发电机纵差动保护培训资料
发电机的差动保护

从图 3可以看出 ,发电机 DG的 A、B、C三相各 有 2组绕组 ,形成了 2 个中性点 d1 和 d2 ,当发电机 通过正常负荷电流或外部短路电流时 , 2 个中性点 d1 上的电位 <1 和 d2 上的电位 <2 相同 ,中性点连接 线上没有电流通过 ,继电器 KA 不动作 。当任一相 的 1组绕组发生匝间短路或绕组脱焊时 , d1 和 d2 之 间的电位差 < = <1 - <2 ,中性点连接线上就有电流 通过 ,若此电流能够启动继电器 KA ,即可动作于发 电机的断路器跳闸和发电机灭磁 。
图 4 发电机纵联差保护原理
以图四 ( a)的中相为例 (其它两相的继电器未画出 , 原理相同 ) ,当发电机正常运行或在差动保护区外 ,
例如断路器的 B、C相短路 ,此时 1TA 和 2TA 一次侧 通过的电流大小相等 、方向相同 。由于 1TA 和 2TA 的同名端朝向同一方向 , 1TA 和 2TA 的二次侧异极 相连并列接在差动继电器 KA 的线圈上 , KA 中流过 的差动电流 iKA = i1 - i2 = 0,所以 KA 不动作 。
3 结语
要提高船舶的质量 ,必须增强船厂的质量意识 , 提高船厂造船技术的整体水平 。船检部门应该帮助 船厂培训技术人员和技术工人 ,督促船厂添置必要 的造船设备及检测工具 ,敦促船厂严格按造船规范 标准建造船舶 。
纵联差动保护原理

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD接于其差回路中,当正常运行或外部故障时,I1 与 I2 反向流入,KD的电流为11TAIn- 22TAIn=1I' - 2I'≈0 ,故KD不会动作。
当在保护区内K2点故障时, I1与 I2 同向流入,KD的电流为:11TAIn+ 22TAIn=1I' +2I'=2kTAIn当2kTAIn大于KD的整定值时,即1I' - (3)max max/unb st unp i k TAI K K f I n=≠0 ,KD动作。
这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥Iset ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示。
通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst ——同型系数,取;Kunp ——非周期性分量影响系数,取为1~; fi ——TA 的最大数值误差,取。
为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流,即Iop=(Krel 为可靠系数,取)。
越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低。
此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。
对于大、中型发电机,即使轻微故障也会造成严重后果。
为了提高保护的灵敏系数,有必要将差动保护的动作电流减小,要求最小动作电流=(IN 为发电机额定电流),而在任何外部故障时不误动作。
发电机保护及原理课程课件

三 发电机定子绕组 的单相接地保护
(一)、发电机定子绕组单相接地故障的分 )、发电机定子绕组单相接地故障的分 析
1.定子绕组单相接地故障的零序电压 1.定子绕组单相接地故障的零序电压
1)当机端单相接地时 当机端单相接地时: 当机端单相接地时
& = 1 (U′ + U′ + U′ ) = 1 (U ′ + U ′ ) = −U & & & & & & U0 U V W V W U 3 3
转子绕阻绝缘破坏的故障形式及其危害
2 .转子绕组两点接地
2. 1部分绕阻被短接,使励磁电流增大,转子绕阻因 过热而烧伤; 2.2故障点流过短路电流,烧伤转子本体; 2.3部分绕阻被短接,使气隙磁通失去平衡,引起机 体振动。 2.4对汽轮发电机,还可能使轴系和汽机磁化。
保护的构成原理
图 9—9 零序电压匝间短路保护 9 原理接线图
当发电机正常运行时: 1)当发电机正常运行时:
TV0 的第三绕组没有输出电压, 的第三绕组没有输出电压,
保护不动作。 即 3U0 = 0 ,保护不动作。 当发电机内部或外部发生单相接地故障时: 2)当发电机内部或外部发生单相接地故障时:
发电机纵差保护的原理
2. 标积制动式发电机纵差动保护原理
动作电流、制动电流及其动作判据: 动作电流、制动电流及其动作判据: 判据 动作电流: 动作电流: I op 制动电流: 制动电流:
& & = I1- I 2
& & I res = S I 1 I 2 • cos θ
动作判据: 动作判据: I&1 − I&2
(三)、基波零序电压和三次谐波电压 )、基波零序电压和三次谐波电压 构成的100%定子接地保护 构成的 %
纵联电流差动保护-教学提纲

