发电机保护原理(学术参考)
初中物理发电机原理

初中物理发电机原理
发电机原理是指将机械能转化成电能的装置。
其基本原理是利用磁场和电路之间的相互作用来实现能量转换。
发电机由两大基本部分构成:导体和磁场。
导体是一个绕成线圈的金属导体,常用铜线制成。
而磁场则是通过永磁体或电磁体产生的。
当导体在磁场中运动时,由于导体中的自由电子受到磁场的作用,会发生电子的偏移和电荷的累积。
这样就形成了两端电位差,即电压。
导体绕成一个闭合的线圈后,当线圈转动时,导体和磁场之间的相互作用会使电荷开始在导线中流动,形成电流。
这个过程叫做感应现象。
发电机中的转子是通过外接动力源,如蒸汽机或水力发电站等,提供机械能来驱动的。
转子的旋转运动使导线切割磁力线,从而产生感应电流。
为了使电流连续不断地流动,发电机通常采用换向器或集电环来改变电流的方向。
这样导线就会不断地切割磁力线,产生交流电。
通过将感应电流导入电路中,就可以使用发电机产生的电能来推动各种电器设备的运转,实现电力的利用。
综上所述,发电机的工作原理是利用导线在磁场中运动时产生感应电流,通过电路将机械能转化为电能。
这种原理使得发电机在电力供应领域发挥了重要的作用。
发电机原理 物理

发电机原理物理
发电机是将机械能转化为电能的装置,其工作原理基于电磁感应现象。
下面是发电机的原理简述:
1. 磁场产生:发电机中需要通过一对永久磁体或者电磁铁来产生强大的磁场。
这些磁体或电磁铁会产生一个磁场,通常在轴心线附近形成一个磁场区域。
2. 导体回路:发电机中还需要一组导体回路,通常是由导线制成的线圈。
这些导体回路被安装在一个旋转的部件上,通常称之为转子。
导体回路可以是一组线圈或者只是一个导线。
3. 动磁场的相对运动:当转子旋转时,导体回路中的导线就会穿过磁场区域。
这种动与静之间的相对运动会引起导体回路中的自由电子受力,从而产生电流。
4. 电磁感应效应:根据电磁感应定律,导体回路中的电流的大小和方向取决于导线与磁场之间的相对运动速度。
当导线穿过磁场时,它们会受到一个力的作用,从而导致电子在导线内部移动。
5. 交流电输出:由于转子不断旋转,导体回路中就会产生交流电。
这时,通过连接导体回路两端的电路,就可以将交流电输出到外部负载上供电使用。
发电机的原理可以简单概括为:在磁场作用下,导体回路中的
导线运动会产生电磁感应效应,从而转化为交流电。
发电机通过这种方式将机械能转化为电能,实现电力的供应。
飞轮储能系统高速永磁同步电动发电机控制关键技术研究

飞轮储能系统高速永磁同步电动发电机控制关键技术研究一、本文概述随着全球能源结构的转型和可再生能源的大力发展,飞轮储能系统作为一种新型储能技术,凭借其高功率密度、快速充放电、长寿命等优势,逐渐受到业界的广泛关注和深入研究。
高速永磁同步电动发电机作为飞轮储能系统的核心部件,其控制技术的优劣直接影响到整个系统的性能与稳定性。
对高速永磁同步电动发电机控制关键技术的研究具有重要的理论意义和实际应用价值。
本文旨在深入研究飞轮储能系统中高速永磁同步电动发电机的控制技术,针对其高速旋转、高功率密度、高精度控制等特点,探索有效的控制策略和优化方法。
对高速永磁同步电动发电机的基本原理和结构特点进行详细介绍,为后续的控制技术研究奠定理论基础。
重点分析现有控制技术的优缺点,并针对存在的问题提出改进方案。
在此基础上,结合先进的控制理论和技术手段,设计高效的控制算法,实现对高速永磁同步电动发电机的高效、稳定控制。
通过仿真和实验验证所提控制技术的有效性和可行性,为飞轮储能系统的实际应用提供有力支持。
本文的研究内容不仅有助于推动飞轮储能技术的发展和应用,也为相关领域的研究人员提供有益的参考和借鉴。
同时,本文的研究成果对于提高我国在新能源和储能技术领域的自主创新能力和核心竞争力具有重要意义。
二、飞轮储能系统概述飞轮储能系统(Flywheel Energy Storage System,FESS)是一种基于机械能储存与释放原理的新型储能技术。
其基本原理是,通过高速旋转的飞轮将电能转化为机械能进行储存,当需要能量时,飞轮减速将机械能再转化回电能。
这种储能方式具有响应速度快、效率高、寿命长、维护成本低等优点,因此在电力调峰、分布式能源、不间断电源等领域具有广泛的应用前景。
