2016-2017学年第一学期期末考试数学试题
河南省郑州市2016-2017学年高一上学期期末数学试卷和答案

1、若集合A = {x | x2 - 4x + 3 < 0},B = {x | 2x - 5 > 0},则A ∩B =A、{x | 1 < x < 3}B、{x | 2.5 < x < 3}C、{x | 3 < x < 4}D、空集解析:首先解集合A中的不等式x2 - 4x + 3 < 0,这是一个二次不等式,可以通过因式分解或者求根公式解得x ∈(1, 3)。
然后解集合B中的不等式2x - 5 > 0,这是一个一次不等式,解得x > 2.5。
最后求A和B的交集,即x同时满足A和B的条件,解得x ∈(2.5, 3)。
(答案)B2、下列函数中,在其定义域内为增函数的是A、y = -x2 + 2xB、y = 1/xC、y = 2xD、y = log_0.5(x)解析:对于选项A,y = -x2 + 2x是一个开口向下的二次函数,其在对称轴x=1左侧为增函数,右侧为减函数,所以不是整个定义域内的增函数;对于选项B,y = 1/x在x>0时为减函数,x<0时也为减函数,所以不是增函数;对于选项C,y = 2x是指数函数,其底数大于1,所以在整个定义域内为增函数;对于选项D,y = log_0.5(x)是对数函数,其底数小于1,所以在整个定义域内为减函数。
(答案)C3、已知向量a = (1, 2),b = (3, 4),则a与b的夹角为A、30°B、45°C、60°D、90°解析:已知向量a和b的坐标,可以计算它们的点积a·b = 13 + 24 = 11,以及它们的模长|a| = √(12 + 22) = √5,|b| = √(32 + 42) = 5。
然后利用向量的夹角公式cosθ= a·b / (|a| * |b|),代入已知值计算得cosθ= 11 / (√5 * 5) = 11/5√5。
20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。
《高等数学》 2016-2017学年第一学期期末试卷A卷

河海大学2016—2017学年第一学期 《高等数学》 期末试卷(A )一、选择题(每小题3分,共15分) 1.设函数xxx f g x x f -+=-=-11))((,1)2(,则)3(g 等于( A )。
A .3- B .2- C .0 D .1 2.设x x x x y ++-=,则y 是x 的( A )阶无穷小。
A .81B .41C .21D .13.点0=x 是函数xe xf 111)(+=的( C )。
A .振荡间断点 B .可去间断点 C .跳跃间断点 D .无穷间断点 4.下列条件中,( C )是函数)(x f 在0x 处有导数的充分必要条件。
A .hh x f h x f h 2)()(lim000--+→存在 B .)(lim 0x f x x '→存在C .)(x f 在0x 处可微D .)(x f 在0x 处连续 5.设)(u f 可微,则)(sin x f y =的微分=dy ( B )。
A .dx x f )(sin 'B .xdx x f cos )(sin 'C .()x d x f sin )(sin 'D .xdx x f sin )(sin '二、填空题(每小题3分,共15分): 1. 函数[]x x y -=的最小正周期是1。
2.设)0(003cos )(>⎪⎪⎩⎪⎪⎨⎧>-+≤+=a x x a x a x x xx f ,当=a 49时, 0=x 是)(x f的连续点。
3.⎪⎭⎫⎝⎛+=∞→1lim )(2nx nx x f n 的间断点是=x ,且是第二类间断点。
4.设12)(-=x e x f ,则()=)0(2008f 120082-e 。
5.设方程0arctan =+-y y x 确定的函数)(x y y =,求=dxdy221y y +。
三、(6分)叙述∞=→)(lim 0x f x 的定义,并用定义证明定义∞=+→xx x 12lim0。
2016-2017北京市朝阳区初一第一学期期末数学考试题(含答案)

北京市朝阳区2016~2017学年度第一学期期末检测七年级数学试卷 〔选用〕 2017.1〔考试时间90分钟 总分值100分〕一、选择题〔此题共24分,每题3分〕下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表1.北京故宫是中国明清两代的皇家宫殿,旧称为紫禁城,是中国古代宫廷建筑之精华,深受国内外游客的喜爱.据报道,北京故宫在2015年全年参观的总人数约为15 060 000人.将15 060 000用科学记数法表示为A .81.50610⨯B .71.50610⨯C .615.0610⨯D .715.0610⨯2.如图,数轴上有A ,B ,C ,D 四个点,其中所对应的数的绝对值最大的点是A .点AB .点BC .点CD .点D3.