图1 输电线路纵联电流差动保护示意图
一、纵联电流差动保护概述
纵联电流保护仅反映线路内部故障,不反映 正常运行和外部故障。
理论上,具有输电线路内部短路时动作的绝 对选择性。
可以实现无时限跳闸(常用作主保护)。 按照动作原理分为:电流差动保护和电流相
位差动保护。
二、纵联电流差动保护的工作原理 ——故障特征分析
3、影响因素之三:负荷电流
重载线路发生高阻接地故障时,故障电流不大,穿越性 的负荷电流成为制动的主要因素。可能引起保护拒动。
M
.
Im
.
I m
.
Il
Rg
.
N
In
.
I n
图4-30 负荷电流对纵联电流差动保护的影响示意图
谢谢!
输电线路纵联保护
纵联电流差动保护
主要内容
一、纵联电流差动保护概述 二、纵联电流差动保护的工作原理 (一)故障时电气量特征 (二)电流差动保护的基本原理 (三)相位差动保护的基本原理 三、同步测量方法 四、影响因素分析 五、致谢
一、纵联电流差动保护概述
M
.
IM
.
Im
d1
KD
.
Id
.
IN
.
In
N d2
op0
动作特性:动作电流不是定值,而是随制动电流变化的特性。
二、纵联电流差动保护的工作原理
——相位差动保护 1.电流相位特征
内部故障
外部故障
I& M
I& N
I& M
I& N
iM
iN
t
iM
t
t iN
t
I&M I& N 0
继电保护技术培训(差动保护)

利用变压器励磁涌流中含有大量二次谐波分量的特征,通 过检测差动电流中的二次谐波分量大小来闭锁差动保护。 动作方程如下:
I cd 2>K xb I cd
Icd2 Kxb Kxb A、B、C任一相中二次谐波分量值; 二次谐波制动系数;取值范围为0.1~0.35 对应相的差动电流数值;
二次谐波制动系数一般取0.2,若出现变压器空载合闸(充电)时 差动保护误动情况,可将系数值适当降低。
3.4 两折线比率差动保护整定值 A 制动系数Kz取值范围一般为0.3~0.5, 三折线特性时取较小值。 B 制动电流Ig取值范围一般为0.5~1.0IN, 一般取 1.0IN 较为合理。 C 门槛电流Iqd=Kz×IN 确保制动系数不随制动电流而变化。 D 差动速断电流Isd取值范围一般为4~ 10IN ,小容量变压器取较大值,反之 亦然。 注意:
外部故障时: I1 与 I 2 数值大小不等,但相位相反。 制动电流IZd > 差动电流Icd 内部故障时: I1 与 I 2 数值大小不等,相位相同。 制动电流IZd ≈
1 差动电流Icd 2
原理示意图
四川能投集团继保培训
差动保护整定计算
四、变压器差动保护的整定计算
3.3 两折线比率差动保护动作方 程 任一相动作方程如下:
2.5 变压器励磁涌流的影响
所谓励磁涌流,就是变压器空载合闸时的暂态励磁电流。 由于变压器的励磁电流只流经它的电源侧,故造成变压 器两侧电流不平衡,从而在差动回路内产生不平衡电流。
四川能投集团继保培训
差动保护整定计算
Hale Waihona Puke 三、几种差动保护方案的比较
1、需考虑相位补偿方案
变压器差动保护
2、需考虑励磁涌流的影响 3、需考虑分接头调整的影响
纵联差动保护原理

