色谱分析法概论

合集下载

第十七章 色谱分析法概论

第十七章  色谱分析法概论

在流动相和固定中具有不同的分配系数,分配系数的大小
反映了组分在固定相上的溶解-挥发 或 吸附-解吸的能力。
分配系数大的组分在固定相上溶解或吸附能
力强,因此在柱内的移动速度慢;分配系数小的
组分在固定相上溶解或吸附能力弱,因此在柱内 的移动速度快。
经过一定时间后,由于分配系数的差别,使
各组分在柱内形成差速移行,达到分离的目的。
空间总和)
当色谱柱载气流速为F0(ml/min)时,它与死时间的 关系为:
V0(M) = tM· 0 F
(VM 大,色谱峰展宽,柱效低)
4. 保留值:定性参数,是在色谱分离过程中,试样中各组分
在色谱柱内滞留行为的一个指标。 (它可用保留时间、保留体积和相对保留值等表示) (1)保留时间 tR (retention time): 从进样到柱后出现待测组分浓度最大值时(色谱峰顶点) 所需要的时间,称为该组分的保留时间。如图中tR(1)、 tR(2) 所示,
把这些色 带称为 “ 色谱图 ” (chromatography), 相
应的方法叫作“色谱法”
色谱法是一种分离技术:
其中的一相固定不动,称为固定相 另一相是携带试样混合物流过此固 定相的流体(气体或液体),称为 流动相
各组分被分离后,可进一步进行定性和定量
分析: 经典:分离过程和其含量测定过程是离线的,即 不能连续进行 现代:分离过程和其含量测定过程是在线的,即 能连续进行
p tR tM t 'R k q tM tM
任一组分的 k 值可由实验测得,即为调整保留时间 tR’与 不被固定相吸附或溶解的组分的保留时间tM 的比值。可将k 看
作色谱柱对组分保留能力的参数,k 值越大,保留时间越长。

色谱法概论PPT课件

色谱法概论PPT课件

能。
色谱法与其他技术的联用
色谱-质谱联用(GC-MS, LC-MS)
通过将色谱的分离能力与质谱的高灵敏度检测相结合,可实现对复杂样品中目标化合物 的定性和定量分析,广泛应用于药物代谢、环境监测等领域。
色谱-光谱联用(GC-IR, LC-UV/Vis)
色谱与光谱技术的联用可以提供更丰富的化合物结构和组成信息,有助于深入了解化合 物的性质和行为。
实验材料
确保色谱柱、试剂、溶 剂等材料的质量和纯度,
以满足实验要求。
实验设备
检查色谱仪、检测器、 注射器等设备的运行状 况,确保实验过程中设
备正常工作。
实验设计
根据实验目的和要求, 设计合理的色谱条件和
实验方案。
实验安全
注意实验过程中的安全 问题,如使用有毒有害
试剂时的防护措施。
实验操作步骤
色谱柱安装与条件设置
数据整理
整理实验过程中记录的数据,包括 色谱图、峰面积等。
结果分析
对实验结果进行深入分析,探究可 能的原因和影响因素。
03
02
结果判断
根据实验目的和要求,判断实验结 果是否符合预期。
结论总结
总结实验结果,得出结论,并提出 进一步改进和完善的建议。
04
04 色谱法在分析化学中的应 用
在食品分析中的应用
食品成分分析
色谱法用于分离和检测食品中的营养 成分,如脂肪、蛋白质、碳水化合物、 维生素和矿物质等,以确保食品质量 和安全。
食品添加剂分析
食品污染物分析
色谱法用于检测食品中的有害物质, 如农药残留、重金属、霉菌毒素等, 以防止食品污染和保障食品安全。
色谱法用于检测食品中添加的防腐剂、 色素、香料等成分,以控制食品添加 剂的使用量,保障消费者健康。