以下运算中,结果正确的选项是 A .224347a a a += B .222426m n mn m n +=C .22213222x x x -= D .22a a -=4.在以下方程中,解是0x =的方程为A .5772x x +=-B .6884x x -=-C .422x -=D .334515x x -+=-5.以下判断中,正确的选项是①锐角的补角一定是钝角; ②一个角的补角一定大于这个角;③如果两个角是同一个角的补角,那么它们相等; ④锐角和钝角互补. A .①②B .①③C .①④D .②③6.在运用有理数加法法则求两个有理数的和时,以下的一些思考步骤中最先进行的是A .求两个有理数的绝对值,并比较大小B .确定和的符号C .观察两个有理数的符号,并作出一些判断D .用较大的绝对值减去较小的绝对值D B C A 0–1–21237.分别从正面、左面和上面这三个方向看下面的四个几何体中的一个,得到如下列图的平面图形,那么这个几何体是A B C D8.如果一些体积为1cm 3的小立方体恰好可以组成体积为1m 3的大立方体,把所有这些小立方体一个接一个向上摞起来,大概有多高呢?以下选项中最接近这一高度的是A .天安门城楼高度B .未来北京最高建筑“中国尊”高度C .五岳之首泰山高度D .国际航班飞行高度二、填空题〔此题共24分,每题3分〕 9.计算:1138()842-⨯+-= . 10.写出312xy -的一个同类项: . 11.如图,在利用量角器画一个40°的∠AOB 的过程中,对于先找点B ,再画射线OB 这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为______同学的说法是正确的.12.假设一个多项式与2m n -的和等于2m ,则这个多项式是 . 13.假设2x =是关于x 的方程23ax +=的解,则a 的值为 . 14.如果一个数的实际值为a ,测量值为b ,我们把b a -称为绝对误差,ab a -称为相对误差.假设有一种零件实际长度为 cm ,测量得4.8 cm ,则测量所产生的绝对误差是 cm ,相对误差是 .绝对误差和相对误差都可以用来衡量测量的准确程度,它们的区别是 .15.如图,射线OA 的方向是北偏东20°,射线OB 的方向是北偏西40°,OD 是OB 的反向延长线.假设OC 是∠AOD 的平分线,则∠BOC =__________°,射线OC 的方向是________________.16.如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.例如,假设输入10x =,则输出5y =.假设输出3y =,则输入的x 的值为 .三、解答题〔此题共52分,第17-21题每题4分,第22-25题每题5分,第26-27题每题6分〕17.如图,点C 是线段AB 外一点.按以下语句画图: 〔1〕画射线CB ;〔2〕反向延长线段AB ; 〔3〕连接AC ;〔4〕延长AC 至点D ,使CD =AC .18.计算:)42()213(22---÷-. 19.计算:)213(214+-+ab ab .第16题图第15题图20.解方程:25(1)x x +=--. 21.解方程:52323x x-++=.22.先化简,再求值:22222()2(1)2a b ab a b ab +----,其中1a =,3b =-.23.暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成以下各问题:〔1〕从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是 ,积为 _. 〔2〕从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是 ,商为 .〔3〕从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法〔可加括号〕,使其运算结果为24,写出运算式子.〔写出一种即可〕24.填空,完成以下说理过程如图,已知△ACD 和△BCE 是两个直角三角形,90ACD ∠=︒,90BCE ∠=︒. 〔1〕求证:ACE BCD ∠=∠;〔2〕如果150ACB ∠=︒,求DCE ∠的度数.〔1〕证明:如图,因为90ACD ∠=︒,90BCE ∠=︒,所以ACE ∠+________BCD =∠+_________90=︒, 所以_________=__________.〔2〕解: 因为150ACB ∠=︒,90ACD ∠=︒, 所以BCD ∠=_________-__________=_________︒-__________︒ =_________︒.所以DCE ∠=________BCD -∠=__________︒ .25.列方程解应用题我国元朝朱世杰所著的《算学启蒙》〔1299年〕一书,有一道题目是:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”译文是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,快马几天可以追上慢马?26.