飞轮储能系统的核心部件是高速永磁同步电动发电机(HighSpeed Permanent Magnet Synchronous MotorGenerator,HSPMSG)。
柴油发电机组的工作原理及特性

柴油发电机组的工作原理及特性作者:郭星民来源:《科学导报·学术》2018年第01期摘要:本文探讨了柴油机的工作原理,发电机的工作原理,对柴油发电机组的主要性能指标进行了论述,为指导生产提供了理论依据。
关键词:柴油机;工作原理;发电机;性能指标【中图分类号】TM314【文献标识码】A【文章编号】2236-1879(2018)01-0188-01柴油发电机组是一种发电设备,以柴油等为燃料,以柴油机为原动机带动发电机发电的动力机械,主要包括三部分:柴油机、发电机和控制系统。
1柴油机的工作原理柴油机的基本结构由燃烧室组件、动力传递组件、机体和主轴承、配气机构、供油系统和调速器、润滑系统、冷却系统、起动系统构成。
柴油机必须经过进气、压缩、膨胀、排气四个热力过程即一个工作循环之后,才能恢复起始状态,使柴油机连续不断地产生机械功。
目前,柴油发电机组配置的柴油机都是四冲程柴油机,即柴油机活塞走完四个冲程完成一个工作循环。
2发电机的工作原理三相同步发电机的结构包括定子和转子两大部分,同步电机的定子又称电枢,包括机座、端盖、电枢铁芯、电枢绕组装置等部件。
转子包括转子铁芯、转子(励磁)绕组、风扇、转轴等部件[3]。
同步发电机的主磁场由直流励磁产生,直流电流流经转子线圈,产生磁场。
当转子由原动机带动旋转时,气隙中便形成一个转速为 n 的旋转磁场,电枢线圈的导体将不断地被磁力线所切割,产生感应电势,感应电势的有效值为 E。
接通负载后,在电枢绕组中流过感应电流,这个交变电流也在发电机的气隙产生一个旋转磁场,这个磁场称为电枢磁场,或称为定子磁场。
当主磁场由柴油机拖动旋转到一个新的位置时,电枢磁场也随之旋转到另一个位置。
转子会带动电枢磁场以同一转速旋转,两者时间保持同步,故称为同步发电机。
如果转子的极对数为p,则感应电势的频率 f 为:f =pn/60。
由于定子三相绕组在空间的位置是对称的,彼此相差120°电角度,所以,定子绕组切割磁力线时,将产生对称的三相感应电势。
330_MW发电机定子3次谐波接地信号频发的原因及故障消除

Telecom Power Technology· 246 · 2023年1月25日第40卷第2期Jan. 25, 2023, Vol.40 No.2 运营维护技术DOI:10.19399/j.cnki.tpt.2023.02.076330 MW 发电机定子3次谐波接地信号频发的原因及故障消除姜海涛,孙春明,王泽朋,闫鹏寿,王继东(甘肃电投金昌发电有限责任公司,甘肃 金昌 737202)摘要:针对某电厂330 MW 发电机定子3次谐波接地信号频繁报警,根据现场对发电机一次回路检查,发电机保护说明书内容及保护定值进行查阅,通过定子3次谐波接地信号发出前后的数据分析和现场检查综合判断,利用机组停运机会查明了发电机定子3次谐波接地信号频发的原因,确保发电机出现问题的概率大幅度减少,保证了机组的稳定运行。
关键词:发电机;定子接地;3次谐波;故障消除Causes of Frequent Occurrence of Stator Third Harmonic Grounding Signal of 330 MWGenerator and Its Fault EliminationJIA NG Haitao,SUN Chu nming ,WANG Zepeng ,YAN Pengshou, WANG Jidong(Gansu Power Investment Jinchang Power Generation Co., Ltd., Jinchang 737202, China )Abstract: In view of the frequent alarm of the third harmonic grounding signal of the 330 MW generator stator in a power plant, according to the on-site inspection of the generator primary circuit, the