第九章 色谱法概论-2

第九章 色谱法概论-2

8)选择性因子 α:调整保留值 ) 之比
某组分2的调整保留值与组分1的调整保留 值之比,称为选择性因子 。 由于相对保留值只与柱温及固定相性质有 关,而与柱径、柱长、填充情况及流动 相流速无关,因此,它在色谱法中,特 别是在气相色谱法中,广泛用作定性的 依据。 K2 k2 α = r2, = = 1 K1 k1
1.流出曲线和色谱峰
色谱图) 流出曲线(色谱图):电信号强度随时间变化曲线 色谱峰:流出曲线上突起部分 色谱峰
从色谱图上可以得到许多重要 信息:
①根据色谱峰的个数,可以判断试样中所含组 分的最少个数。 ②根据色谱峰间的距离,可评价色谱条件的选 择是否合理。 ③利用色谱峰的保留值及区域宽度,可评价柱 效。 ④根据色谱峰的保留值,可以对组分进行定性 分析。 ⑤根据色谱峰的面积或峰高,可以对组分进行 定量分析。
♠某组分的 = 0时,即不被固定相保留,最先流出。 某组分的K 某组分的 时 即不被固定相保留,最先流出。
11.容量因子 11.
分配系数K 分配系数 : K = CS
以吸附色谱为例见图示 吸附→ 解吸→再吸附 →再解吸 →反复多次洗 脱→被测组分分配系数不同→ 差速迁移 → 分 离
图示
分配系数的微小差异→吸附能力的微小差异 微小差异积累→较大差异→吸附能力弱的组分先流出; 吸附能力强的组分后流出 back
色谱过程示意图
二、色谱流出曲线和基本概念
1.流出曲线和色谱峰 2.保留值:色谱定性参数 3.色谱峰的区域宽度:色谱柱效参数
第2节 色谱过程与术语 一、 色谱过程:
色谱过程是当流动相中携带的混合物流
经固定相时,其与固定相发生相互作用。 经固定相时,其与固定相发生相互作用。 由于混合物中各组分在性质和结构上的差 与固定相之间产生的作用力的大小、 异,与固定相之间产生的作用力的大小、 强弱不同,随着流动相的移动, 强弱不同,随着流动相的移动,混合物在 两相间经过反复多次的分配平衡, 两相间经过反复多次的分配平衡,使得各 组分被固定相保留的时间不同, 组分被固定相保留的时间不同,从而按一 定次序由固定相中流出。 定次序由固定相中流出。

色谱法概论

色谱法概论

高效液相色谱 - 组分分离
水 甜味剂
人工色素 (柠檬黄)
人工香精
(香橙)
芬达样品
色谱图
高效液相系统
液体样品
液体传输
高效液相色谱柱 高效液相系统
检测器
数据处理
高效液相系统和色谱柱
Agilent 1100 高效液相系统
高效液相色谱柱
可更换卡套
液体医药样品 溶剂
色谱柱
硅胶填料
以不同速率 流出的组分
色谱图
(2)溶解于流动相中,随流动相同速前进,这时u组分=um。 所以组分分子在柱内的移动速度总是≤流动相在柱内的速度,
即um 是极限速度。 组分移动速度的大小,决定于固定相对组分的保留能力,即固
定相与组分间作用力的大小。
不同的组分,固定相对它的保留能力不同,其移动速度不同。
设组分的移动速度为u组分(u组分=L/tR), 即绝对速度,此速 度受到流动相流速的影响,人们将两个组分的速度都与流动相 相比较,就得保留速度
4. 被分离组分(样品) 如色素
5. 洗脱
将流动相连续不断地加入色谱柱,使之通过固定相,把被 分离的物质冲洗出柱的过程,叫洗脱。
洗脱是色谱过程中必要而又重要的步骤—选择适宜的流 动相、固定相实现分离。
6. 洗脱剂
在洗脱过程中加入色谱柱的流动相即洗脱剂。
7. 洗脱液(流出液)
流出色谱柱的溶液,即洗脱液。
结果 检测器
气相色谱系统
气源
进样器
检测器
数据处理
GAS
色谱柱
柱温箱
气相-质谱系统
色谱柱
色谱分析领域(1)
生命科学
色谱分析实例 体液和组织中的药品 血醇水平 药品纯度