探究规律,完成相关题目沸羊羊说:“我定义了一种新的运算,叫❈〔加乘〕运算.” 然后他写出了一些按照❈〔加乘〕运算的运算法则进行运算的算式:(5)+❈(2)7+=+;(3)-❈(5)8-=+;(3)-❈(4)7+=-;(5)+❈(6)11-=-; 0❈(8)8+=;(6)-❈06=.智羊羊看了这些算式后说:“我知道你定义的❈〔加乘〕运算的运算法则了.” 聪明的你也明白了吗?〔1〕归纳❈〔加乘〕运算的运算法则:两数进行❈〔加乘〕运算时,_________________________________________________________. 特别地,0和任何数进行❈〔加乘〕运算,或任何数和0进行❈〔加乘〕运算,_________________. 〔2〕计算:(2)-❈[0❈(1)]-= .〔括号的作用与它在有理数运算中的作用一致〕 〔3〕我们知道加法有交换律和结合律,这两种运算律在有理数的❈〔加乘〕运算中还适用吗?请你任选一个....运算律,判断它在❈〔加乘〕运算中是否适用,并举例验证.〔举一个例子即可〕27.阅读材料,并答复以下问题如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B .将木棒在数轴上水平移动,当点M 移动到点B 时,点N 所对应的数为20,当点N 移动到点A 时,点M 所对应的数为5.〔单位:cm〕由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我假设是你现在这么大,你还要40年才出生呢,你假设是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.草稿纸北京市朝阳区2016~2017学年度第一学期期末检测七年级数学试卷参考答案及评分标准一、选择题〔此题共24分,每题3分〕二、填空题〔此题共24分,每题3分〕三、解答题〔此题共52分,第17-21题每题4分,第22-25题每题5分,第26-27题每题6分〕 17. 解:如下列图……………………………4分18. 解:原式54(2)2=-÷-- ……………………………………………………………………1分 2425=-⨯+ (2)分 825=-+ (3)分 25=. (4)分19. 解:原式114322ab ab =+-- …………………………………………………………2分 ab =. …………………………………………………………………………4分20. 解:255x x +=-+ …………………………………………………………………1分 552x x +=- ………………………………………………………………………2分 63x = ………………………………………………………………………………3分12x =. …………………………………………………………………………………4分 21. 解:183(5)2(2)x x +-=+ ……………………………………………………………1分1831542x x +-=+ ……………………………………………………………2分 3243x x -=- ………………………………………………………………………3分 1.x = …………………………………………………………………………4分22. 解:22222()2(1)2a b ab a b ab +----222222222a b ab a b ab =+-+--……………………………………………………2分2ab =. …………………………………………………………………………………3分当1a =,3b =-时,原式21(3)=⨯-=9. ………………………………………………………………………5分23. (1) 5-,3- ………………………………………………………………………………1分15 …………………………………………………………………………………………2分(2) 5-,3+ ……………………………………………………………………………………3分53- ……………………………………………………………………………………………4分 (3) 3[5(3)]0-⨯--++〔答案不唯一〕 ………………………………………………………5分24. (1)证明:如图,因为90ACD ∠=︒,90BCE ∠=︒,所以ACE ∠+DCE ∠BCD =∠+DCE ∠90=︒,……………………………1分 所以ACE ∠=BCD ∠. ……………………………………………………2分(2)解: 因为150ACB ∠=︒,90ACD ∠=︒,所以BCD ∠=ACB ∠-ACD ∠ ………………………………………………3分=150︒-90︒=60︒.……………………………………………………………4分 所以DCE ∠=BCE ∠BCD -∠=30︒ .…………………………………5分25. 解:设快马x 天可以追上慢马.