聚谷氨酸的生物合成及应用

合集下载

γ-聚谷氨酸的合成、性质和应用

γ-聚谷氨酸的合成、性质和应用

γ-聚谷氨酸的合成、性质和应用彭英云;张涛;缪铭;沐万孟;江波【摘要】γ-聚谷氨酸是一种生物可降解的高分子聚合物,可由微生物发酵得到。

γ-聚谷氨酸具有良好的水溶性和吸附性,能彻底被生物降解,对环境和人体无害,这使得γ-聚谷氨酸在食品、化妆品、医药和农业等领域具有广阔的应用前景。

综述了γ-聚谷氨酸的化学结构、性质、生产方法及其应用。

【期刊名称】《食品与发酵工业》【年(卷),期】2012(038)006【总页数】6页(P133-138)【关键词】γ-聚谷氨酸;生物合成;生物可降解;应用【作者】彭英云;张涛;缪铭;沐万孟;江波【作者单位】江南大学食品科学与技术国家重点实验室,江苏无锡214122 盐城工学院化学与生物工程学院,江苏盐城224003;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122;江南大学食品科学与技术国家重点实验室,江苏无锡214122【正文语种】中文【中图分类】TQ929γ-聚谷氨酸(Poly γ-Glutamate,γ-PGA)是一种多聚氨基酸类的环保型多功能生物可降解高分子材料。

作为一种高分子聚合物,γ-PGA具有一些独特的物理、化学和生物学特性,如良好的水溶性,超强的吸附性,能彻底被生物降解,无毒无害,可食用等,可作为诸如保水剂、增稠剂、絮凝剂、重金属吸附剂、药物/肥料缓释剂及药物载体等的原料,在农业、食品、医药、化妆品、环保、合成纤维和涂膜等领域具有广泛的应用前景。

近十几年以来,日本、韩国、德国、美国、加拿大、台湾等多个国家和地区的学者在γ-PGA合成与应用方面进行了很多的研究并取得一定的成果,国内一些高校和研究所对γ-PGA的研究正处于兴起阶段。

随着人们环保意识的增强,γ-PGA的研究和应用越来越受到世界各国学术界的关注,已成为生物降解高分子材料的研究热点之一。

微生物合成的聚谷氨酸及其应用

微生物合成的聚谷氨酸及其应用

收稿日期: 2007-12-21 作者简介: 张艳丽( 1982-) , 女, 硕士研究生, 研究方向: 天然活性物的提取及应用研究 通讯作者: 高华, 教授, 硕士生导师, 电话:0532-83812435, E-mail:gaohua63@126.com
2008 年第 4 期
张艳丽等: 微生物合成的聚谷氨酸及其应用
Ke y words : γ- PGA( Polyglutamic acid) Biosynthesis Strains Gene Application
γ-聚 谷 氨 酸 ( γ-PGA) 是 一 种 由 D-和 L-谷 氨 酸 通 过 γ-谷 氨 酰 键 结 合 而 成 的 一 种 特 殊 的 阴 离 子 聚 合 物 , 通 常 由 5 000 个 左 右 的 谷 氨 酸 单 体 组 成 , 相 对 分 子 量 一 般 在 10 万 ~200 万 之 间 。 最 早 于 1937 年 Ivanovic 等 发 现 炭 疽 芽 孢 杆 菌 ( Bacillus anthracis) 的 荚 膜 物 质 的 主 要 成 分 是 D-谷 氨 酸 的 聚 合 物 。 而 1942 年 Bovamick 等 首 次 发 现 枯 草 芽 孢 杆 菌 能 够 产 生 γ-聚 谷 氨 酸 , 以 后 进 一 步 发 现 短 小 芽 孢 杆 菌 及 地 衣 芽 孢 杆 菌 等 也 能 产 生 γ-PGA。由 于 微 生 物 合 成 的 γ-PGA 是 一 种 水 溶 性 的 、生 物 可 降 解 的 、对 人 体 和环境无害的生物高分子, 因此具有广阔的应用前 景 : 可 作 为 增 稠 剂 、保 湿 剂 、苦 味 掩 盖 剂 、防 冻 剂 、缓 释 剂 、生 物 粘 合 剂 、药 物 载 体 、高 分 子 纤 维 、高 吸 水 树脂、生物絮凝剂和重金属吸附剂而应用于食品、 化 妆 品 、医 药 、农 业 及 工 业 等 众 多 领 域 [1]。