第十六章色谱分析法概论

第十六章色谱分析法概论
分在柱中多停留的时间。 tR' =tR t0
第十六章 色谱分析法概论
定性参数2
仪器分析
保留体积(VR):从进样开始到某个组分在柱
后出现浓度极大时,所需通过色谱柱的流动
相体积。
VR tR Fc
死体积(V0):由进样器至检测器的流路中未
被固定相占有的空间。
固定相颗粒间间隙、导管的容积、检测器内
腔容积的总和。
吸附过程是试样中组分的分子(X)与流动相分 子(Y)争夺吸附剂表面活性中心的过程,即为 竞争吸附过程 。
第十六章 色谱分析法概论
仪器分析
X m + n Y a X a+ n Y m
Ka
= [Xa ][Ym]n [Xm][Ya ]n
Ka
[Xa] Xa /Sa [Xm] Xm/Vm
吸附系数与吸附剂的
KA/B是离子对树脂亲和能力相对大小的度量,KA/B
越大,A的交换能力大,越易保留。 常选择某种离子(如H+或Cl-)作参考。
KA、 KB为A、B的分配系数。
第十六章 色谱分析法概论
离子交换色谱法
仪器分析
固定相 离子交换剂(ion exchanger):离子交 换树脂(resin)和硅胶化学键合离子交换剂。
③不饱和化合物的吸附力强,双键数越多,吸
附力越强。
④分子中取代基的空间排列
第十六章 色谱分析法概论
三、离子交换色谱法
仪器分析
分离原理 利用被分离组分离子交换能力的
差别而实现分离。
分为阳离子交换色谱法和阴离子交换色谱法。
阳离子交换:
交换
RSO 3 H+ + Na+ 再生
RSO 3 Na+ + H +

色谱分析法概论

色谱分析法概论

调整保留体积 V'R =VR-V0= t'R·Fc : V'R与流动相流速无关,是常用的色谱定性
参数之一。
上一内容 下一内容 回主目录
返回
2013年8月13日
调整保留时间
t ;扣除死时间后的保留时间,即 R t R t R tO
' ' VR VR V0 t R F c
Moore Giddings Small Jorgenson等
发表凝胶过滤色谱的报告。
发明凝胶渗透色谱。 发展了色谱理论,为色谱学的发展奠定了理论基础。 发明了以离子交换剂为固定相、强电解质为流动相,采用抑制型电导 检测的新型离子色谱法 创立了毛细管电泳法。
色谱法起过关键作用的诺贝尔奖研究工作
年代 1937
色谱过程
• 组分的结构和理化性质微小差异 固定相作用差异 不等 差速迁移 与
随流动相移动的速度 色谱分离。
上一内容
下一内容
回主目录
返回
2013年8月13日
二、色谱流线曲线和有关概念
(一)色谱流出曲线和色谱峰
1.色谱图
由检测器输出的信号强度对时间作图所绘制的曲线,以检 测器的信号强度(R)为纵坐标;流出时间为(t)横坐标。
生理学、医学 关于神经元触处迁移物质的研究
1972
生理学、医学 抗体结构的研究
色谱分析法简介
色谱分析法是一种物理或物理化学分 离、分析方法。 它是根据混合物中各组分在两相分配 系数的不同进行分离,而后逐个分析。
它是分析复杂混合物最有利的手段。
色谱法的特点
(1)分离效率高 复杂混合物,同系物、异 构体、手性异构体。 (2) 灵敏度高
空气峰 C

