第十六章 色谱分析法概论
色谱分析法概论PPT课件

-
44
C ·u —传质阻力项
传质阻力包括气相传质阻力Cg和液相传质阻力CL即:
C =(Cg + CL)
Cg
0.01k2 (1 k)2
dp2 Dg
CL
2 3
k (1k)2
d2f DL
k为容量因子; Dg 、DL为扩散系数。
减小担体粒度,选择小分子量的气体作载气,可降低传质 阻力。
-
45
2.载气流速与柱效——最佳流速
n=L/H 理论塔板数与色谱参数之间的关系为:
n5.5(4tR )21(6tR)2
Y1/2
Wb
保留时间包含死时间,在死时间内不参与分配!
-
39
2.有效塔板数和有效塔板高度
• 单位柱长的塔板数越多,表明柱效越高。
• 用不同物质计算可得到不同的理论塔板数。
• 组分在tM时间内不参与柱内分配。需引入有效 塔板数和有效塔板高度:
峰高一半处的宽 度GH
w1 2.354 2
-
23
3.标准偏差 σ
两个拐点E和F之间的距离 的 一半
4.峰面积 A 色谱峰与基 线延长线所包围的面积, 精确计算时
w A1.06h5 1 2
-
24
• 保留值的定义
1.保留时间 t R
从进样开始到色 谱峰最大值出现 时所需的时间
-
25
• 保留值的定义
n理5.5(4Yt1R /2)21(6W tRb)2
n有效
5.54(
t
' R
Y1/ 2
)2
16(
t
' R
Wb
)2
L H有效 n有效
-
40
色谱分析法概论

§1.1 概述
色谱法也叫层析法,它是一种
高效能的物理分离技术,将它用于
分析化学并配合适当的检测手段,
就成为色谱分析法。
色谱法的最早应用是用于分 离植物色素,其方法是这样的: 在一玻璃管中放入碳酸钙,将含 有植物色素(植物叶的提取液) 的石油醚倒入管中。
此时,玻璃管的上端立即出现几 种颜色的混合谱带。然后用纯石油醚 冲洗,随着石油醚的加入,谱带不断 地向下移动,并逐渐分开成几个不同 颜色的谱带,继续冲洗就可分别接得 各种颜色的色素,并可分别进行鉴定。 色谱法也由此而得名。
色谱流出曲线的意义: 色谱峰数(样品中单组份的最少个数)
色谱保留值(定性依据)
色谱峰高或面积(定量依据)
色谱保留值或区域宽度(色谱柱分离效
能评价指标)
色谱峰间距(固定相或流动相选择是否
合适的依据)
§1.3 色谱法基本原理
色谱分析的目的是将样品中各组分彼此分离, 组分要达到完全分离,两峰间的距离必须足够远, 两峰间的距离是由组分在两相间的分配系数决定
h. 区域宽度:色谱峰的区域宽
度是色谱流出曲线的重要参数之一
,可用于衡量色谱柱的柱效及反映 色谱操作条件下的动力学因素。宽
度越窄,其效率越高,分离的效果
也越好。
区域宽度通常有三种表示法: 标准偏差:峰高0.607 倍处峰 宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。 W1/2=2.354 峰底宽W:色谱峰两侧拐点上切 线与基线的交点间的距离。W= 4
有关,与两相体积、
柱管特性和所用仪
器无关。
分配系数 K的讨论
试样一定时,K主要取决于固定相性质一定温
度下,组分的分配系数K越大,出峰越慢;每个组 分在各种固定相上的分配系数K不同;选择适宜的 固定相可改善分离效果;试样中的各组分具有不 同的K值是分离的基础;某组分的K=0时,即不被 固定相保留,最先流出。
[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2