contents of the generator protection manual and the protection settings, through the data analysis before and after the sending of the third harmonic grounding signal of the stator and the comprehensive judgment of the on-site inspection, the reason for the frequent occurrence of the third harmonic grounding signal of the generator stator was found out by using the opportunity of unit shutdown, The probability of generator problems is greatly reduced, and the stable operation of the unit is ensured.Keywords: alternator; stator grounding; third harmonic; fault elimination0 引 言某电厂2×330 MW 发电机由上海电机厂生产,型号QFSN-330-2-20,于2009年11月投产,发电机-变压器组保护设有2套完全独立的保护装置,共设3面保护柜,2套独立的保护布置于 A 、B 柜,而C 柜中则布置有非电量保护,3个保护柜的生产厂家均相同。
风力发电场保护配置及原理

风力发电场保护配置及原理风力发电场的保护配置和原理主要涉及以下几个方面:1. 风力发电机组保护:风力发电机组是风力发电场的核心设备,需要配置相应的保护装置来确保其正常运行。
常见的保护配置包括过载保护、欠载保护、过压保护、欠压保护、短路保护、缺相保护等。
这些保护装置通过检测发电机组的运行状态和电气参数,对异常情况进行判断和处理,从而保证发电机组的正常运行。
2. 风力发电机组控制系统保护:控制系统是风力发电机组的重要组成部分,用于控制发电机组的启动、停止、功率输出等操作。
常见的控制系统保护配置包括安全停机保护、自动复位保护、控制电源失压保护等。
这些保护装置通过监测控制系统的状态和输入输出信号,对异常情况进行判断和处理,从而保证控制系统的正常运行。
3. 风力发电机组传感器保护:传感器是风力发电机组中用于监测和测量各种参数的装置,例如风速、风向、温度、压力等。
传感器的正常运行对于发电机组的稳定运行至关重要。
常见的传感器保护配置包括防雷保护、过压保护、防水保护等。
这些保护装置通过检测传感器的运行状态和参数,对异常情况进行判断和处理,从而保证传感器的正常运行。
4. 风力发电场通信系统保护:风力发电场通常需要建立通信系统,用于实现各设备之间的信息传输和控制。
通信系统的稳定运行对于整个风力发电场的正常运行至关重要。
常见的通信系统保护配置包括防雷保护、过压保护、电磁屏蔽等。
这些保护装置通过检测通信设备的运行状态和信号质量,对异常情况进行判断和处理,从而保证通信系统的正常运行。
总的来说,风力发电场的保护配置需要根据实际情况进行具体设计,并选择合适的保护装置来实现对风力发电机组、控制系统、传感器和通信系统的保护。
同时,也需要注意保护装置的维护和更新,以确保其正常工作和有效性。
大学物理论文3000字(精选5篇)

⼤学物理论⽂3000字(精选5篇) ⽆论是在学习还是在⼯作中,⼤家都尝试过写论⽂吧,借助论⽂可以达到探讨问题进⾏学术研究的⽬的。
你知道论⽂怎样写才规范吗?下⾯是⼩编收集整理的⼤学物理论⽂3000字(精选5篇),希望能够帮助到⼤家。
⼤学物理论⽂篇1 摘要: 电磁运动是物质的⼜⼀种基本运动形式,电磁相互作⽤是⾃然界已知的四种基本相互作⽤之⼀,也是⼈们认识得较深⼊的⼀种相互作⽤。
在⽇常⽣活和⽣产活动中,在对物质结构的深⼊认识过程中,都要涉及电磁运动。
因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。
关键词: 电磁学,电磁运动 1.库伦定律 17xx年法国物理学家库伦⽤扭秤实验测定了两个带电球体之间的相互作⽤的电⼒。