一、发电机相间短路的纵联差动保护将发电机两侧变比和型号相同的电流互感器二次侧图示极性端纵向连接起来,差动继电器KD 接于其差回路中,当正常运行或外部故障时,I 1 与 I 2 反向流入,KD 的电流为11TA I n - 22TA I n =1I '— 2I '≈0 ,故KD 不会动作.当在保护 区内K2点故障时, I1与 I2 同向流入,KD 的电流为:11TA I n + 22TA I n =1I '+ 2I '=2k TAI n当2k TAI n 大于KD 的整定值时,即 1I ' — (3)maxmax /unb st unp i k TA I K K f I n =≠0 ,KD 动作。
这里需要指出的是:上面的讨论是在理想情况下进行的,实际上两侧的电流互感器的特性(励磁特性、饱和特性)不可能完全一致,误差也不一样,即nTA1≠nTA2,正常运行及外部故障时,2k TAI n ≥I set ,总有一定量值的电流流入KD, 此电流称为不平衡电流,用Iunb 表示.通常,在发电机正常运行时,此电流很小,当外部故障时,由于短路电流的作用,TA 的误差增大,再加上短路电流中非周期分量的影响,Iunb 增大,一般外部短路电流越大,Iunb 就可能越大,其最大值可达:.min.min .min()brk brk op ork brk op I I I K I I I >≥≤+式中:Kst —-同型系数,取0.5;Kunp--非周期性分量影响系数,取为1~1。
5; fi —-TA 的最大数值误差,取0.1。
为使KD 在发电机正常运行及外部故障时不发生误动作, KD 的动作值必须大于最大平衡电流Iunb.max ,即Iop=KrelIunb 。
max(Krel 为可靠系数,取1。
3)。
Iunb 。
max 越大,动作值Iop 就越大,这样就会使保护在发电机内部故障的灵敏度降低.此时,若出现较轻微的内部故障,或内部经比较大的过渡电阻Rg 短路时,保护不能动作。
纵联电流差动保护

4.4.1 纵联电流差动保护原理
外部短路时穿过两侧电流互感器的实际短路电流 可I re以s 采 用以下方法计算:
(2)带制动特性的差动继电器特性 这种原理的差动继电器有两组线圈:制动线圈和动作线圈。
制动线圈流过两侧互感器的电流之差(循环电流) Im ,In 动作线圈流过两侧互感器的电流之和 Im ,In动作条件为:
I mI nKI mI nIo0p
K
I op 0
制动系数,在0~1之间选择。 很小,克服继电器机械摩擦或保证电路状态发生翻转做需要的值。
比率制动方式
Ires0.5I mI n, Ires0.5I mI n 标积制动方式
Ires I mI nco1s8( 0m)n co1s8( 0m)n0
0
co1s8( 0m)n0
在差动继电器的设计中,差动的动作门坎随着 I res 的增大而增大, I res 起制动作用,称为制动电流。动作
的电流(不平衡电流)为:
I unb I mI nnT 1( A I MI N)
电流继电器正确动作时,差动电流(动作电流) I 应r 躲过
最大不平衡电流,即:
Ir I mI n Iunb
4.4.1 纵联电流差动保护原理
在工程上,不平衡电流稳态值采用电流互感器的10% 的误差曲线按下式计算:
Iun b 0.1KstKnp Ik
因此可以从高频信号的连续和间断反应两端电流相位比 较结果,构成相位纵联保护。
下面结合图形具体说明。
区外故障时
《课程讲解》-4.4 纵联电流差动保护

