实验十一 液体表面张力系数的测定
液体表面张力系数测定的实验报告

液体表面张力系数测定的实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用力敏传感器测量微小力的原理和方法。
3、研究液体表面张力系数与液体温度、浓度等因素的关系。
二、实验原理液体表面层内分子受到指向液体内部的拉力,使得液体表面有收缩的趋势。
要使液体表面增大,就需要克服这种内聚力而做功。
单位长度上所受的这种力称为表面张力,其大小与液体的种类、温度和纯度等因素有关。
拉脱法测量液体表面张力系数的基本原理是:将一个金属圆环水平地浸入液体中,然后缓慢地将其拉起,在拉起的过程中,圆环会受到液体表面张力的作用。
当圆环即将脱离液面时,所施加的拉力等于液体表面张力与圆环所受重力之差。
设圆环的内半径为$r_1$,外半径为$r_2$,拉起圆环所需的拉力为$F$,液体的表面张力系数为$\sigma$,则根据力的平衡条件,有:$F =(π(r_2^2 r_1^2))\sigma$从而可得液体表面张力系数:$\sigma =\frac{F}{π(r_2^2 r_1^2)}$在本实验中,拉力$F$通过力敏传感器测量,其输出电压$U$与拉力$F$成正比,即$F = kU$,其中$k$为力敏传感器的灵敏度。
三、实验仪器1、液体表面张力系数测定仪。
2、力敏传感器。
3、数字电压表。
4、游标卡尺。
5、纯净水、洗洁精溶液等。
四、实验步骤1、仪器安装与调试将力敏传感器固定在铁架台上,使其探头向下。
将数字电压表与力敏传感器连接,调整零点。
用游标卡尺测量金属圆环的内半径$r_1$和外半径$r_2$。
2、测量纯净水的表面张力系数将洗净的金属圆环挂在力敏传感器的挂钩上,调整升降台,使圆环浸入纯净水中。
缓慢地向上移动升降台,观察数字电压表的示数变化。
当圆环即将脱离液面时,记录电压表的示数$U_1$。
重复测量多次,取平均值。
3、测量不同温度下纯净水的表面张力系数改变纯净水的温度,例如用热水加热或冷水冷却,分别测量在不同温度下的表面张力系数。
液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告液体表面张力系数的测定实验报告引言:液体表面张力是液体分子间相互作用力在液体表面产生的结果,是液体表面分子间的一种特殊力。
液体表面张力的大小对于液体的性质和应用有着重要的影响,因此准确测定液体表面张力系数具有重要的科学意义和实际应用价值。
实验目的:本实验旨在通过测定液体表面张力系数,了解液体的性质和分子间相互作用力,掌握测定液体表面张力的方法和技巧。
实验原理:液体表面张力系数的测定常用的方法有测量液体表面降低高度法和测量液滴形状法。
本实验采用测量液滴形状法。
实验仪器和药品:1. 精密天平2. 滴定管3. 滴定管架4. 滴定瓶5. 蒸馏水6. 乙醇溶液实验步骤:1. 将实验室温度调至恒定,避免温度对实验结果的影响。
2. 用精密天平称取一定质量的滴定瓶。
3. 在滴定管架上放置一只干净的滴定管。
4. 将滴定瓶倒置并将液体滴入滴定管中,直到滴定管口外溢。
5. 记录液滴的质量和滴定管口外溢的时间。
6. 重复以上步骤3-5,每次使用不同的液体进行实验。
实验数据处理:根据实验数据,可以计算液体表面张力系数。
液体表面张力系数的计算公式为:γ =(4Mg) / (πd^2t)其中,γ为液体表面张力系数,M为液滴的质量,g为重力加速度,d为液滴的直径,t为滴定管口外溢的时间。
实验结果与分析:通过实验测量和计算,得到了不同液体的表面张力系数。
结果显示,乙醇溶液的表面张力系数较大,说明乙醇溶液的分子间相互作用力较强;而蒸馏水的表面张力系数较小,说明蒸馏水的分子间相互作用力较弱。
结论:通过本实验的测定,我们成功地测量了不同液体的表面张力系数,并得出了相应的结论。
液体表面张力系数的测定对于了解液体的性质和分子间相互作用力具有重要意义,对于液体的应用和研究也具有实际价值。
实验中可能存在的误差:1. 实验过程中,滴定管口外溢的时间可能受到人为操作的影响,导致实验结果的误差。
2. 液滴的直径的测量可能存在一定的误差,影响了液体表面张力系数的计算结果。
液体表面张力系数的测定的实验报告