γ-聚谷氨酸的生物合成及提取工艺

γ-聚谷氨酸的生物合成及提取工艺

形成剪切力作用,对培养群体细胞产生不利影响。之外,搅 因此,根据实验研究发现,搅拌转速越高,此时菌体的代谢
拌转速较大,还会形成大量泡沫,使发酵体积增加,对于发 酵来说是不利的,因此,研究非流动型流体发酵参数,利于 优化发酵过程,提高 γ-PGA 产率。本研究在 5L 发酵罐中分析 了不同转速对于分批发酵 γ-PGA 的影响,具体如下。 1.1 实验材料
Abstract :γ-Polyglutamic acid is an important biopolymer material,with good water solubility and biodegradability,and is widely used in many fields such as medicine and food.Focus on the analysis of the preparation process of γ-polyglutamic acid,expound the influence of stirring speed on the batch fermentation of Bacillus snbtilis NX2 r-polyglutamic acid,construct the kinetic model of γ-polyglutamic acid batch fermentation,and explore the effect of γ-polyglutamic acid on the batch fermentation of Bacillus snbtilis NX2.The extraction process of polyglutamic acid.
本实验中使用菌株分批发酵,结合上述实验方法,通过 发酵获得 γ-PGA 发酵液,将发酵液稀释 25 倍之后,使其光密 度值为 0.323,浓度对应 24g/L,发酵液呈淡黄色。将 pH 调至 3.0,取 1L 发酵液,分别采用不同孔径微滤膜处理,比较发酵 原液以及透过液菌体含量、产物浓度,计算菌体去除率以及 产物损失率。 5.2 实验结果