由题意,得 24015015012x x -=⨯. …………………………………………………2分解得 20x =. …………………………………………………………………4分 答:快马20天可以追上慢马. …………………………………………………………5分 26. 解:(1)同号得正,异号得负,并把绝对值相加……………………………………………1分 等于这个数的绝对值…………………………………………………………………2分 (2) 3- ……………………………………………………………………………………4分 (3)交换律在有理数的❈〔加乘〕运算中还适用.……………………………………5分 由❈〔加乘〕运算的运算法则可知,(5)+❈(2)+7=+,(2)+❈(5)+7=+,所以(5)+❈(2)+=(2)+❈(5)+. …………………………………………………6分即交换律在有理数的❈〔加乘〕运算中还适用.27. 解:5 ……………………………………………………………………………………2分64 ………………………………………………………………………………………3分 12 …………………………………………………………………………………………4分……………………5分如图,点A 表示美羊羊现在的年龄,点B 表示村长爷爷现在的年龄,木棒MN 的两端分别落在点A B 、.由题意可知,当点N 移动到点A 时,点M 所对应的数为40-,当点M 移动到点B 时,点N 所对应的数为116.可求52MN =.所以点A 所对应的数为12,点B 所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.…………………………………………6分。
湖南师范大学附属中学2016-2017学年高一数学上学期期末考试试题

湖南师大附中2016-2017学年度高一第一学期期末考试数学时量:120分钟满分:150分得分:____________第Ⅰ卷(满分100分)一、选择题:本大题共11小题,每小题5分,共55分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知两点A(a,3),B(1,-2),若直线AB的倾斜角为135°,则a的值为A.6 B.-6 C.4 D.-42.对于给定的直线l和平面a,在平面a内总存在直线m与直线lA.平行B.相交C.垂直D.异面3.已知直线l1:2x+3my-m+2=0和l2:mx+6y-4=0,若l1∥l2,则l1与l2之间的距离为A.55B.105C.255D.21054.已知三棱锥P-ABC的三条侧棱PA、PB、PC两两互相垂直,且PA=2,PB=3,PC=3,则这个三棱锥的外接球的表面积为A.16πB.32πC.36πD.64π5.圆C1:x2+y2-4x-6y+12=0与圆C2:x2+y2-8x-6y+16=0的位置关系是A.内含B.相交C.内切D.外切6.设α,β是两个不同的平面,m,n是两条不同的直线,则下列命题中正确的是A.若m∥n,m⊂β,则n∥β B.若m∥α,α∩β=n,则m∥nC.若m⊥β,α⊥β,则m∥α D.若m⊥α,m⊥β,则α∥β7.在空间直角坐标系O-xyz中,一个四面体的四个顶点坐标分别为A(0,0,2),B(2,2,0),C(0,2,0),D(2,2,2),画该四面体三视图中的正视图时,以xOz平面为投影面,则四面体ABCD的正视图为8.若点P(3,1)为圆(x-2)2+y2=16的弦AB的中点,则直线AB的方程为A.x-3y=0 B.2x-y-5=0C.x+y-4=0 D.x-2y-1=09.已知四棱锥P-ABCD的底面为菱形,∠BAD=60°,侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法中错误的是A.异面直线PA与BC的夹角为60°B .若M 为AD 的中点,则AD⊥平面PMBC .二面角P -BC -A 的大小为45°D .BD ⊥平面PAC10.已知直线l 过点P(2,4),且与圆O :x 2+y 2=4相切,则直线l 的方程为A .x =2或3x -4y +10=0B .x =2或x +2y -10=0C .y =4或3x -4y +10=0D .y =4或x +2y -10=011.在直角梯形BCEF 中,∠CBF =∠BCE=90°,A 、D 分别是BF 、CE 上的,AD ∥BC ,且AB =DE =2BC =2AF ,如图1.将四边形ADEF 沿AD 折起,连结BE 、BF 、CE ,如图2.则在折起的过程中,下列说法中错误的是A .AC ∥平面BEFB .直线BC 与EF 是异面直线C .若EF⊥CF,则平面ADEF⊥平面ABCD D .平面BCE 与平面BEF 可能垂直答题卡 题 号 1 2 3 4 5 6 7 8 9 10 11 得分 答 案二、填空题:本大题共3个小题,每小题5分,共15分.12.若直线l :x -y +1=0与圆C :(x -a)2+y 2=2有公共点,则实数a 的取值范围是____________.13.