液体表面张力系数的测量【实验目的】1、掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感器的灵敏度2、了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使用方法,并用它测量纯水表面张力系数。
3、观察拉脱法测量液体表面张力系数的物理过程和物理现象,并用物理学概念和定律进行分析研究,加深对物理规律的认识4、掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定液体的表面张力系数。
5、利用现有的仪器,综合应用物理知识,自行设计新的实验内容。
【实验原理】一、拉脱法测量液体的表面张力系数把金属片弯成如图 1(a)所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b)所示,然后把它浸到待测液体中。
当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F(当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。
由于液膜有两个表面,若每个表面的力为(为圆形液膜的周长),则有(2)所以(3)圆形液膜的周长L与金属圆环的平均周长相当,若圆环的内、外直径分别为。
则圆形液膜的周长L≈L’=(D1+D2)/2 (4)将(4)式代入(3)式得(5)硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。
当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。
即(6)式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为V/N;ΔU 为传感器输出电压的大小。
二、毛细管升高法测液体的表面张力系数1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。
而当接触角大于90°时,液体在管内就会下降。
这种现象被称为毛细现象。
本实验研究玻璃毛细管插入水中的情形。
液体表面张力系数的测定实验报告数据

液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。
它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。
本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。
实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。
b. 清洗测量仪器,确保无杂质干扰。
2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。
b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。
c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。
3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。
b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。
4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。
b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。
实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。
以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。
通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。
2. 乙醇的表面张力系数为Y N/m。
与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。
3. 甲苯的表面张力系数为Z N/m。
与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。
结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。
实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。
(完整版)液体表面张力系数的测定实验报告.docx

液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图 1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、 1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
记下刻度盘示数M ’。
为了消除随机误差,共测五次。
液体表面张力系数的测定实验报告

液体表面张力系数的测定实验报告一、实验目的。
本实验旨在通过测定液体表面张力系数的实验,掌握液体表面张力系数的测定方法,加深对表面张力的理解,提高实验操作能力。
二、实验原理。
液体表面张力系数是表征液体分子间相互作用力的物理量,通常用$\gamma$表示。
液体表面张力系数的测定方法有很多种,常用的有悬铁环法、悬滴法、悬水滴法等。
本实验采用悬水滴法测定液体表面张力系数。
三、实验仪器和试剂。
1. 一台天平。
2. 一根细丝。
3. 一根细管。
4. 一根毛细管。
5. 一根水平的细管。
6. 一些水。
四、实验步骤。
1. 将一根细丝固定在天平上,使其水平。
2. 用细管将水滴在细丝上,形成一个悬水滴。
3. 用毛细管在悬水滴下方加入一些水,使悬水滴增大,直到悬水滴脱落。
4. 测量水滴的质量$m$,并记录下悬水滴的直径$d$。
五、实验数据处理。
根据实验数据,可以计算出液体表面张力系数$\gamma$的值。
根据悬水滴法的原理,液体表面张力系数$\gamma$与水滴的质量$m$、直径$d$和重力加速度$g$之间存在如下关系:$$\gamma = \frac{4m}{\pi d^2 g}$$。
六、实验结果与分析。
根据实验数据和计算公式,可以得到液体表面张力系数$\gamma$的数值。
通过对实验数据的分析,可以发现液体表面张力系数与水滴质量和直径呈反比关系,与重力加速度呈正比关系。
这与表面张力的性质相符合。
七、实验结论。
通过本实验的实验操作和数据处理,成功测定了液体表面张力系数$\gamma$的数值。
实验结果与理论预期相符,验证了悬水滴法测定液体表面张力系数的可行性。
八、实验中的注意事项。
1. 实验操作要细致,保证悬水滴的稳定性。
2. 测量数据要准确,避免误差的产生。
3. 实验结束后要及时清理实验仪器和试剂。
九、参考文献。
1. 《物理化学实验》。
2. 《实验化学》。
十、致谢。
感谢实验指导老师的悉心指导和同学们的配合,使本次实验取得了圆满成功。
(完整版)液体表面张力系数的测定实验报告.docx

(完整版)液体表面张力系数的测定实验报告.docx液体表面张力系数的测定一实验目的1学习用界面张力仪测微小力的原理和方法。
2深入了解液体表面张力的概念,并测定液体的表面张力系数二实验原理1液体表面张力由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。
2液体表面张力系数的测量原理图 1如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0时,f方向趋向垂直向下。
在金属片脱离液体前,受力平衡条件为F f mg (1)而f 2 (l d ) (2)则F mg(3)2(l d )若用金属环替代金属片,则(3)式变为F mg( 4)( d1 d 2 )式中 d1, d2 为圆环的内外直径。
若用补偿法消除mg 的影响,即f F mg则( 4)式可写为f( 5)(d1d2 )即为液体表面张力系数。
三实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四实验内容及步骤1仪器调整。
调整仪器水平,刻度盘归零。
2调零。
将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。
3绘制质量标准曲线分别在小纸片上放100mg、 300 mg 、 500 mg 、 700 mg、1000 mg 的砝码,记下对应的刻度盘的示数。
以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。
4测量纯净水的表面张力系数调零。
用玻璃杯盛大约2/3 的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。
左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。
两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。
液体表面张力系数测定实验报告