![[暨南大学课件][分析化学][教案PPT][精品课程]第十六章-第一节-色谱法概述-2](https://img.taocdn.com/s3/m/5ee2901dfe4733687f21aa55.png)
空间排阻色谱法
▪ 根据空间排阻(steric exclusion)理论,孔 内外同等大小的溶质分子处于扩散平衡状态:
Xm
Xs
▪ 渗透系数: Kp =Xs/Xm (0<Kp<1 ) 由溶质分子的线团尺寸和凝胶孔隙的大小
所决定。在一定分子线团尺寸范围内,Kp与 分子量相关,即组分按分子量的大小分离。
2020/6/17
吸附色谱法
➢ 流动相 有机溶剂(硅胶为吸附剂) ➢ 洗脱能力:主要由其极性决定。 ➢ 强极性流动相占据吸附中心的能力强,洗
脱能力强,使k值小,保留时间短。
➢ Snyder溶剂强度o:吸附自由能,表示洗 脱能力。o值越大,固定相对溶剂的吸附
能力越强,即洗脱能力越强。
2020/6/17
2020/6/17
分配色谱法
▪ 洗脱顺序 由组分在固定相或流动相中溶解度的 相对大小而决定。 正相液液分配色谱:极性强的组分后被洗脱。 (库仑力和氢键力)
反相液液分配色谱:极性强的组分先出柱。
2020/6/17
二、吸附色谱法 (P346)
▪ 分离原理 利用被分离组分对固定相表面吸 附中心吸附能力的差别而实现分离。
▪ 吸附过程是试样中组分的分子(X)与流动相 分子(Y)争夺吸附剂表面活性中心的过程, 即为竞争吸附过程。
▪ 吸附色谱法包括气固吸附色谱法和液固吸附 色谱法
2020/6/17
X m + nYa
Ka
=
[X a ][Ym ]n [X m ][Ya ]n
Ka
[Xa ] [Xm ]
Xa / Sa X m /Vm
(2) 灵敏度高:
可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量.
色谱分析法概论

流动相选择
02
03
分离条件优化
选择合适的流动相,控制待测组 分的吸附和解吸行为,提高分离 效果。
通过调整温度、压力、流速等参 数,优化分离过程,提高分离效 率和准确性。
检测过程
检测器选择
根据待测组分的性质和检测需求, 选择合适的检测器,如紫外可见 光检测器、荧光检测器、电化学 检测器等。
检测条件优化
原理
基于不同物质在两相之间的吸附 或溶解能力差异,实现各组分的 分离。固定相和流动相的选择性 差异是色谱分离的基础。
发展历程与现状
发展历程
自1906年俄国植物学家茨维特发明了色谱法以来,该技术不 断发展并广泛应用于各个领域。随着技术的进步,出现了许 多新型色谱技术,如高效液相色谱、气相色谱、毛细管电泳 等。
现状
色谱分析法已成为实验室常规分析手段,尤其在生命科学、 药物研发、环境监测等领域具有不可替代的作用。随着仪器 自动化和智能化的发展,色谱分析法的应用前景更加广阔。
色谱分析法的分类
根据流动相的不同
液相色谱、气相色谱、超临界流体色谱等。
根据分离原理的不同
体积排阻色谱、亲和色谱、环糊精色谱等。
根据固定相的不同
优化检测器的参数,如波长、电 压、响应时间等,提高检测灵敏 度和准确性。
数据处理与分析
对检测数据进行处理、分析和解 释,得出待测组分的含量、分布 和变化规律等信息。
05
色谱分析法的实验
技术
薄层色谱法
原理
薄层色谱法是一种基于吸附原理的色 谱技术,利用固定相吸附剂对不同组 分的吸附能力差异实现分离。
操作流程
样品制备
样品收集
根据分析目的,选择合适 的样品收集方法,确保样 品的代表性和可靠性。