故障启动发 信机元件
收信比较时间
启
收
元件,功能分 析见后页
发信机操作 发
I1KI2 元件,正波发信信 信
器
收信比较时间t 3 元件
时间元件 在t 3收到输电线路上的高频信号后,将延时 后t有3 输出,并展宽 时间t 4。
延时 t 3时间才有输出的原因
t3
t3
180° 360°
因此可以从高频信号的连续和间断反应两端电流相位比 较结果,构成相位纵联保护。
下面结合图形具体说明。
区外故障时
~
Im
k2 ~
In
180° 360°
t
180° 360°
当某端的电流处于正半波时,由该端保护向输电线上发出高频信号。 该高频信号可以同时被本端保护和对端保护所接收。
可见,区外故障时,两端电流反向,输电线路上存在连续的高频信号。
K st
当两侧互感器的型号、容量相同时取0.5,不同取1。
K np
非周期分量系数。
Ik
外部短路时流过互感器的短路电流(二次值)。
可见:不平衡电流的大小和外部短路电流的大小有关,短路 电流越大,不平衡电流越大。
4.4.1 纵联电流差动保护原理
因此,差动保护的判据有两种思路: (1)躲过最大不平衡电流Iunb.max,这种方法可以防止 区外短路的误动,但对区内故障则降低了差动保护的灵 敏度;
部短路时有足够灵敏度的要求。
KsenIIsretIkI.smeitn2
I k . min
单侧最小电源作用且被保护线路末端短路时,流过保护的 最小短路电流。
若纵差动保护不满足灵敏度要求,可采用带制动特性 的纵差动保护。
4.4.1 纵联电流差动保护原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发电机纵差动保护培训资料
本厂1、2号发动机负粗电流不得大于8℅IN。
因此,在发电机上(尤其是大型发电机)应装设定子匝间短路保护。
(2)发电机不同相匝间短路时,必将出现环流的短路电流。
电机网消息:发电机纵差动保护培训资料1、发电机纵差动保护原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外部故障,而且还要求无延时地切除内部故障,为此而设置发电机纵差动保护。
在发电机中型点侧配置一组电流互感器,在发电机出口配置一组电流互感器,其保护范围为两电流互感器之间的发电机定子绕组及引出线。
两电流互感器是同一电压等级、同变比、可同型及特性尽可能相近的,其不平衡电流比较小。
为防止外部短路暂态不平横电流的影响,差动继电器可选用带中间速饱和电流器的继电器。
发电机纵差动保护培训资料
不平衡电流计算只考虑两电流互感器不一致而产生的不平蘅电流。
Ibp.max =KftqKtxfiI(3)dmax Kftq—非周期分量影响系数BCH—2继电器取1 Ktx—同型系数取0.5 fi=0.1 ID(3)max —外部短路最大短路电流周期分量为了防止电流互感器二次回路断线引起保护误动,设计有电流互感器二次回路断线监视装置,在发电机电流互感器二次回路断线后延时发信。
正常运行时发出断线信号后,运行人员应将差动保护退出,以防在断线情况下发生外部短路时差动保护误动。
2、发电厂330KV发电机差动保护蒲城发电厂1、2号发动机采用单星形中型点经中值电阻(1000欧)接地接线方式,差动保护采用BCH—12型差动继电器,保护范围是中型点CT与发电机出口CT之间、反映相间短路和单相接地故障,此保护未设CT断线闭锁,依靠躲过单相CT断线二次不平衡电流来闭锁CT断线。
发电机另外与主变共设置一套差动保护,保护范围是330KV两个出口开关CT、发电机中性点CT、厂高变低压侧两分支CT之间的接地、相间短路。
3、发电机纵差动保护的评价1)发电机纵差动保护不能反映定子绕组匝间短路;2)发电机定子绕组不同地点发生短路时,由于定子绕组多点感应电动势不同及短路阻抗不同,所以短路电流大小不同,中性点附近短路或接地,差动保护不灵敏。
同步发电机构纵差动保护一、发电机纵差动保护的作用原理对发电机相间短路的主保护,不但要求能正确区别发电机内、外故障,而且还要求无延时地切除内部故障。
由变压器差动保护的讨论可知,差动保护可以满足作为发电机主保护的基本要求。
二、发电机纵差动保护的特点由于被保护的对象是定子绕组,因此,当定子一相绕组发生匝间短路时,绕组两端的电流仍同方向,流人差动继电器的只有不平衡电流,差动继电器不会动作,故它不能反应匝间短路。
在定子绕组不同地点相简短路时,由于定子绕组各点感应电动势不同,以及短路回路阻抗不同,所以短路电流的大小不一样。
经分析得出如下结论:1)当过渡电阻不为零时,在中性点附近短路时,差动保护可能不动作,即在中性点附近经电弧电阻短路时,可能出现死区。
因此,要求发电机纵差动保护灵敏度尽可能高,尽可能减少它的死区。
2)由于发电机电压系统的中性点一般不接地的或经大阻抗接地,单相接地时的短路电流较小,差动保护不能动作。
故必须设置独立的接地:保护。
大容量发电机应采用负序反时限过流保护。