已知一个圆柱的底面直径和母线长都等于球的直径,记圆柱的体积为V 1,球的体积为V 2,则V 1V 2=________.14.已知三棱锥P -ABC 的体积为10,其三视图如图所示,则这个三棱锥最长的一条侧棱长等于________.三、解答题:本大题共3个小题,共30分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分8分)已知△ABC的三个顶点的坐标分别为A(3,0),B(4,6),C(0,8).(1)求BC边上的高所在直线l的方程;(2)求△ABC的面积.16.(本小题满分10分)已知圆C经过A(-2,1),B(5,0)两点,且圆心C在直线y=2x上.(1)求圆C的标准方程;(2)设动直线l:(m+2)x+(2m+1)y-7m-8=0与圆C相交于P,Q两点,求|PQ|的最小值.17.(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,AB⊥AC,AB=AC=AA1,D为BC的中点.(1)证明:A1B⊥平面AB1C;(2)求直线A1D与平面AB1C所成的角的大小.第Ⅱ卷(满分50分)一、本大题共2个小题,每小题6分,共12分.18.已知集合M =⎩⎨⎧⎭⎬⎫x|2x <1,N ={y|y =lg (x 2+1)},则N∩∁R M =______.19.已知函数f (x )在定义域R 上单调递减,且函数y =f (x -1)的图象关于点A (1,0)对称.若实数t 满足f (t 2-2t )+f (-3)>0,则t -1t -3的取值范围是( )A.⎝ ⎛⎭⎪⎫12,+∞B.⎝⎛⎭⎪⎫-∞,12C.⎝ ⎛⎭⎪⎫0,23D.⎝ ⎛⎭⎪⎫12,1∪(1,+∞) 二、本大题共3个大题,共38分.20.(本小题满分12分)如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC ,侧棱SC 上是否存在一点E ,使得BE∥平面P AC ?若存在,求SE∶EC 的值;若不存在,试说明理由.设函数f(x)=mx 2-mx -1,g(x)=f (x )x -1. (1)若对任意x∈[1,3],不等式f(x)<5-m 恒成立,求实数m 的取值范围; (2)当m =-14时,确定函数g(x)在区间(3,+∞)上的单调性.已知圆C:(x-a)2+(y-a-2)2=9,其中a为实常数.(1)若直线l:x+y-4=0被圆C截得的弦长为2,求a的值;(2)设点A(3,0),O为坐标原点,若圆C上存在点M,使|MA|=2|MO|,求a的取值范围.湖南师大附中2016-2017学年度高一第一学期期末考试数学参考答案-(这是边文,请据需要手工删加)湖南师大附中2016-2017学年度高一第一学期期末考试数学参考答案 第Ⅰ卷(满分100分)题 号 1234567891011答 案D C B A C D B C D A D12.[-3,1] 13.32 14.34三、解答题:本大题共3个小题,共30分.解答应写出文字说明,证明过程或演算步骤.15.【解析】(1)因为点B(4,6),C(0,8),则k BC =8-60-4=-12.(1分)因为l⊥BC,则l 的斜率为2.(2分)又直线l 过点A ,所以直线l 的方程为y =2(x -3),即2x -y -6=0.(4分) (2)因为点A(3,0),C(0,8),则|AC|=9+64=73.(5分)又直线AC 的方程为x3+y8=1,即8x +3y -24=0,(6分)则点B 到直线AC 的距离d =32+18-2464+9=2673.(7分)所以△ABC 的面积S =12|AC|×d=13. (8分)16.【解析】(1)方法一:因为线段AB 的中点为⎝ ⎛⎭⎪⎫32,12,k AB =-17,则线段AB 的垂直平分线方程为y -12=7⎝ ⎛⎭⎪⎫x -32,即y =7x -10. (2分)联立y =2x ,得x =2,y =4.所以圆心C(2,4), 半径r =|AC|=16+9=5.(4分)所以圆C 的标准方程是(x -2)2+(y -4)2=25.(5分) 方法二:设圆C 的方程为x 2+y 2+Dx +Ey +F =0,则 ⎩⎪⎨⎪⎧-2D +E +F +5=0,5D +F +25=0,E =2D ,解得D =-4,E =-8,F =-5.(3分) 所以圆C 的方程是x 2+y 2-4x -8y -5=0,即(x -2)2+(y -4)2=25.(5分)(2)直线l 的方程化为(2x +y -8)+m(x +2y -7)=0.令⎩⎪⎨⎪⎧2x +y -8=0,x +2y -7=0,得⎩⎪⎨⎪⎧x =3,y =2,所以直线l 过定点M(3,2).(7分)由圆的几何性质可知,当l⊥CM 时,弦长|PQ|最短. 因为|CM|=(3-2)2+(2-4)2=5,则|PQ|min =2r 2-||CM 2=225-5=45.(10分)17.【解析】(1)因为A 1A ⊥平面ABC ,则A 1A ⊥AC. 