《色谱分析法概述》课件

开发新型固定相和色谱柱,提高分离效率和分辨率。
灵敏度提升
采用新型检测器和技术,提高检测灵敏度和响应速度 。
联用技术
与质谱等检测技术联用,实现复杂样品的高效分离和 定性分析。
毛细管电泳法的发展趋势
01
02
03
微型化
采用微型化进样技术和毛 细管电泳芯片,实现快速 、便携的样品分析。
多维分离
结合多种分离模式和检测 技术,实现复杂样品的多 维分离和定性分析。
在色谱过程中,固定相和流动相的选择性是关键因素,它们决定了各组分在两 相之间的分配行为,进而影响分离效果。
色谱分析法的分类
分类
色谱分析法有多种分类方式,根据固定相的形态可分为柱色谱、纸色谱和薄层色 谱;根据操作方式可分为吸附色谱、分配色谱、离子交换色谱和凝胶渗透色谱等 。
描述
不同类型的色谱分析法适用于不同的分离需求,如柱色谱适用于大量样品的分离 ,而薄层色谱则适用于快速分离和定性分析。
《色谱分析法概述》ppt 课件
CATALOGUE
目 录
• 色谱分析法简介 • 色谱分析法的应用 • 色谱分析法的优缺点 • 色谱分析法的发展趋势 • 色谱分析法的前景展望
01
CATALOGUE
色谱分析法简介
色谱分析法的定义
定义
色谱分析法是一种分离和分析复杂混 合物中各组分的方法,通过利用不同 物质在固定相和流动相之间的吸附、 溶解等分配行为的差异实现分离。
在环境领域的应用
污染物检测与控制
色谱分析法用于检测环境中的污 染物,如重金属、有机污染物等 ,为环境污染控制和治理提供依 据。
生态毒理学研究
在生态毒理学研究中,色谱分析 法用于检测环境中的有毒物质对 生物体的影响,评估环境安全性 和生态风险。
第十六章色谱分析法概论

第十六章 色谱分析法概论
定性参数2
仪器分析
保留体积(VR):从进样开始到某个组分在柱
后出现浓度极大时,所需通过色谱柱的流动
相体积。
VR tR Fc
死体积(V0):由进样器至检测器的流路中未
被固定相占有的空间。
固定相颗粒间间隙、导管的容积、检测器内
腔容积的总和。
吸附过程是试样中组分的分子(X)与流动相分 子(Y)争夺吸附剂表面活性中心的过程,即为 竞争吸附过程 。
第十六章 色谱分析法概论
仪器分析
X m + n Y a X a+ n Y m
Ka
= [Xa ][Ym]n [Xm][Ya ]n
Ka
[Xa] Xa /Sa [Xm] Xm/Vm
吸附系数与吸附剂的
KA/B是离子对树脂亲和能力相对大小的度量,KA/B
越大,A的交换能力大,越易保留。 常选择某种离子(如H+或Cl-)作参考。
KA、 KB为A、B的分配系数。
第十六章 色谱分析法概论
离子交换色谱法
仪器分析
固定相 离子交换剂(ion exchanger):离子交 换树脂(resin)和硅胶化学键合离子交换剂。
③不饱和化合物的吸附力强,双键数越多,吸
附力越强。
④分子中取代基的空间排列
第十六章 色谱分析法概论
三、离子交换色谱法
仪器分析
分离原理 利用被分离组分离子交换能力的
差别而实现分离。
分为阳离子交换色谱法和阴离子交换色谱法。
阳离子交换:
交换
RSO 3 H+ + Na+ 再生
RSO 3 Na+ + H +
16章色谱分析法概论
k =(ms/mm) =csVs/cmVm
3、分配系数和保留因子的关系
k=K(Vs/ Vm )
(二)分配系数和保留因子与保留时间的关系
R =υ /u = t0/tR
, ,
R = tm /(tR +tn) = Nm/(Nm+Nn) = cmVm/(cmVm+csVs)