库伦在实验的基础上提出了两个点电荷之间的相互作⽤的规律,即库仑定律: 在真空中,两个静⽌的点电荷之间的相互作⽤⼒,其⼤⼩和他们电荷的乘积成正⽐,与他们之间距离的⼆次⽅成反⽐;作⽤的⽅向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。
这是电学以数学描述的第⼀步。
此定律⽤到了⽜顿之⼒的观念。
这成为了⽜顿⼒学中⼀种新的⼒。
与驽钝万有引⼒有相同之处。
此定律成了电磁学的基础,如今所有电磁学,第⼀必须学它。
这也是电荷单位的来源。
因此,虽然库伦定律描述电荷静⽌时的状态⼗分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现⼏乎近两百年。
我们现在⽤的电器,绝⼤部份都靠电流,⽽没有电荷(甚⾄接地以免产⽣多余电荷)。
也就是说,正负电仍是抵消,但相互移动。
──河中没⽔,不可能有⽔流;但电线中电荷为零,却仍然可以有电流! 2.安培定律 法国物理学家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的来源,或许就是电流。
他在18xx年,听到奥斯特实验结果之后,两个星期之内,便开始实验。
发电机过励磁保护原理

发电机过励磁保护原理
发电机过励磁保护的原理主要基于发电机的工作磁密与电压和频率的关系。
当发电机的电压和频率发生变化时,其工作磁密也会相应变化。
如果发电机的工作磁密大于其额定值,即超过其饱和磁密,就可能引起过励磁。
过励磁的主要危害包括铁芯饱和,导致附加损耗增加,引起局部过热,甚至可能损坏设备绝缘。
为了防止过励磁现象的发生,发电机通常配备有专门的过励磁保护装置。
过励磁保护装置通过监测发电机绕组电压和电流,当监测到过励磁的信号时,立即采取措施,如降低励磁电流,以保护发电机和设备。
过励磁保护装置的动作特性通常包括定时限和反时限两种,定时限用于在过励磁倍数达到一定值时发出信号,而反时限则用于在过励磁倍数达到更高值时动作于跳闸,以防止发电机和变压器因过励磁而损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机保护原理大型发电机的造价高昂,结构复杂,一旦发生故障遭到破坏,其检修难度大,检修时间长,要造成很大的经济损失。
例如,一台20万kW的汽轮发电机,因励磁回路两点接地使大轴和汽缸磁化,为退磁需停机1个月以上,姑且不论检修费用和对国民经济造成的间接损失,仅电能损失就近千万元。
大机组在电力系统中占有重要地位,特别是单机容量占系统容量较大比例的情况下,大机组的突然切除,会给电力系统造成较大的扰动。
因此,发电机的安全运行对电力系统的正常工作、用户的不间断供电、保证电能的质量等方面,都起着极其重要的作用。
1.发电机故障形式由于发电机是长期连续旋转的设备,它既要承受机身的振动,又要承受电流、电压的冲击,因而常常导致定子绕组和转子线圈的损坏。
因此,发电机在运行中,定子绕组和转子励磁回路都有可能产生危险的故障和不正常的运行情况。
一般说来,发电机的故障和不正常工作情况有以下几种:(1)定子绕组相间短路故障:定子绕组相间短路故障是对发电机危害最大的一种故障。
故障时,短路电流可能把发电机烧毁。
(2)定子绕组匝间短路:定子绕组匝间短路时,在匝间电压的作用下产生环流,可能使匝间短路发展为单相接地短路和相间短路。
(3)定子绕组接地故障:定子绕组的单相接地故障是发电机内较常见的一种故障,故障时,发电机电压系统的电容电流流过定子铁心,造成铁心烧伤,当此电流较大时将使铁心局部熔化。
(4)励磁回路接地故障:发电机励磁回路一点或两点接地时,一般说来,转子一点接地对发电机的危害并不严重,但一点接地后,如不及时处理,就有可能导致两点接地,而发生两点接地时,由于破坏了转子磁通的平衡,可能引起发电机的强烈振动,或将转子绕组烧损。
(5)定子绕组过负荷:超过发电机额定容量运行形成过负荷时,将引起发电机定子温度升高,加速绝缘老化,缩短发电机的寿命,长时间过负荷,可能导致发电机发生其他故障。
(6)定子绕组过电压:调速系统惯性较大的发电机,如水轮发电机或大容量的汽轮发电机,在突然甩负荷时,可能出现过电压,造成发电机绕组绝缘击穿。