色谱

色谱
cS K cm
cs —固定相中组分的浓度 cm —流动相中组分的浓度 K — 分配系数仅与组分、固定相和流动相的 性质有关。在一定条件(固定相、流动相、 温度)下,是组分的特征常数。
2. 保留因子(质量分配系数或分配比)
在一定温度和压力下,达到分配平衡时,
组分在流动相与固定相中的质量之比。
ms k mm
(四) 色谱峰区域宽度 1.标准偏差(σ) σ是正态分布曲线上两拐点间距离之半。 柱效参数
2. 半峰宽(W1/2 或Y1/2)
峰高一半处的峰宽。
W1/2 = 2.355σ
柱效参数
3.峰宽 (基线宽度) W(Y) 通过色谱峰两侧拐点作切线在基线上 的截距称为峰宽。
W = 4σ
W = 1.699W1/2
柱效参数
(五)分离度 (R)
R t R2 t R1 (W1 W2 ) / 2 2(t R2 t R1 ) W1 W2
tR1, tR2 -------成分1,2的保留时间 W1, W2 ---------成分1,2的峰宽 R=1,两峰略有重叠 R=1.5,两峰完全分离(基线分离) 定量时,要求R≥1.5
16.2 色谱法的基本原理 一.色谱过程 吸附→解吸→再吸附→再解吸 两种组分的理化性质原本存在着微小的差 异,经过反复多次地吸附→解吸→再吸附→再 解吸的过程使微小差异累积起来,结果使吸附 能力弱的组分先流出色谱柱,吸附能力强的组 分后流出色谱柱,从而使各个组分得到了分离。
色谱过程
二、色谱流出曲线和有关概念
二.色谱法的分类
1.按固定相与流动相的分子聚集状态分类
气-固色谱法 (GSC)
气相色谱法
气-液色谱法(GLC)
液-固色谱法(LSC)

第十六章 色谱分析法概论

第十六章 色谱分析法概论

1、色谱柱作为分析方法的最大特点是什么?色谱法以高超的分离能力为特点,具有高灵敏度、高选择性、高效能、分析速度快及应用范围广等优点。

2、一个组分的色谱峰可用哪些参数描述?这些参数各有何意义?一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示,用于定性)、峰宽(用于衡量柱效)来说明。

峰高:组分在柱后出现浓度极大时的检测信号,即色谱峰顶至基线的距离。

峰面积:某色谱峰曲线与基线间包围的面积。

保留时间:是从进样到某组分在柱后出现浓度极大时的时间间隔,即从进样开始到某个组分的色谱峰顶点的时间间隔。

死时间:是分配系数为零的组分,即不被固定相吸附或溶解的组分的保留时间。

调整保留时间:是某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。

峰宽:是通过色谱峰两侧拐点做切线在基线上所截得的距离。

标准差:是正态色谱流出曲线上两拐点间距离之半,或0.607倍峰高处的峰宽之半。

半峰宽:是峰高一半处的峰宽。

W 1/2=2.355σ W=4σ W=1.699 W1/23、说明保留因子的物理含义及与分配系数的关系。

为什么保留因子(或分配系数)不等是分离的前提?保留因子k是在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比,故又称为质量分配系数。

而分配系数K是组分在固定相和流动相中的浓度之比。

二者的关系是k=KVs/Vm,可见保留因子除与固定相、流动相、组分三者的性质有关外,还与固定相和流动相的体积比有关。

保留因子越大的组分在色谱柱中的保留越强,tR =t(1+k),由于在一定色谱条件下t为定值,如果两组分的k相等,则它们的tR 也相等,即不能分离。

要使两组分分离,即tR不等,则他们的k(K)必须不等,即保留因子(或分配系数)不等是分离的前提。

4、各类基本类型色谱的分离原理有何不同?分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别,即在两相间的分配系数的差别而实现分离的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第17章 色谱分析法概论
思考题

9.试推导有效塔板数与分离度的关系式: 22116Rn=有效

证明:∵ 2'2216RtnW有效= (1)
2
2WWR2R11
2(t-t)

R=
设W1=W

2

2
2
''

2010212222[()()]2()22RR
RRttttttWWWWR2R1

1

2(t-t)
R=

''
1RtRR2
2

t
W=
(2)

将(2)代入(1)式,得:
'
22''2222221'''221'11616()16()11R

RR
R
RR

R

t
tt
nRRRtttt有效=

10. 试推导最小板高的计算式:BCAH2=最小
证明:∵BHACuu (1)
微分,得

2
dHBCduu 令 0dH
du

,则

2
0BCu

opt
B
uC
(2)