又AC⊥AB,则AC⊥平面A A 1B 1B ,所以AC⊥A 1B.(3分) 由已知,侧面AA 1B 1B 是正方形,则AB 1⊥A 1B. 因为AB 1∩AC =A ,所以A 1B ⊥平面AB 1C.(5分)(2)方法一:连结A 1C ,设AB 1∩A 1B =O ,连CO ,交A 1D 于G. 因为O 为A 1B 的中点,D 为BC 的中点,则G 为△A 1BC 的重心. 因为A 1O ⊥平面AB 1C ,则∠A 1GO 是A 1D 与平面AB 1C 所成的角.(8分) 设AB =AC =AA 1=1,则A 1B =BC =A 1C = 2.得A 1O =22,A 1G =23A 1D =23×2sin 60°=63.在Rt △A 1OG 中,sin ∠A 1GO =A 1O A 1G =32,则∠A 1GO =60°.所以直线A 1D 与平面AB 1C 所成的角为60°.(12分)方法二:分别取AB ,B 1B 的中点E ,F ,连DE ,EF ,DF , 则ED∥AC,EF ∥AB 1, 所以平面DEF∥平面AB 1C.因为A 1B ⊥平面AB 1C ,则A 1B ⊥平面DEF. 设A 1B 与EF 的交点为G ,连DG ,则∠A 1DG 是直线A 1D 与平面DEF 所成的角. (8分) 设AB =AC =AA 1=1,则A 1B =BC =A 1C =2.得A 1G =34A 1B =324,A 1D =2sin 60°=62.在Rt △A 1GD 中,sin ∠A 1DG =A 1G A 1D =32,则∠A 1DG =60°. 所以直线A 1D 与平面AB 1C 所成的角为60°. (12分)第Ⅱ卷(满分50分)一、本大题共2个小题,每小题6分,共12分.18.[0,2]【解析】M =(-∞,0)∪(2,+∞),N =[0,+∞),所以N∩∁R M =[0,2].19.B 【解析】因为y =f (x -1)的图象关于点A (1,0)对称,则y =f (x )的图象关于原点对称,即f (x )为奇函数.由f (t 2-2t )+f (-3)>0,得f (t 2-2t )>-f (-3)=f (3),因为f (x )在R 上是减函数,则t 2-2t <3,即t 2-2t -3<0,得-1<t <3.因为y =t -1t -3=1+2t -3在区间(-1,3)上是减函数,则t -1t -3<12,选B.二、本大题共3个大题,共38分.20.【解析】(1)连接BD ,设AC 交BD 于点O ,连接SO ,由题意得SO⊥AC,又因为正方形ABCD 中,AC ⊥BD ,所以AC⊥平面SBD,∵SD ⊂平面SBD ,所以AC⊥SD. (6分)(2)在棱SC 上存在一点E ,使得BE∥平面PAC.设正方形边长为a ,则SD =2a.由SD⊥平面PAC 得PD =2a 4, 故可在SP 上取一点N ,使PN =PD.过点N 作PC 的平行线与SC 的交点为E ,连接BN ,在△BDN 中,易得BN∥PO,又因为NE∥PC,所以平面BEN∥平面PAC ,所以BE∥平面PAC.因为SN∶NP=2∶1,所以SE∶EC=2∶1. (12分)21.【解析】(1)由f(x)<5-m ,得mx 2-mx -1<5-m ,即m(x 2-x +1)<6.因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,则m<6x 2-x +1.(3分) 设h(x)=6x 2-x +1,则当x∈[1,3]时,m <h(x)恒成立. 因为y =x 2-x +1在区间[1,3]上是增函数,则h(x)在区间[1,3]上是减函数,h(x)min=h(3)=67. 所以m 的取值范围是⎝⎛⎭⎪⎫-∞,67. (6分) (2)因为f(x)=mx(x -1)-1,则g(x)=mx -1x -1. 当m =-14时,g(x)=-⎝ ⎛⎭⎪⎫x 4+1x -1.(7分) 设x 1>x 2>3,则g(x 1)-g(x 2)=⎝ ⎛⎭⎪⎫x 24+1x 2-1-⎝ ⎛⎭⎪⎫x 14+1x 1-1= x 24-x 14+1x 2-1-1x 1-1=x 2-x 14+x 1-x 2(x 1-1)(x 2-1)= (x 1-x 2)⎣⎢⎡⎦⎥⎤1(x 1-1)(x 2-1)-14.(10分) 因为x 1-1>x 2-1>2,则(x 1-1)(x 2-1)>4,得1(x 1-1)(x 2-1)<14,又x 1-x 2>0,则g(x 1)-g(x 2)<0, 即g(x 1)<g(x 2),所以g(x)在区间(3,+∞)上是减函数.(13分)22.【解析】(1)由圆方程知,圆C 的圆心为C(a ,a +2),半径为3.(2分) 设圆心C 到直线l 的距离为d ,因为直线l 被圆C 截得的弦长为2,则 d 2+1=9,即d =2 2.(4分)所以|a +(a +2)-4|2=22,即|a -1|=2,所以a =-1或a =3.(6分)(2)设点M(x ,y),由|MA|=2|MO|,得(x -3)2+y 2=2x 2+y 2,即x 2+y 2+2x -3=0.所以点M 在圆D :(x +1)2+y 2=4上.其圆心为D(-1,0),半径为2.(8分) 因为点M 在圆C 上,则圆C 与圆D 有公共点,即1≤|CD|≤5.(9分) 所以1≤(a +1)2+(a +2)2≤5,即⎩⎪⎨⎪⎧a 2+3a +2≥0,a 2+3a -10≤0,即⎩⎪⎨⎪⎧(a +2)(a +1)≥0,(a -2)(a +5)≤0,(11分)解得⎩⎪⎨⎪⎧a≤-2或a≥-1,-5≤a≤2,即-5≤a≤-2或-1≤a≤2. 故a 的取值范围是[-5,-2]∪[-1,2].(13分)。