聚谷氨酸密度

聚谷氨酸密度

聚谷氨酸密度一、聚谷氨酸简介聚谷氨酸(Polyglycine)是一种由多个谷氨酸分子聚合而成的多肽物质。

谷氨酸是一种天然存在的氨基酸,具有亲水性和疏水性两种性质。

在生物体中,谷氨酸常被用作合成蛋白质和其他生物分子的原料。

而聚谷氨酸则是谷氨酸在特定条件下形成的聚合体,具有特殊的理化性质和生物活性。

二、聚谷氨酸的理化性质聚谷氨酸具有较好的水溶性和稳定性,能够在广泛的pH值范围内保持稳定。

同时,聚谷氨酸还具有良好的生物相容性和生物可降解性,因此在医疗、化妆品、食品和环保等领域具有广泛的应用前景。

此外,聚谷氨酸的分子量大小和分布也对其理化性质产生影响。

三、聚谷氨酸的生物合成与调控聚谷氨酸的生物合成主要在微生物中完成,如大肠杆菌、酵母菌等。

其合成过程涉及到多个酶的参与,如谷氨酸脱氢酶、氧化还原酶等。

这些酶在特定的条件下,催化谷氨酸的聚合反应,形成不同分子量和性质的聚谷氨酸。

此外,聚谷氨酸的生物合成还受到营养物质、代谢产物等外界因素的调控。

四、聚谷氨酸的生理功能1.保湿性:聚谷氨酸具有较好的保湿性能,能够有效地保持皮肤水分,增强皮肤弹性,因此被广泛应用于化妆品和护肤品中。

2.营养性:聚谷氨酸可以被人体吸收利用,作为营养物质提供能量和合成其他生物分子的原料。

3.药物载体:由于聚谷氨酸具有良好的生物相容性和生物可降解性,因此可以被用作药物载体,用于药物传递和靶向治疗。

4.环保应用:聚谷氨酸可生物降解,因此在环保领域可以作为塑料替代品或其他有害物质的吸附剂,有助于减少环境污染。

五、聚谷氨酸的食品应用1.食品添加剂:聚谷氨酸具有较好的稳定性、水溶性和口感,因此在食品加工中可以作为增稠剂、稳定剂、调味剂等添加剂使用,改善食品的质构和口感。

2.营养强化:聚谷氨酸作为一种营养物质,可以添加到食品中提供氨基酸和其他营养成分,提高食品的营养价值。

3.防腐保鲜:聚谷氨酸具有一定的抗菌作用,可以用于食品防腐和保鲜,延长食品的保质期。

聚谷氨酸有哪些主要用途?

聚谷氨酸有哪些主要用途?

聚谷氨酸有哪些主要用途?
谷氨酸是一种氨基酸,在生物体内起着多种重要的生物学功能。

下面是一些主要的用途:
1. 蛋白质合成:谷氨酸是蛋白质合成的重要组成部分,它参与构建蛋白质链的过程。

2. 神经递质:谷氨酸是中枢神经系统的主要兴奋性神经递质。

它在神经元间进行信号传递,参与神经细胞的通讯。

3. 氮代谢:谷氨酸参与身体内的氮代谢途径,其中包括尿素循环和谷氨酰胺循环。

4. 能量产生:谷氨酸通过参与三羧酸循环(也称为克雷布斯循环)将营养物质转化为能量。

5. 维持酸碱平衡:谷氨酸可以作为临床上调节酸碱平衡的药物使用,用于治疗某些酸碱失衡病症。

总的来说,谷氨酸在身体的生物化学过程中扮演着多种重要角色,涉及到蛋白质合成、神经传递、氮代谢、能量产生和酸碱平衡等方面。

聚谷氨酸的机理特性在肥料上的应用

聚谷氨酸的机理特性在肥料上的应用

高度水溶性
調理土壤效果
可沖施、用於液體水溶肥料配方,效果快
改善土壤酸化程度、緩衝pH
三、聚谷氨酸未來發展
肥料增效 土壤調理
謝謝! 敬請指教
以核心生物技術 開創健康新生活
22
Sclerotium rolfsii 白絹菌 Rhizoctonia solani立枯菌
聚谷氨酸試驗組pH到5.6
未施用聚谷氨酸對照組pH在3.6
不同濃度的γ-PGA醱酵液濃縮粉末添加於培養基中,對植物病 源菌的抑菌圖片(資料來源:本公司委託省農業試驗所)
γ- PGA之效果特色 保肥效果 促進肥料利用 用量少 γ- PGA帶有很強負電荷可吸附螯合陽離子,減少流失 螯合被固定之陽離子,釋出磷酸根予植物吸收,增進肥效 添加量為千分之6-10
處 理
鮮 葉 重 ( g ) 4 6 . 8 4 a 2 4 . 6 5 c
3 0 . 4 2 d
1 3 . 2 0 d
台肥39號粒狀複合肥(12 -18- 12)
1.西紅杮於初果期起,每隔11天,連噴三次
23th June, 2013
23th June, 2013: Height: 40cm
23th June, 2013: Tomatoes on first stem, diameter: 3cm
中國植物營養大會暨新型肥料論壇
聚谷氨酸的機理特性在肥料上的應用 及未來發展
味丹企業股份有限公司 聚谷氨酸業務部
1


一、聚谷氨酸的機理特性
二、聚谷氨酸在肥料上的應用
三、聚谷氨酸未來發展
味丹集團掌握胺基酸完整價值鏈
味丹垂直整合能力
掌握原 料來源 自有發 電機組 私人港 口設備 完整生 產設備 行銷全球能力