液体表面张力系数测定实验报告一、实验目的1、掌握用拉脱法测量液体表面张力系数的原理和方法。
2、学习使用焦利秤测量微小力的原理和方法。
3、研究液体表面张力与温度的关系。
二、实验原理液体表面层内分子相互作用的结果使得液体表面层具有一种特殊的性质,即液体表面存在张力。
想象在液体表面上画一条直线,表面张力就表现为直线两侧的液面存在相互作用的拉力,其方向垂直于该直线且与液面相切。
当金属丝框在液面上方时,由于表面张力的作用,框四周会受到一个向上的拉力。
若将框从液面缓慢拉起,在拉起的瞬间,液面会发生破裂,此时所需要克服的力就是液体的表面张力。
若金属丝框的长度为 L,拉起液面时所需要的力为 F,则液体的表面张力系数σ可以表示为:σ = F / L 。
在本实验中,我们使用焦利秤来测量拉力 F 。
焦利秤是一种可以测量微小力的仪器,其原理是通过弹簧的伸长来反映所受力的大小。
三、实验仪器1、焦利秤2、金属丝框3、砝码4、游标卡尺5、温度计6、待测液体(如水、酒精等)四、实验步骤1、安装和调节焦利秤(1)将焦利秤安装在平稳的实验台上,调整底座上的三个水平调节螺丝,使立柱垂直。
(2)通过旋转立柱上的升降旋钮,使小镜筒的下沿与玻璃管上的水平刻线对齐,然后挂上砝码盘。
(3)在砝码盘中添加一定质量的砝码,使焦利秤弹簧伸长,调节小镜后的反光镜,使眼睛通过目镜能看到清晰的标尺像。
(4)移动游标,使游标零线与标尺零线对齐,然后读出此时的读数,作为测量的基准。
2、测量金属丝框的长度使用游标卡尺测量金属丝框的边长 L ,多次测量取平均值以减小误差。
3、测量表面张力(1)将金属丝框洗净并晾干,然后挂在焦利秤的挂钩上。
(2)将金属丝框缓慢浸入待测液体中,使框的下沿刚好与液面接触,注意不要带入气泡。
(3)然后缓慢地向上提起焦利秤的秤杆,使金属丝框逐渐脱离液面。
当液面刚好破裂时,记下此时焦利秤的读数 D1 。
(4)在砝码盘中添加一定质量的砝码(例如 05g ),再次将金属丝框浸入液体并拉起,记下液面破裂时焦利秤的读数 D2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十一液体表面张力系数的测定
表面张力是液体表面的重要特性,这种应力存在于极薄的表面层内,是液体
表面层内分子力作用的结果。
液体表面层的分子有从液面挤入液体内的趋势,从
而使液体尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜。
我们将
这种沿着液体表面,使液体表面收缩的力称作液体表面张力。
作用于液面单位长
度上的表面张力称作表面张力系数。
测量该系数的方法有:拉脱法、毛细管法和
最大气泡压力法等。
本书实验介绍用拉脱法及毛细管法测定液体表面张力系数。
拉脱法属于直接测量方法,而毛细管法属于间接测量方法
方法一用拉脱法测液体的表面张力系数
【预习要求】
1.掌握了解拉脱法测量表面张力系数的原理。
2.熟悉焦利称的结构和使用方法。
3.设计出实验数据记录表格。
【实验目的】
1.学习焦利秤的使用方法。
2.用拉脱法测量液体的表面张力系数,了解液体的表面特性。
【实验仪器】
焦利秤,金属丝框,砝码,玻璃皿,游标卡尺,
温度计
【实验原理】
设想在液面上有一长为l的线段,那么表面张力
的作用就表现在线段l两边的液面以力f相互作用,
f的方向垂直于线段l,且与液面相切,大小与l的长度成正比,即
= (11-1) l
fα
式中a为液体的表面张力系数,它在数值上等于作用在液体表面单位长度上的
力。
在国际单位制中,表面张力系数的单位为牛[顿]每米,记为1-⋅m N 。
表面张力系数α的大小与液体的性质、温度和所含的杂质有关。
如图11-1所示,将金属丝框垂直浸入水中润湿后往上提起,此时金属丝框下面将带出一水膜。
该膜有着两个表面,每一表面与水面相交的线段上都受到大小为l f α=,方向竖直向下的表面张力的作用。