2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
小学数学六年级上册期末试卷2016年1曰
2016—2017学年度上学期期末测试六年级数学试题一、我会填一填。
(第5题2分,每空1分,共26分)1.“六(1)班的人数是六(2)班人数的67”是把()看作单位“1”,如果六(2)班有49人,那两个班一共有()人。
2.要运5吨水泥,每次运它的15,()次可以运完;如果每次运12吨,()次可以运完。
3. 20kg∶45t化成最简整数比是(),比值是();1.2的倒数是()。
4. 10吨花生仁可榨4吨花生油,花生仁的出油率是()%,榨一吨花生油需要()吨花生仁。
5. 65=18÷()=()25=()÷40=()%6.在○内填上“>”“<”或“=”。
3 8×23○38a÷34○34×a(a≠0)710×52○710÷25题号一二三四五六总分得分7.甲比乙少18,则甲数是乙数的()(),乙数是甲乙两数和的()()。
8.两个圆的半径分别是3cm和4cm,它们的直径的比是(),面积的比是()。
9.某种商品6月的价格比5月降了20%,7月的价格比6月又涨了20%。
7月的价格和5月的比()(填“涨了”或“降了”)。
10.顶点在圆心的角叫做()。
在同一个圆中,扇形的大小与这个扇形的()的大小有关。
11.标准跑道是由两条直跑道和两个半圆跑道组成的,800m比赛要跑三圈,道宽1.25m,每一道的起跑线要比前一道提前()m。
12. 42=1+3+()+()。
13.我国宋代数学家杨辉在公元1261年撰写了《详解九章算法》,他在这本著作中画了一个由数构成的三角形图,我们把它称为“杨辉三角”,请把右面截取的部分“杨辉三角图”()里的填上。
二、我是小法官(共5分)(正确的打“√”,错误的打“×”)。
(5分)1.把一个比的前项和后项都加上相同的数,比值不变。
()2.两个真分数的积一定小于1。
()3. 4米长的钢管,剪下14后,还剩下3米。
()4.兰兰比果果矮111,则兰兰的身高是果果身高的1011。
黑龙江省大庆实验中学2016-2017学年高一数学上学期期末考试试题
大庆实验中学2016-2017学年度上学期期末考试高一数学试题说明:(1)试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟;(2)答第Ⅰ卷前,考生务必将自己的姓名、班级、考号填写在答题卡相应的位置.第Ⅰ卷(选择题 共60分)一. 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若角α的终边经过点(1,3)P -,则tan α的值为A . 13- B .3- C. D2.=A . cos 40±B .cos40 C .cos 40- D .cos 40±3.函数⎪⎩⎪⎨⎧<=>=)0(,1)0(,)0(,0)(x x x x f π,则((()))f f f π=A .1B . 0C .πD .1π+4.下列函数中,既不是奇函数,也不是偶函数的是 A . 122x x y =+ B .1sin y x x =+ C .2cos y x x =+ D .21y x x=+ 5. 已知sin 21a =,cos72b =,tan 23c =,则,,a b c 的大小关系是A .a b c >>B .b a c >>C .c b a >>D .c a b >>6. 已知(1,2)A ,(3,7)B ,(,1)a x =-,且//AB a ,则 A .25x =,且AB 与a 方向相同 B . 25x =-,且AB 与a 方向相同 C .25x =-,且AB 与a 方向相反 D .25x =,且AB 与a 方向相反 7.向量,a b 满足7a b +=,3a b -=,则a b ⋅的值为A . 1B .2C . 3D .48.要得到函数sin 4y x =的图象,只需将函数sin(4)3y x π=-的图象A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移12π个单位 D .向右平移12π个单位 9. 如图,函数()f x 的图象为折线ACB ,则不等式3()log (1)f x x ≥+的解集是A . {}12x x -≤≤B .