R = 1/(1+k) 1/R = 1+k tR =t0(1+k) k = (tR-t0)/t0=t R/t0 tR=t0(1+KVs/Vm)
第二节 基本类型色谱方法及其分离机制
一、色谱法有分类 1、按流动相与固定相的分子聚集状态分类: 2、按操作形式分类: 3、按色谱过程的分离机制分类:
二、分配色谱法
1、分离机制 利用被分离组分在固定相或流动相中的溶解度差别, 即在两相的分配系数的差别而实现分离。 K=cs/cm=(Xs/Vs)/(Xm/Vm) 2、固定相与流动相 Xm Xs 3、洗脱顺序:由溶解大小决定
(二)流出曲线方程
以组分A在柱出口处的质量分数对N作图,得如图的流出 曲线。当板数很大时,流出曲线趋于正态分布曲线。
由正态分布方程式可以得到组分流出色谱柱的浓度变化
色谱流出曲线方程 t=tR时c有极大值cmax(即流出曲线的峰高h):
流出曲线方程式常用形式: t≠tR时,c恒小于cmax,c 随时间t向峰两侧对称下降, 下降速度取决于σ ,σ 越小, 峰越锐。
, , ,
(三)色谱分离的前提
色谱分离的前提若使两组分达到分离,则它们的 迁移速度必须不同,即保留时间不等.
tRA=t0(1+KAVs/Vm)
tRB=t0(1+KBVs/Vm) Δ tR=tRA-tRB=t0 (KA-KB) VS/Vm Δ tR=t0 (kA-kB) ≠0
16 色谱分析法概论
第十六章 色谱分析法概论思 考 题 和 习 题1.色谱法作为分析方法的最大特点是什么?2.一个组分的色谱峰可用哪些参数描述? 这些参数各有何意义?3.说明容量因子的物理含义及与分配系数的关系。
为什么容量因子 (或分配系数) 不等是分离的前提?4.各类基本类型色谱的分离原理有何异同?5.衡量色谱柱效的指标是什么?衡量色谱系统选择性的指标是什么?6.什么是分离度?要提高分离度应从哪两方面考虑?7.在柱色谱法中,可以用分配系数为零的物质来测定色谱柱中 ( ) 。
A. 流动相的体积;B. 填料的体积;C. 填料孔隙的体积;D. 总体积。
(A 、C )8.在以硅胶为固定相的吸附色谱中下列叙述中正确的是 ( ) 。
A. 组分的极性越强,吸附作用越强;B. 组分的分子量越大,越有利于吸附;C. 流动相的极性越强,溶质越容易被固定相所吸附;D. 二元混合溶剂中正己烷的含量越大,其洗脱能力越强。
(A )9.在离子交换色谱法中,下列措施中能改变保留体积的是( )。
A. 选择交联度大的交换剂;B. 以二价金属盐溶液代替一价金属盐溶液作流动相;C. 降低流动相中盐的浓度;D. 改变流速。
(A 、B 、C )10.在空间排阻色谱法中,下列叙述中完全正确的是( )。
A. V R 与K p 成正比;B. 调整流动相的组成能改变V R ;C. 某一凝胶只适于分离一定分子量范围的高分子物质;D. 凝胶孔径越大,其分子量排斥极限越大。
(C 、D )11.在一液液色谱柱上,组分A 和B 的K 分别为10和15,柱的固定相体积为0.5ml ,流动相体积为1.5ml ,流速为0.5ml/min 。
求A 、B 的保留时间和保留体积。
(A R t =13min A R V =6.5ml, B R t =18min B R V =9ml )12.某色谱柱长100cm ,流动相流速为0.1cm/s ,已知组分A 的洗脱时间为40min ,求组分A 在流动相中的时间和保留比R ′=t 0/t R 为多少。
色谱分析法概述分析化学课件
未来高效液相色谱法将更加自动化和智能化,减 少人工操作,提高分析效率,降低误差。
