行建设的过程中相关人员要适当增加电缆比重,要依照电压、短路电流及继电保护状况合理设置中性点接地方式。
1.2中性点经消弧线圈中性点经消弧线圈的运用可以有效改善10kV电网构建质量。
当前我国10kV 配电网中主要运用传统弧线圈,其效果并不显著。
而中性点经消弧线圈能够打破传统弧线圈限制,有效改善谐振接地效益,是10kV配电网建设的新方向。
该弧线圈应用过程中要对电容、电压进行全面考虑。
1.3供电可靠性供电可靠性指标直接影响着10kV配电网的供电效益,是提升10kV配电网配电质量的关键。
我国配电网中明确指出为保证供电可靠性,低电阻接地方式选取过程中必须设置自动故障切除线路,直接接地过程中必须不能使用有选择动作的继电保护装置。
1.4人身安全10kV配电网中性点接地方式选择的过程中要保证人身安全,要从中性点接地中人需要接触的金属部件、单相接地过程中的跨步电压、人直接接触带电部分电压等三方面对中性点接地进行调整,从而保证中性点接地的安全性,降低中性点接地可能产生的人员安全事故。
1.5绝缘水平的配合10kV配电网中性点接地的过程中要对绝缘部分进行合理设置,依照10kV配电网构建状况形成对应绝缘保护。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV配电网中性点接地方式的选择【摘要】本文就10kv配电网中性点接地方式的选择作了深入的分析和研究,可供有关人员参考借鉴。
【关键词】中性点;接地;小电阻;消弧线圈
1.前言
电力系统配电网中性点接地方式的选择是一个比较复杂的综合性技术问题,是关系到电力系统运行可靠性的一项重要选择。
其中性点接地方式是城市电网规划、设计和运行中一个非常重要的问题。
随着我国投入巨资进行城市电网建设与改造以来,城市电网电缆线路增多,网络联系增强,系统发生单相接地时电容电流增大,因此,采取何种中性点接地方式有利于抑制过电压的发生成为一个热点问题。
2.中性点接地方式
在10kv配电系统中,中性点的接地方式基本上有三种:中性点绝缘接地方式、中性点经小电阻接地方式和中性点经消弧线圈接地方式。
这三种接地方式各有优缺点,特别对于小电阻接地和消弧线圈接地方式孰优孰劣问题,一直存在不同的观点。
2.1中性点不接地
中性点不接地方式在10kv配电网采用得比较多的一种方式。
这种接地方式在运行当中如发生了单相接地故障,由于流过故障点的电流仅为电网对地的电容电流,当10kv配电系统ijd限制在10a 以下时,接地电弧一般能够自动熄灭,此时虽然健全相电压升高,
但系统还是对称的,故可允许带故障连续供电一段时间(规程规定为2小时),相对地提高了供电可靠性。
这种接地方式不需任何附加设备,只要装设绝缘监察装置,以便发现单相接地故障后能迅速处理,避免单相故障长期存在发展为相间短路故障。
由于中性点不接地方式中性点对地是绝缘的,当发生弧光接地时,由于对地电容中的能量不能释放,因此会产生弧光接地过电压或谐振过电压,其值一般可达2—3.5uxg,会对设备绝缘造成威胁。
另一方面,由于目前普遍使用的小电流接地系统选线装置的选线准确率比较低,还未能够准确地检测出发生接地故障的线路。
发生单相接地故障后,一般采用人工试拉的方法寻找接地点,因此会造成非故障线路的不必要停电。
2.2 中性点经小电阻接地
中性点经小电阻接地方式,即在中性点与大地之间接入一定阻值的电阻,该方式可认为是介于中性点不接地和中性点直接接地之间的一种接地方式,世界上以美国为主的部分国家采用中性点经小电阻接地方式。
采用此种方式,用以泄放线路上的过剩电荷,来限制弧光接地过电压。
中性点经小电阻接地方式中,一般选择电阻的值较小(工程上一般选取10~20ω)。
在系统单相接地时,控制流过接地点的电流在10a~500a之间,通过流过接地点的电流来启动零序保护动作,因此可快速切除线路单相故障。
中性点经小电阻接地的特点有:①中性点经小电阻接地系统可以配置零序过流或限流速断保护。
当系统发生单相接地故障时,故障线路的零序保护可在
(0.5~2.0)sec切除故障。
根据广州、深圳等地的运行经验,零序保护动作准确率在95%以上,可及时切除故障线路。
②由于电阻是耗能元件同时也是阻尼元件,相当于在谐振回路中串接一个阻尼电阻,由于电阻的阻尼作用,可以限制谐振过电压的形成。
试验表明,当接地电阻值r≤1500ω,基本上可以消除系统内的各种谐振过电压。