要把金属丝框从水中拉脱出来,就必须在金属丝框上加一定的力F 。
当水膜刚要被拉断时,则有
2F m g m g l α'=++ (11-2)
式中mg m g '、分别为金属丝框和水膜所受的重力。
据上式有 2F m g m g
l
α'--=
(11-3)
设金属丝的直径为d ,当水膜刚要被拉断时膜的高度为h ,水膜的长度为l 。
因为拉出的液膜有前后两个表面,中间有一层厚度约为d 的被测液体膜,该液体膜所受重力为:m g=dhlg ρ'。
由上式可见,只要测量金属丝框的宽度l 、直径d 和水膜拉断时的高度,用焦利称测出mg F -之值,就可用式(11-3)算出水的表面张力系数。
仪器介绍
焦利秤,金属丝框,砝码,玻璃皿,游标卡尺,温度计。
焦利秤是一种精细的弹簧秤,常用于测量微小的
力。
如图11-2所示,带有米尺刻度的圆柱B 套在
中空立
管A 内,A 管上附有游标V 。
调节旋钮P 可使B 在
A
管内
上下移动。
B 的横梁上悬挂一个锥型细弹簧L ,弹簧的下端挂着一面刻有水平线C 的小镜,小镜悬空在刻有水平线D 的玻璃管中间。
小镜下端的小钩用来悬挂
砝码盘G
和金属丝框H 。
调节螺旋S 可让工作平台E 做
上下移
动。
使用焦利秤时,通过调节旋钮P 使圆柱B
上下移动,从而调节弹簧L 的升降,目的在于使小镜上
的水平
刻线C 、玻璃管上的水平刻线D 、以及D 刻线在小镜中的象D '三者重合(简称“三线对齐”),这样可以保持C 线的位置不变。
应当指出,普通弹簧秤是上端固定,加负荷后向下伸长。
而焦利秤是保持弹簧的下端(C 线)的位置不变,则弹簧加负载后的伸长量x ∆与弹簧上端点向上的移动量相等,它可用圆柱B 上的主尺和套管A 上的游标来测量。
再根据胡克定律
F k x =∆ (11-4) 在已知弹簧劲度系数k 的条件下,求出力F 的量值。
【实验内容】
一、测量弹簧的劲度系数
1.挂好弹簧、小镜和砝码盘,使小镜穿过玻璃管并恰好在其中。
2.调节三足底座上的底脚螺丝,使立管A 处于铅直状态。
3.调节升降旋钮P ,使小镜的刻线C 、玻璃管的刻线D 、及D 在小镜中的象D '三者重合。
从游标上读出未加砝码时的位置坐标0x 。
4.在砝码盘内逐次添加相同的小砝码m ∆(如取g m 50.0=∆)。
每增添一只砝码,都要调节升降旋钮P ,使焦利秤重新达到 “三线对齐”,再分别读出其位置坐标i x 。
5.用逐差法处理所测数据,求出弹簧的劲度系数k 。
二、测量水的表面张力系数
1.把金属丝框、玻璃皿和镊子清洗干净,并用蒸馏水冲洗。
用镊子将金属丝框挂在小镜下端的挂钩上,同时把装入适量蒸馏水的玻璃皿置于平台上。
2.调节平台升降螺旋S ,使金属丝框浸入水中。
再调节升降旋钮P ,使焦利秤达到“三线对齐”,记下游标所示的位置坐标0x 。
3.调节升降旋钮P ,使金属丝框缓缓上升,同时调节S 使液面逐渐下降,并保持“三线对齐”。
当水膜刚被拉断时,记下游标所示的位置坐标x 。
4.重复上述步骤6次,求出弹簧的伸长量0x x -和平均伸长量)(0x x -,于是有0()F mg k x x -=⋅-。
5.记录室温,并用游标卡尺测量金属丝框的宽度L ,测量6次。
6.根据式(11-3)算出液体的表面张力系数的平均值α,并计算出其标准误差
ασ,写出测量结果。
【注意事项】
1.金属丝框,玻璃皿和玻璃皿中的蒸馏水必须保持清洁,请勿用手触摸。
2.不要使锥型弹簧的负载超过规定值(由实验室给出),以免弹簧变形损坏。
【实验数据】
表11-1 测量弹簧劲度系数 g m _______=∆
1
______-⋅=m
N k
1
_______-⋅=m
N α
=ασ______1-⋅m N
1
_____________-⋅=±=m
N ασαα
【实验讨论】
1.测金属丝框的宽度L 时,应测它的内宽还是外宽?为什么?
2.若中空立管不垂直,对测量有何影响?试作定量分析。