新型药物载体聚谷氨酸的合成及其应用

新型药物载体聚谷氨酸的合成及其应用

新型药物载体聚谷氨酸的合成及其应用[关键词]:谷氨酸,生物降解,制备,药物载体健康网讯:γ-聚谷氨酸(Polyglutamic acid,PGA)是由L-谷氧酸(L-Glu)、D-谷氨酸(D-Glu)通过肽键结合形成的一种多肽分子,在自然界或人体内能生物降解成内源性物质Glu,不易产生积蓄和毒副作用。

它的分子链上具有活性较高的侧链羧基(-COOH),易于和一些药物结合生成稳定的复合物,是一类理想的体内可生物降解的医药用高分子材料。

本文综述了PGA的制备方法及其作为药物载体和医用粘合剂的应用。

PGA的制备目前PGA的生产技术主要有化学合成法、提取法、生物聚合法。

化学合成法传统的肽合成法传统的肽合成法是将氨基酸逐个连接形成多肽,这个过程一般包括基团保护、反应物活化、偶联和脱保护。

化学合成法是肽类合成的重要方法,但合成路线长、副产物多、收率低,尤其是含20个氨基酸以上的纯多肽合成。

二聚体缩聚由L-Glu,D-Glu及消旋体(DL-Glu)反应生成α-甲基谷氨酸,后者凝聚成谷氨酸二聚体后,再和浓缩剂1-(3-二甲氨丙基)3-乙基碳亚二胺盐酸盐及1-羟苯基三吡咯(1-hy droxy benzotriazole)水合物在N,N-二甲基甲酰胺中发生凝聚,获得产率为44%~91%、相对分子质量为 5000~20000的聚谷氨酸甲基酯,经碱性水解变成γ-PGAo化学合成法难度很大,没有工业应用价值。

取取法早期,日本生产PGA大多采用提取法,用乙醇将纳豆(一种日本的传统食品)中的PGA 分离提取出来。

由于纳豆中所含的PGA浓度甚微,且有波动,因此,提取工艺十分复杂,生产成本甚高,同样难以大规模生产。

微生物的生物素合法自从1942年Bovar nick等发现芽孢杆菌属微生物能在培养基中蓄积γ- PGA以来,利用微生物生物聚合生成γ-PGA的研究十分活跃。

地衣杆菌发酵制备地衣杆菌ATCC9945a 是能够生产γ-PGA的细菌族的一种。

γ—聚谷氨酸的合成

γ—聚谷氨酸的合成
γ—聚谷氨酸的合成
1、γ—聚谷氨酸的合成
简介:γ—聚谷氨酸(γ— PGA) 是一种可由微生物大量生物合成的氨 基酸聚合物, 它由 D—型或L—型谷氨酸通过γ酰胺键连接而成。如图 1。 γ—聚谷氨酸作为一种纯天然可降解生物材料,可以将其制成生 物可降解材料或者用于 γ—聚谷氨酸的纯度的分析,另外由于分子 中含有制品,在食品、医药、农业、日化等行业 具有广阔的应用前景。
1、γ—聚谷氨酸的合成
有待研究和解决的问题和设想: ①怎样控制发酵液的粘稠度从而提高产γ—聚谷氨酸的量 ②构建可以将L型谷氨酸转化为D型谷氨酸的工程菌(实验室目前 已经开展) ③通过分离γ—聚谷氨酸聚合酶直接合成 γ— 聚谷氨酸的方法。 (psgB、psgC、psgA)
1、γ—聚谷氨酸的合成
优化:γ—聚谷氨酸合成基本过程是:首先以L谷氨酸为合成的起始 底物,在谷氨酸异构酶(消旋酶)的作用下转变成D型谷氨酸,再通 过位于细胞质膜上的合成酶复合体催化形成聚— γ—谷氨酸,并被 分泌到细胞外。 目前对B. Licheniformis ATCC9945a 、 B.subtilis IFO3335、 B.subtilis ATCC9945a (依耐型) B. subtilis TAM−4(非依耐型)这几类细菌 研究比较深入。我们实验室目前使用得是优化过的依耐型谷草芽 孢杆菌。不同菌株对碳氮源、通氧量、搅拌速度、金属离子、微 量元素、前体物质、生物素等的需求存在差异。目前我们正在通 过探索所优化发酵条件,希望可达到工业生产标准。
1、γ—聚谷氨酸的合成
合成方法:有文献报道, γ-聚谷氨酸生产主要有化学合成法、 提取法和微生物发酵法 3 种。前两种方法因合成的 γ-聚谷氨酸 分子量低、副产物多且成本高等无法实现工业化应用。所以目 前利用细菌生物合成γ—聚谷氨酸是主流方法。原理是通过这些 细菌体内的聚合酶,它催化谷氨酰基转移到受体上,当供体和 受体为同一物质时则会发生自动转肽。以原料谷氨酸为单体通 过酶转化法可得到高含量产物、低含量杂质的反应液,有利于 产物的分离纯化。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚谷氨酸的生物合成及应用
————————————————————————————————作者:————————————————————————————————日期:

题目聚谷氨酸的生物合成及应用姓名学号曹明乐3120104732
专业年级化工1201
聚谷氨酸的生物合成及应用
摘要:本文主要介绍了绿色高分子材料γ-聚谷氨酸的在工业上的生物合成及其在生活与工农业方面的应用。

关键词:γ-聚谷氨酸;微生物合成;应用
引言
随着材料科学和聚合物化学等相关高分子材料的快速发展,在其重要性日益凸现的同时,人们发现了它的不足之处,即大部分人工合成的高分子材料在自然界难以降解,也就是人们愈发关注的“白色污染”。

为了解决这个问题,人们开展了各种研究工作,制成了各种可降解材料,聚合氨基酸系列产品的开发也由此崭露头角。

近年来日本从一种常用食品----纳豆的黏液中提取出的γ-聚谷氨酸,开始引起人们的重视。

其最早发现于1913年,是一些芽孢杆菌的荚膜结构的主要成分,是一种生物自然合成的聚酰胺原料。

由于γ-聚谷氨酸具有增稠、成膜、保湿、黏合、无毒、水溶及生物可降解等性能,适用于食品、化妆品、生物医学和环境保护等领域,特别是近年来随着对γ-聚谷氨酸的深入研究,γ-聚谷氨酸作为一种高分子生物制品,愈来愈显现出广阔的研究及应用前景。

1γ-聚谷氨酸的生物合成
1.1分子结构
1.2制备方法
γ-聚谷氨酸的制备方法主要有三种,即化学合成法、提取法和微生物发酵法。

较之前两种,微生物发酵法简单方便,容易控制和操作,并且γ-聚谷氨酸的产率高,适于工业大规模生
产。

因此本文主要介绍微生物发酵法。

1.2.1γ-聚谷氨酸的制备
微生物发酵法在近几年得到了快速的发展和广泛的应用,主要体现在菌种的多样化、发酵方式与底物的多样化和添加剂的多样化。

目前应用于γ-聚谷氨酸生产的菌种主要是枯草芽孢杆菌、地衣芽孢杆菌和纳豆芽孢杆菌。

随着分子生物学及基因工程的发展,菌种筛选不仅停留在从自然界中获得高产菌,基因工程和诱变育种也得到了广泛的使用。

比如采用紫外、亚硝基胍以及γ射线对其进行复合诱变获得一株γ-聚谷氨酸高产突变株,在基础培养基中产量约是出发菌株的3.11 倍。

常规的微生物发酵方法有液体发酵法和固体发酵法,在生产γ-聚谷氨酸时常用的是液体发酵培养。

目前γ-聚谷氨酸常用的发酵生产培养基是E-培养基,国内很多研究单位对培养基的优化进行了研究,比如利用纳豆芽孢杆菌接种到处理过的大豆中,然后保湿 1~2昼夜后用生理盐水提取纳豆芽孢杆菌分泌在大豆表面的γ-聚谷氨酸,依次经过超滤、乙醇沉淀得到产品,同时也可以得到纳豆激酶和维生素 K2副产品。