③在中性点不接地和经消弧线圈接地的系统中,健全相的过电压水平可超过3倍相电压,对设备的的绝缘水平造成一定的危害。
在小电阻接地系统中,当接地电弧第一次自动熄灭后,系统的对地电容的残余电荷将通过小电阻及时泄放,因此过电压幅值不高,不会产生很高的过电压,健全相的过电压低于3倍相电压,因此一般不会危及设备的绝缘。
④有利于降低操作过电压,中性点经小电阻接地的配电网发生单相故障时,零序保护动作,可准确并迅速地切除线路的故障。
如果发生接地故障的线路是电缆线路,由于电缆线路故障一般是永久性故障,可对电缆线路不投线路重合闸,不会引起操作过电压;如果发生单相接地故障的线路是架空线路,由于架空线路发生单相接地故障较多,在故障跳闸后,线路还将重合一次,根据运行经验和实测表明,无论重合闸是否成功,线路重合过程中不会引起明显的操作过电压。
⑤采用中性点经小电阻接地,当系统发生单相故障时,无论故障是永久性还是非永久性的,故障线路均跳闸,因此线路跳闸次数较多;当架空绝缘导线断线,裸导线断线接触的是沙砾、沥青、混凝土等干燥地面时,由于接地电流小,零序保护由于灵敏度原因可能不动作,会导致一定程度的
安全事故。
2.3 中性点经消弧线圈接地
消弧线圈是一个装设于配电网中性点的可调电感线圈,当电网发生单相接地故障时,其作用是提供一个感性电流,用来补偿单相接地的容性电流。
采用中性点经消弧线圈接地方式,在系统发生单相接地时,利用消弧线圈的电感电流对接地电容电流进行补偿,使流过接地点的电流减小(10a以下)到能自行熄弧范围,因接地电流电容电流得到补偿,单相接地故障并不发展为相间故障,按规程规定系统可带单相接地故障运行2h。
因此中性点经消弧线圈接地方式的供电可靠性,高于中性点经小电阻接地方式。
中性点经消弧线圈接地的特点有:①故障点接地电弧可自行熄灭,提高了供电可靠性。
由于消弧线圈的感性电流对故障容性电流的补偿,使单相故障接地容性电流在10a以下,因此接地电弧可以自行熄灭并避免重燃。
②可降低了接地工频电流(即残流)和地电位升高,减少了跨步电压和接地电位差,减少了对低压设备的反击以及对信息系统的干扰。
③传统的消弧线圈需要人工进行调谐,不仅会使电网短时失去补偿,而且不能有效地控制单相接地的故障电流。
自动跟踪补偿消弧线圈装置则能够随电网运行方式的变化,及时、快速地调节消弧线圈的电感值,当系统发生单相接地时,消弧线圈的电感电流能有效地补偿接地点的电容电流,避免了间歇性弧光接地过电压的产生。
3.中性点接地方式的选择
中性点不接地系统具有供电可靠性高,对人身及设备有较好的安全性,通讯干扰小,投资少等优点。
比较适合用于系统不大,网络结构比较简单,运行方式变化不大的系统。
中性点经小电阻接地,主要优点是过电压小,系统电缆可以选择较低的绝缘水平,以节省投资。
对于架空线路为主的系统,由于单相接地大多数为瞬时故障,而这种接地方式不分单相多相故障的性质一律跳闸;对以电缆为主的配电网,由于电缆很少发生单相接地瞬时故障,比较适宜采用经小电阻接地方式。
从限制单相接地故障电流的危害性角度出发,则中性点经消弧线圈(自动跟踪补偿)接地方式较其他两种接地方式有一定的优越性。
由于消弧线圈能够根据系统的电容电流实时进行补偿,避免发生间歇性弧光接地过电压,供电可靠性相对提高。
但是自动跟踪消弧线圈的选线准确率还不高,在运行实践中,很多安装自动跟踪补偿消弧线圈的变电站由于装置的选线准确率不高,导致需要采用试拉馈线的办法寻找故障点。
4.结语
配电网中性点接地方式的选择是具有综合性的技术问题。
中性点不接地、小电阻接地、消弧线圈接地各有其优缺点,应结合电网具体条件,通过技术经济比较确定,也就是说,因每种中性点接地方式的系统,具有独自的优点,得到了发展。
在同一城市同级标称电压,多种中性点接地方式的系统并存。
那种按电压等级“一刀切”决定中性点接地方式是不对的。
因每种中性点接地方式的系统,具有独自的缺点(弊端)。
所以,在选择时必须从具体实际出发,权
衡利弊,择利大于弊。
参考文献:
[1] 王建华,浅谈10kv配电网中性点接地方式[j],黑龙江科技信息,2011(17).
[2] 曹梅月,电缆网络的中性点接地方式问题[j],电网技术,2003(02).
[3] 叶文锋,10kv配电网供电可靠性研究[j],科学之友,2011(10).。