3
联用技术
与其他分析技术的联用,如质谱、核磁共振等, 将进一步提高高效液相色谱法的检测灵敏度和定 性能力。
气相色谱法的发展趋势
微型化与便携化
01
随着微电子技术和制造工艺的发展,气相色谱法的仪器体积将
进一步缩小,便于携带和移动。
食品成分分析
色谱分析法用于分析食品中的营养成分,如脂肪、 蛋白质、糖类等。
食品添加剂检测
通过色谱分析法检测食品中添加剂的种类和含量, 确保食品的安全性。
食品农药残留检测
色谱分析法用于检测食品中农药残留,保障消费 者的健康权益。
在医药工业中的应用
药物分离纯化
色谱分析法在药物研发和பைடு நூலகம்产过程中用于分离和纯化活性成分。
快速分析
02
提高气相色谱法的分离速度和分析时间,减少样品处理时间,
提高分析效率。
多维分析与多模式联用
03
通过与其他色谱技术(如液相色谱、质谱等)的联用,实现多
维分析与多模式联用,提高复杂样品的分析能力。
毛细管电泳等其他色谱技术
广泛应用
毛细管电泳等其他色谱技术将在生命科学、环境监测、食品安全等 领域得到更广泛的应用。
固定相和流动相
固定相
固定相是色谱柱中的填料,是实现物 质分离的关键部分。根据不同分离原 理,固定相可分为吸附剂、涂层固定 相、化学键合固定相等。
流动相
流动相是携带待测组分通过色谱柱的 流体,一般为液体或气体。流动相的 选择对分离效果和分离时间有很大影 响。
色谱图和色谱峰
色谱图
色谱图是记录色谱柱出口流出物浓度的信号随时间变化的曲线图。通过色谱图 可以观察各组分的流出时间和浓度。
色谱分析法概论习题答案
第十六章色谱分析法概论思考题和习题1.在一液液色谱柱上,组分A和B的K分别为10和15,柱的固定相体积为,流动相体积为,流速为min;求A、B的保留时间和保留体积;2.在一根3m长的色谱柱上分离一个试样的结果如下:死时间为1min,组分1的保留时间为14min,组分2的保留时间为17min,峰宽为1min;1 用组分2计算色谱柱的理论塔板数n及塔板高度H;2 求调整保留时间'R1t及'R2t;3 用组分2 求n ef及H ef;4 求容量因子k1及k2;5 求相对保留值1,2r和分离度R;3.一根分配色谱柱,校正到柱温、柱压下的载气流速为min;由固定液的涂量及固定液在柱温下的密度计算得V s=;分离一个含四组分的试样,测得这些组分的保留时间:苯、甲苯、乙苯,异丙苯,死时间为;求:1 死体积;2 这些组分的调整保留时间;3 它们在此柱温下的分配系数假定检测器及柱头等体积可以忽略;4 相邻两组分的分配系数比;1 V0=t0×u=×min=10.5cm32'Rt苯 =-= , 'Rt甲苯 =-= ,'Rt乙苯 =-= , 'Rt异丙苯 =-=4.在一根甲基硅橡胶 OV-1 色谱柱上,柱温120℃;测得一些纯物质的保留时间:甲烷、正己烷、正庚烷、正辛烷、正壬烷、苯、3-正己酮、正丁酸乙酯、正己醇及某正构饱和烷烃;1 求出后5个化合物的保留指数;未知正构饱和烷烃是何物质 2 解释上述五个六碳化合物的保留指数为何不同;3 说明应如何正确选择正构烷烃物质对,以减小计算误差;①根据保留指数的公式和意义,5个化合物的保留指数为:设某正构烷烃的碳数为x,则解此方程得x=5, 所以该正构烷烃为正戊烷;2上述五个化合物极性由大到小分别为:正己醇>正丁酸乙酯>3-正己酮>苯>正戊烷,根据气液色谱固定液的作用原理,在弱极性的OV-1柱上保留能力由强到弱,即保留指数由大至小;3选择正构饱和烷烃物质对的t R值最好与被测物质的t R值相近,以减小测定误差;5.