将(2)代入(1),得:
2HABC
最小
习题
1.在一根2.00m的硅油柱上分析一个混合物得下列数据:苯、甲苯及乙苯的保留时间分别为
80s、122s、181s;半峰宽为0.211cm、0.291cm及0.409cm(用读数显微镜测得),已知记录
纸速为1200mm/h,求此色谱柱对每种组分的理论塔板数及塔板高度。

解:∵22/1)(54.5WtnR 注意:分子分母单位应保持一致

mmnLHWtnR3.28852000,8853600/120011.28054.554.5222/1===)(=)(=苯苯苯苯苯

mmnLHWtnR8.110822000,10823600/120091.212254.554.5222/1===)(=)(=甲苯甲苯甲苯甲苯甲苯
mmnLHWtnR7.112062000,12063600/120009.418154.554.5222/1===)(=)(=乙苯乙苯乙苯乙苯乙苯
2.在一根3.0m长的色谱柱上分离样品的结果如图17-14所示。

图17-14 一个样品的色谱图
(1)用组分2计算色谱柱的理论塔板数n及塔板高度H; (2)求调整保留时间tR1’及tR2`;(3)
求有效塔板数n有效及有效塔板高度H有效;(4)求容量因子k1及k2;(5)求使二组分Rs为1.5
时的柱长。

解:(1)3222106.4)0.117(16)(162wtnR mmnLH65.0106.430003
(2)tR1′= tR1-t0 =14-1.0=13.0min tR2′=tR2-t0=17-1.0=16.0min
(3) 3222'101.4)0.10.16(16)(162wtnR有效 mmnLH73.0101.430003有效有效

(4)130.10.130'11ttkR 160.10.160'22ttkR
(5)假设两组分峰宽相等。
30.10.1)1417(2)(212112WWttR
RR
2122
1
)(LLRR

mRRLL75.0)35.1(0.3)(221212

3.在2.0m长的某色谱柱上,分析苯(1)与甲苯(2)的混合物。测得死时间为0.20min,甲
苯的保留时间为2.10min及半峰宽为0.285cm,记录纸速为2.00cm/min。只知苯比甲苯先流
出色谱柱,且苯与甲苯的分离度为1.0。求:① 甲苯与苯的分配系数比(α):(2)苯的容
量因子与保留时间;(3)达到R=1.5时,柱长需几米?

解:(1)1203)2285.010.2(54.5)(54.5222/1甲苯甲苯甲苯wtnR

5.920.020.010.2000'222tttttk
RR
,

)1)(1(422kknR


127.0)5.95.91(12030.14)1(4122kknR

α=1.1
(2) min73.1,1.120.010.2'''0''111212RRRRRRttttttt
tR2’ = tR1’+ t0 = 1.73 + 0.20 = 1.93 min
65.820.073.10'11ttk
R

(3) 21221)(LLRR mRRLL5.4)0.15.1(0.2)(221212
4.在一根2.0 m色谱柱上,用He为载气,在3种流速下测得结果如表:
甲烷 tR / s 正十八烷
tR / s W /s
18.2 8.0 5.0 2020.0 888.0 558.0 223.0
99.0
68.0
求算:(1)3种流速下的线速度u; (2)3种不同线速度下的n及H; (3) 计算van Deemter
方程中参数A、B、C;(4)计算H最小和u最佳。

解:(1) 0Lut

120011.0/18.2cmucms 2
200250/8.0cm
ucms
3
20040/5.0cm
ucms

(2)212020.016()1313223.0n 22888.016()128799.0n
2
3

558.0
16()107768.0n

12000.1521313cmHcm 2
2000.1551287cm
Hcm

3
2000.1861077cm
Hcm

(3)由u1u2u3和H1H2H3可分别建立三个Van Deemter方程
0.15211.011.0BAC

0.15525.025.0BAC
0.18640.040.0BAC
解方程组得:
A=0.0605cm
B=0.683cm2/s
C=0.0027s

(4) 20.060520.6830.00270.146HABCcm最小

0.68315.9/0.0027optBucmsC

相关文档
最新文档