(7)定子过电流:由于外部短路或系统振荡而引起定子过电流时,也将引起发电机定子温度升高,加速绝缘老化等后果,长时间过电流,也可能导致发生其他故障。
(8)励磁电流异常下降或消失:发电机励磁电流异常下降或消失时,发电机将从系统吸收大量无功功率,发电机可能与系统失步并转入异步运行状态,从而引起系统电压下降,甚至可使系统崩溃。
(9)补充励磁绕组过负荷、转子表层负序过负荷、定子铁心过励磁、发电机逆功率、失步、频率异常、发电机突然加电压、发电机起停。
2.发电机保护配置为了使同步发电机能根据故障的情况有选择地、迅速地发出信号或将故障发电机从系统中切除,以保证发电机免受更为严重的损坏,减少对系统运行所产生的不良后果,使系统其余部分继续正常运行,在发电机上装设能反应各种故障的继电保护是十分必要的。
对于发电机可能发生的故障和不正常工作状态,根据发电机的容量有选择地装设以下保护:(2)发电机主保护:为发电机定子绕组及其引出线地相间短路保护。
(1)1MW以上的发电机,应装设纵联差动保护。
(2)对100MW以下的发电机变压器组,当发电机与变压器之间有断路器时,发电机与变压器宜分别装设单独的纵联差动保护。
(3)对100MW及以上发电机变压器组,应装设双重快速保护,每一套主保护宜具有发电机纵联差动保护和变压器纵联差动保护功能。
(4)以上装设的过电流保护、电流速断保护、低电压保护、低压过流和差动保护均应动作于停机。
(3)匝间保护:为定子绕组一相匝间短路保护。
a)对定子绕组为星形接线、每相有并联分支且中性点侧有分支引出端的发电机,应装设零序电流型横差保护或裂相横差保护、不完全差动保护。
b)50MW及以上发电机,当定子绕组为星形接线,中性点只有三个引出端子时,根据用户和制造厂的要求,也可装设专用的匝间短路保护。
(4)短路后备保护:当发电机纵差保护范围外发生短路,而短路元件的保护或断路器拒绝动作时,为了可靠切除故障,则应装设反应外部短路的过电流保护。
该保护兼作纵差保护的后备保护。
保护装置宜配置在发电机的中性点侧。
a)对于1MW及以下与其它发电机或与电力系统并列运行的发电机,应装设过流保护。
b)1MW以上的发电机,宜装设复合电压(包括负序电压及线电压)起动的过电流保护。
灵敏度不满足要求时可增设负序过电流保护。
c)50MW及以上的发电机,宜装设负序过电流保护和单元件低压起动过电流保护。
d)并列运行的发电机和发电机变压器组的后备保护,对所连接母线的相间故障,应具有必要的灵敏系数。
e)以上各项短路保护装置,宜带有二段时限,以较短的时限动作于缩小故障影响的范围或动作于解列,以较长的时限动作于停机。
(5)定子绕组单相接地保护:为发电机定子绕组单相接地保护。
a)与母线直接连接的发电机:当单相接地故障电流(不考虑消弧线圈的补偿作用)大于允许值时,应装设有选择性的接地保护装置。
保护装置由装于机端的零序电流互感器和电流继电器构成。
其动作电流按躲过不平衡电流和外部单相接地时发电机稳态电容电流整定。
接地保护带时限动作于信号,但当消弧线圈退出运行或由于其他原因使残余电流大于接地电流允许值,应切换为动作于停机。
当未装接地保护,或装有接地保护但由于运行方式改变及灵敏系数不符合要求等原因不能动作时,可由单相接地监视装置动作于信号。
为了在发电机与系统并列前检查有无接地故障,保护装置应能监视发电机端零序电压值。
b)发电机变压器组:对100MW以下发电机,应装设保护区不小于90%的定子接地保护,对100MW及以上的发电机,应装设保护区为100%的定子接地保护。
保护带时限动作于信号,必要时也可以动作于停机。
检查发电机定子绕组和发电机回路的绝缘状况,保护装置应能监视机端零序电压值。
(6)励磁回路接地保护:为励磁回路地接地故障保护。
a)对1MW及以下发电机的转子一点接地故障,可装设定期检测装置。
b)1MW及以上的发电机应装设专用的转子一点接地保护装置延时动作于信号,宜减负荷平稳停机。
有条件时可动作于程序跳闸。
c)对旋转励磁的发电机宜装设一点接地故障定期检测装置。
(7)定子绕组过负荷保护:对过负荷引起的发电机定子绕组过电流的保护。
a)定子绕组非直接冷却的发电机,应装设定时限过负荷保护,保护接一相电流,带时限动作于信号。
b)定子绕组为直接冷却且过负荷能力较低(例如低于1.5倍、60s),过负荷保护由定时限和反时限两部分组成。