某色谱柱长100cm,流动相流速为0.1cm/s,已知组分A的洗脱时间为40 min,求组分A在流动相中的时间和保留比R=t0/t R为多少; ,流动相流过色谱柱所需的时间即死时间t0,即为组分A在流动相中的停留时间:t0=L/u=100/×60=组分A的洗脱时间即其保留时间t R保留比R=t0/t R=40=6.某YWG-C18H37 4.6mm×25cm柱,以甲醇-水80:20为流动相,测得苯和萘的t R和W1/2分别为和 min, 和min;求柱效和分离度;7.在某一液相色谱柱上组分A流出需,组分B流出需,而不溶于固定相的物质C流出需;问:1B组分相对于A的相对保留值是多少2A组分相对于B的相对保留值是多少3组分A在柱中的容量因子是多少4组分B在固定相的时间是多少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动画
➢固定相——CaCO3颗 粒
➢流动相——石油醚
➢ 在色谱法中,将填入玻璃管或不锈钢管内静止不动
的一相(固体或液体)称为固定相 (stationary
phase);自上而下运动的一相(一般是气体或液体
)称为流动相 (mobile phase);装有固定相的管子( 玻璃管或不锈钢管)称为色谱柱 (column)。
➢ 高灵敏度——10-11~10-13g,适于痕量分析 ➢ 分析速度快——几~几十分钟完成分离
一次可以测多种样品 ➢ 应用范围广——气体,液体、固体物质
化学衍生化再色谱分离、分析
色谱法的特点
✓ 缺点: 对未知物分析的定性专属性差 需要与其他分析方法联用(GC-MS,LC-MS)
第一节 色谱过程和基本原理
➢ 当流动相中样品混合物经过固定相时,就会与固定 相发生作用,由于各组分在性质和结构上的差异, 与固定相相互作用的类型、强弱也有差异,因此在 同一推动力的作用下,不同组分在固定相滞留时间 长短不同,从而按先后不同的次序从固定相中流出 。
Tiselius, A.W.K. Martin, A.J.P. Synge, R.L.M.
3.色谱峰(peak):流出曲线上的突起部分。 •峰高或峰面积(用于定量) •峰位(用于定性) •峰宽(用于衡量柱效)
正常色谱峰为对称形正态分布曲线,曲线有最高点, 以此点的横坐标为中心,曲线对称地向两侧快速、 单调下降。
4.对称因子(symmetry factor;fs) 正常峰(对称)——fs在0.95~1.05之间
一、色谱过程 ➢色谱操作的基本过程: •装柱 •进样 •洗脱分离(色谱分离的核心和关键) •检测
一、色谱过程
• 实现色谱操作的基本条件是必须具备相对运 动的两相,固定相和流动相。
• 色谱过程是组分的分子在流动相和固定相间 多次“分配”的过程。
吸附色谱过程
1.把含有A、B两组分的样品加到 色谱柱顶端,A、B均被吸附到固 定相上。 2.用适当的流动相冲洗色谱柱, 当流动相流过时,已被吸附在固定 相上的两种组分又溶解于流动相 中,而被解吸附,并随流动相向前 移进。 3.流动相中的组分遇到新吸附剂 颗粒,又再次被吸附。 4.随着流动相的不断冲洗,在色谱 柱上不断地发生吸附、解吸附、 再吸附、再解吸附……的过程。
白酒分析
毒 韭 菜
有机磷(甲胺磷、毒死蜱、敌百虫、敌敌畏、甲 拌磷、久效磷、马拉硫磷、乐果、对硫磷等)
高晓松
➢掌握色谱的流出曲线及有关概念,包括保留 值,峰高,峰面积,色谱峰区域宽度,分离度