{}12x x -<≤C . {}10x x -<≤D .{}13x x -<≤10. 如图,正六边形ABCDEF 中,点Q 为CD 边中点,则下列数量积最大的是A .AB AQ ⋅ B . AC AQ ⋅C .AD AQ ⋅ D .AE AQ ⋅11.若函数()2x a f x +=满足(3)(3)f x f x +=-,且()f x 在(],m -∞上单调递减,则实数m的最大值等于 A .-2 B .1 C . 2 D .312. 如图,扇形的半径为1,圆心角150BAC ∠=,点P 在弧BC 上运动,A P m AB n AC =+n -的最大值是A .1BC .2D .第Ⅱ卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13. sin80cos 20cos80sin 20-的值为___________.14.幂函数()y f x =的图象经过点()4,2,则14f ⎛⎫ ⎪⎝⎭的值为___________. 15.函数()x f x a b =+(0,1a a >≠的定义域和值域都是[2,0]-,则a b +=_____________.16.如图,半径为2的圆圆心的初始位置坐标为(0,2),圆上一点A 坐标为(0,0) .圆沿x 轴正向滚动,当圆滚动到圆心位于(4,2)时,A 点坐标为_____________.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本题满分10分)已知函数()f x =的定义域为集合A ,函数 2()lg(6)g x x x m =-++的定义域为集合B .(1)当5m =-时,求U A C B ⋂;(2)若{}14A B x x ⋂=-<≤,求实数m 的值.18.(本题满分12分)已知函数()sin cos f x x x =+,()sin cos g x x x =-,其中()0,x π∈.(1)若1()5f θ=,求tan θ的值; (2)若()1()5f g θθ=,求tan θ的值. 19.(本题满分12分)已知函数()sin()sin()cos 66f x x x x a ππ=++-++的最小值为1. (1)求常数a 的值;(2)求函数()f x 的单调区间和对称轴方程.20.(本题满分12分)设1()2cos()sin cos(2)62f x x x x πωωωπ=--+,其中0ω>. (1)求函数)(x f y =的值域;(2)若)(x f y =在区间3,42ππ⎡⎤-⎢⎥⎣⎦上为增函数,求ω的最大值.21.(本题满分12分)已知定义在R 上的单调递增函数()f x 是奇函数,当0x >时,()1f x =.(1)求(0)f 的值及()f x 的解析式;(2)若1(41)(342)x x x f k f +⋅-<⋅-对任意x R ∈恒成立,求实数k 的取值范围.22.(本题满分12分)已知二次函数2()f x x mx n =++.(1)若()f x 是偶函数且最小值为1,求()f x 的解析式;(2)在(1)的前提下,函数6()()x g x f x =,解关于x 的不等式(2)2x x g >; (3)函数()()h x f x =,若[1,1]x ∈-时()h x 的最大值为M ,且M k ≥对任意实数,m n 恒成立,求k 的最大值.2016-2017学年度上学期高一期末考试数学参考答案一.选择题BBBDD CACBC DC二.填空题13. 2 14. 1215.33- 16. ()42sin 2,22cos2-- 三.解答题17.解:(1){}21U A C B x x ⋂=-≤≤ (2)7m =18.解:(1) 4tan 3θ=- (2) 3tan 2θ=- 19.解:(1)3a =(2)单调增区间22,2,33k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调减区间522,2,33k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦;对称轴方程是,3x k k Z ππ=+∈ 20.解:(1)函数值域是1122⎡⎢⎣⎦ (2)max 13ω= 21.解:(1)(0)0f =,1,0,()0,0,1,0.x f x x x >==⎨⎪<⎩ (2)k 的取值范围是(),2-∞22.解:(1)2()1f x x =+(2)解集是21log 52x x ⎧⎫<⎨⎬⎩⎭(3)令1x =,则1m n M ++≤,则1M m n M -≤++≤①令1x =-,则1m n M -+≤,则1M m n M -≤-+≤②令0x =,则n M ≤,则M n M -≤≤③由①+②-2⨯③得,12M ≥.当且仅当10,2m n ==-时等号成立. 因此max 12k =.。
2016-2017年七年级上学期期末考试数学试题及答案
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。