为了降低生产成本,也可以以大豆加工的副产物豆粕为主要培养基,并加入 4 倍水及2%葡萄糖。

在利用枯草芽孢杆菌 NX-2 发酵生产γ-聚谷氨酸时,向培养基中添加甘油、吐温-80和二甲亚砜,不仅能提高产量,同时还能降低γ-聚谷氨酸的相对分子质量。

其既可以降低发酵液的粘度也能改变细胞膜的通透性促进菌体吸收营养成分,从而不但促进了菌体的生长还能刺激的γ-聚谷氨酸的合成。

在工业化生产中,宜用柠檬酸作碳源,可降低生产成本。

其中Mn2+和Mg2+对于提高γ-聚谷氨酸的产率也有很大的影响。

1.2.2γ-聚谷氨酸的分离提取
通过微生物发酵得到高黏度的发酵液,可用有机溶剂沉淀法、化学沉淀法和膜分离沉淀法获得γ-聚谷氨酸。

有机溶剂沉淀法是在生物制品的制备中应用最为广泛的一种沉淀方法,通常是向含有目标产物的水溶液中加入一定量亲水性的有机溶剂,能显著降低蛋白质等生物大分子的溶解度,使其沉淀析出。

提取γ-聚谷氨酸常用的有机溶剂有甲醇、乙醇和丙酮。

实验室操作的一般流程为:发酵液通过离心弃去菌体沉淀,包含γ-聚谷氨酸的上清液加入一定体积预冷的有机溶剂,放置一段时间后,沉淀物通过离心收集,通过冻干得到粗产品。

粗产品溶解在蒸馏水中,用蒸馏水反复透析数小时,透析液经过冷冻干燥得到纯品。

化学沉淀法利用的是盐析原理,向待提取液中加入一定量的无机盐或无机盐溶液使目标产物沉淀下来。

下图为化学沉淀法流程。

膜分离法得到γ-聚谷氨酸的流程为:先将发酵液调节pH小于 2,由于细胞表面的负电荷被中和了,所以很容易聚集沉淀,而γ-聚谷氨酸则很难附着在细胞外面,所以在低的离心速度下就能将细胞分开。

然后将含γ-聚谷氨酸的上层液体调节pH值至中性或者弱酸性(5~7),然后利用不同截留分子量的半透膜进行过滤而得到γ-聚谷氨酸纯品。

该方法几乎不用或者用很少量的有机溶剂,可以得到相对分子质量不同的γ-聚谷氨酸,还可以减少半透膜的消耗、减少水的用量、缩短操作时间、具有很高的效率。

1.2.3γ-聚谷氨酸的保存
分离提取得到的γ-聚谷氨酸需要冷冻干燥,并且它是吸湿性极强的高分子材料,需在低温干燥下保存以防吸水降解,人们通过研究发现在碱性条件下相对稳定,因此在实际工作中制备成钠盐有利于其稳定保存。

2γ-聚谷氨酸的应用
2.1 医药
γ-聚谷氨酸在自然界或人体内能被生物降解成谷氨酸,不易产生积蓄和毒副作用。

它的分子链上具有活性较高的侧链羧基,易于和一些药物结合生成稳定的复合物,是一类理想的体内可生物降解医药用高分子材料;还可以作为药物载体和医用粘合剂;利用其超强吸水
性可制成和生物体含水量相近的各种组织材料,而且此材料吸水后形成的凝胶柔软,具有人体适应性。