定时限部分的动作电流按在发电机长期允许的负荷电流下能可靠返回的条件整定,带时限动作于信号,在有条件时,可动作于自动减负荷。
反时限部分的动作特性按发电机定子绕组的过负荷能力确定,保护动作于停机。
保护应反应电流变化时定子绕组的热积累过程。
不考虑在灵敏系数和时限方面与其他相间短路保护相配合。
(8)转子表层过负荷保护:对不对称负荷、非全相运行及外部不对称短路引起的负序电流的保护。
a)50MW及以上A值(转子表层承受负序电流能力的常数)大于10的发电机,应装设定时限负序过负荷保护。
保护与4.2.6.3条的负序过电流保护组合在一起。
保护的动作电流按躲过发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。
b)100MW及以上A值小于10的发电机,应装设由定时限和反时限两部分组成的转子表层过负荷保护。
定时限部分:动作电流按发电机长期允许的负序电流值和躲过最大负荷下负序电流滤过器的不平衡电流值整定,带时限动作于信号。
反时限部分:动作特性按发电机承受短时负序电流的能力确定,动作于停机。
保护应能反应电流变化时发电机转子的热积累过程。
不考虑在灵敏系数和时限方面与其他相间短路保护相配合。
(9)励磁绕组过负荷保护:对励磁系统故障或强励时间过长的励磁绕组过负荷的保护。
a)100MW及以上采用半导体励磁的发电机,应装设励磁绕组过负荷保护。
b)300MW以下采用半导体励磁的发电机,可装设定时限励磁绕组过负荷保护,保护带时限动作于信号和降低励磁电流。
c)300MW及以上的发电机其励磁绕组过负荷保护可由定时限和反时限两部分组成。
定时限部分;动作电流按正常运行最大励磁电流下能可靠返回的条件整定,带时限动作于信号和降低励磁电流。
反时限部分:动作特性按发电机励磁绕组的过负荷能力确定,并动作于解列灭磁或程序跳闸。
保护应能反应电流变化时励磁绕组的热积累过程。
(10)定子绕组过电压保护:对发电机定子绕组的异常过电压的保护,以切除突然甩去全部负荷后引起定子绕组过电压。
a)对水轮发电机,应装设过电压保护,其整定值根据定子绕组绝缘状况决定。
过电压保护宜动作于解列灭磁。
b)对于100MW及以上的汽轮发电机,宜装设过电压保护,其整定值根据定子绕组绝缘状况决定。
过电压保护宜动作于解列灭磁或程序跳闸。
(11)发电机过激磁保护:为防止由于频率降低和/或电压升高引起发电机器磁密过高而损坏发电机,应装设过励磁保护。
a)300MW及以上发电机,应装设过励磁保护。
保护装置可由低定值和高定值二部分组成的定时限过励磁保护或反时限过励磁保护,有条件时应优先装设反时限过励磁保护。
定时限过励磁保护:低定值部分,带时限动作于信号和降低励磁电流;高定值部分,动作于解列灭磁或程序跳闸。
反时限过励磁保护:反时限特性曲线由上限定时限、反时限、下限定时限三部分组成。
上限定时限、反时限动作于解列灭磁,下限定时限动作于信号。
反时限的保护特性曲线应与发电机的允许过励磁能力相配合。
b)汽轮发电机装设了过励磁保护可不再装设过电压保护。
(12)逆功率保护:当汽轮发电机主汽门误关闭,或机炉保护动作关闭主汽门而发电机出口断路器未跳闸时,发电机失去原动力变成电动机运行,从电力系统吸收有功功率。
这种工况对发电机并无危险,但由于鼓风损失,汽轮机尾部叶片有可能过热而造成汽轮机事故,故大型机组要装设用逆功率继电器构成的逆功率保护,用于保护汽轮机。
a)200MW及以上的汽轮发电机,宜装设逆功率保护。
b)对燃汽轮发电机,应装设逆功率保护。
c)保护装置由灵敏的功率继电器构成,带时限动作于信号,经汽轮机允许的逆功率时间延时动作于解列。
d)对300MW及以上汽轮发电机,发电机励磁回路一点接地,发电机运行频率异常,励磁电流异常下降或消失等异常运行方式,保护动作于停机,宜采用程序跳闸方式。
采用程序跳闸方式,由逆功率继电器作为闭锁元件。
(13)低励、失磁保护:为防止发电机低励(励磁电流低于静稳极限所对应地励磁电流)或失去励磁(励磁电流为零)后,从系统中吸收大量无功功率而对系统产生不利影响而装设的保护。
不允许失磁运行的发电机及失磁对电力系统有重大影响的发电机应装设专用的失磁保护。
a)对汽轮发电机,失磁保护宜瞬时或短延时动作于信号。