➢掌握分配系数,保留因子定义以及两者关系 ➢掌握分配系数和保留因子与保留时间的关系 ➢掌握塔板理论和速率理论 ➢熟悉色பைடு நூலகம்过程,四类基本类型色谱的分离机
信 进样
号
t0
tR´
tR
4.死体积(dead volume, V0)
• 柱管内固定相颗粒间间隙、进样器至色谱柱间导 管的容积、柱出口导管及检测器内腔容积的总和。
国内色谱研究概况
国家色谱中心
色谱法定义、实质和目的
➢定义:根据各物质在两相中的分配系 数(表示溶解或吸附的能力)不同而 进行分离、分析的方法。
➢实质:分离、分析技术 ➢目的:定性分析或定量分析
色谱法的特点
✓优点:“三高”、“一快”、 ➢ “ 高选一择广性”——可将性质相似的组分分开
➢ 高效能——反复多次利用组分性质的差异 产生很好分离效果
3. 调整保留时间(adjusted retention time, tR´)
✓ 某组分的保留时间扣除死时间后,称为该组分 的调整保留时间,即 tR´= tR t0
✓ tR´实际上是组分在固定相中保留的总时间。
✓ 调整保留时间是色谱法定性的基本依据,但同 一组分的保留时间常受到流动相流速的影响, 因此有时用保留体积来表示保留值。
1948年 Nobel 化学奖
1952年 Nobel 化学奖
吸附色谱与电泳
分配色谱
色谱学的重要作用
• 诺贝尔化学奖:1948年,瑞典Tiselins,电泳和吸 附分析;1952年,英国马丁(Martin)和辛格 (Synge),分配色谱。
• 应用的科学领域:生命科学、材料科学、环境科 学等。
• 药学(药物分析):各国药典收载了许多色谱分 析方法。中国药典二部,700多种纯度检查、定 性鉴别或含量测定的色谱方法;中国药典一部, 600多鉴别或含量测定的色谱方法。
• 分配系数的微小差异→吸附能力的微小差异
• 微小差异积累→较大差异→吸附能力弱的组分先
流出; 的组分后流出。
吸附能力强
二、色谱流出曲线和有关概念
(一)色谱流出曲线和色谱峰
1.色谱流出曲线:是由检测器输出的电信号强度对 时间作图所绘制的曲线,又称为色谱图。
2.基线(baseline):在操作条件下,没有组分流 出时的流出曲线(仅有纯流动相进入检测器时的 流出曲线)。基线反映仪器 (主要是检测器) 的噪 音随时间的变化。
信 进样 号
t0
即组分随流动相流经色谱柱所需要的时间。
2. 保留时间(retention time, tR):试样从进样到柱后 出现峰极大点时所经过的时间。
信 进样 号
tR
定距洗脱(展开):使所有组分都被洗脱通过 一定长度的色谱柱,记录各组分需要的时间。 定时洗脱(展开):记录组分在同一展开时间 内的迁移距离。
制,固定相和流动相,影响保留行为的因素 ➢了解色谱法的分类及色谱法的发展
色谱法早在1903年由俄国植物学家茨 维特分离植物色素时采用。他在研究植物 叶的色素成分时,将植物叶子的萃取物倒 入填有碳酸钙的直立玻璃管内,然后加入 石油醚使其自由流下,结果色素中各组分 互相分离形成各种不同颜色的谱带。这种 方法因此得名为色谱法。以后此法逐渐应 用于无色物质的分离,“色谱”二字虽已 失去原来的含义,但仍被人们沿用至今。
色谱峰 非正常峰 前延峰 ——fs小于0.95 拖尾峰 ——fs大于1.05
对称因子
fs W 0 .0h52 A (A B )2 A
图16-3 对称因子的计算示意图
(二)保留值
1. 死时间(dead time, t0) 不被固定相吸附或溶解的物质(如空气、甲烷等) 进入色谱柱时,从进样到出现峰极大值所需的时间 称为死时间,它正比于色谱柱的空隙体积。