此外,γ-聚谷氨酸荚膜作为炭疽芽胞杆菌的致病因素之一,能保护细胞免受机体自身的免疫系统的攻击,故可用作疫苗,增强机体的被动免疫。

2.2 食品
γ-聚谷氨酸广泛的应用于一次性餐具、食品包装等行业中,是一种非常有用的绿色材料。

γ-聚谷氨酸食用安全,可作为各种食品的苦味掩盖剂,可改善饮料的口感;它可以作为高钠调味剂的替代品,为高血压患者和糖尿病患者所用。

γ-聚谷氨酸也能够使面粉的抗冻性增加,用其制作蛋糕和面包可以延缓面粉变质、维持食品外形;其还能增强钙的溶解度,促进钙在肠内的吸收,为骨质疏松患者也提供了福音。

此外,γ-聚谷氨酸还可以作为增稠剂、稳定剂、膳食纤维的辅助材料以及保健食品等应用于食品领域。

2.3日化用品
γ-聚谷氨酸可作为化妆品支持材料、皮肤保湿剂、表皮因子缓释剂、天然美容面膜等,其还可以作为高级皮革制品处理剂以及保湿剂等。

利用γ-聚谷氨酸还可制取一种新型护发液,并且它作为高吸水材料,还可以制作成妇女儿童用品,既无毒又有高吸湿作用。

环氧化合物与γ-聚谷氨酸盐混合得到乳化体系在催化剂的存在下反应得到聚酯类纺织品,这种纺织品可以作为混合纺面料、涤纶针织物、混合针织物等。

2.4 农业
γ-聚谷氨酸可作为一种对环境无害的肥料增效剂,提高农作物的产量和质量,缓和肥料的过度使用,最终减轻环境污染。

在珍稀花卉、苗木的运输中,可用γ-聚谷氨酸保持根系水分,有保鲜作用。

在干旱地区,可用γ-聚谷氨酸处理种籽,使其外部形成聚谷氨酸保湿膜,利于种子发芽、出苗。

在沙漠改造中,利用γ-聚谷氨酸吸水可减少沙土的水分蒸发量,以防止沙质土壤水分的过分流失,而且可以保持土壤结构的稳定性,改良土壤。

γ-聚谷氨酸的出现给沙漠变绿洲带来了新的希望。

2.5 工业
γ-聚谷氨酸可作为重金属吸附剂、螯合剂来处理重金属离子溶液以回收重金属,对冶金、工矿污水、电镀废水等的处理极有价值。

此外,以硅为基质的γ-聚谷氨酸膜的金属吸附能力已经接近以纤维素为基质的膜,并且还有优异的酸溶稳定性。

其在石油工业中用作油田处理剂、油水分离剂,在油田勘探中用作钻头润滑剂、泥浆凝胶剂。

γ-聚谷氨酸还可作为出色的绿色塑料,广泛用于食品包装、一次性餐具及其他各种工业用途中,在自然界可迅速降解,不会造成环境污染。

结语
随着氨基酸生产技术的不断革新,成本下降,进一步促进了氨基酸应用向多元化发展,应用领域已发展成熟。

水溶性的、可食用的聚谷氨酸已在“绿色化学产品”中崭露头角,然而我国在这方面的研究开发尚处于起步阶段,建立完整、系统、大规模的γ-聚谷氨酸的微生物生产方法是今后亟待解决的课题之一。

[参考文献]
[1] 陆树云.γ-聚谷氨酸的生物合成及提取工艺研究.南京工业大学,2006,6(1)
[2]游庆红等.γ-聚谷氨酸的生物合成应用.现代化工,2002,12(20)
[3]李德衡、赵兰坤、李树标.γ-聚谷氨酸的生物合成及提应用研究进展.发酵科技通讯,2012,7(15)
[4]孙先林、曾驰. γ-聚谷氨酸的微生物合成及应用. 广东化工,2012,10(15)
[5] 刘晓鸥等. 聚谷氨酸的生物合成及应用前景. 食品工程,2009,3(30)。

相关文档
最新文档