触觉传感器研究现状
国内外传感器现状及发展趋势

国内外传感器现状及发展趋势
一、传感器现状
传感器是当今技术发展过程中必不可少的部分,它是检测和控制环境的器件,能够检测到物体、生物体及其他环境参数,并将检测到的信息转化为电信号处理,控制环境参数,使得系统能够自动化操作并取得正确的结果。
近年来,由于电子技术的发展,传感技术也取得长足的进步,它不仅可以应用于消费电子、汽车、工厂自动化等领域,而且可以应用于仪器仪表、通信等军事领域,并且在生物医学、环境科学、空间探测等领域得到了广泛的应用。
目前,国内外传感器技术的发展已经达到了非常可观的水平,技术的改进使其性能有了质的提高,传感器的灵敏度更高,噪声更低,广泛的可调,价格也较低,较常规传感器可以检测更小单位的变化,这都为后续的技术应用奠定了坚实的基础。
二、传感器发展趋势
随着科学技术的发展,传感器技术也在迅速发展,未来几年传感器技术将出现以下发展趋势:
(1)开发更多高灵敏度、超小体积的传感器。
目前,国际上有不少国家正在加大投入,开发更多高灵敏度、超小体积的传感器,满足智能化和自动化技术要求。
(2)开发更多低功耗传感器。
基于液态金属磁流变弹性体的柔性触觉传感器

基于液态金属磁流变弹性体的柔性触觉传感器目录一、内容概括 (2)1.1 液态金属磁流变弹性体的基本概念 (2)1.2 柔性触觉传感器的研究现状及发展趋势 (4)1.3 研究的重要性和应用前景 (5)二、液态金属磁流变弹性体的基本性质 (6)2.1 液态金属磁流变弹性体的组成与结构 (8)2.2 液态金属磁流变弹性体的物理性质 (9)2.3 液态金属磁流变弹性体的力学特性 (10)三、柔性触觉传感器的设计原理 (12)3.1 传感器设计的基本思路 (13)3.2 传感器的工作原理及关键技术 (14)3.3 传感器的结构与组成 (15)四、基于液态金属磁流变弹性体的柔性触觉传感器的制备工艺 (17)4.1 制备流程 (18)4.2 关键制备技术 (19)4.3 制备过程中的注意事项 (20)五、柔性触觉传感器的性能表征与应用 (21)5.1 传感器的性能参数及测试方法 (23)5.2 传感器的性能表征结果 (24)5.3 传感器的应用实例及前景分析 (26)六、实验研究与分析 (27)6.1 实验设计与实施 (28)6.2 实验结果及分析 (29)6.3 实验结论与讨论 (30)七、结论与展望 (31)7.1 研究成果总结 (32)7.2 研究不足与展望 (33)7.3 对未来研究的建议 (34)一、内容概括本论文提出了一种基于液态金属磁流变弹性体的柔性触觉传感器,该传感器具有高灵敏度、良好的稳定性和适应性,能够在各种复杂环境中实现精确的触觉感知。
通过将液态金属磁流变弹性体与柔性电极相结合,该传感器能够实时检测接触面的力学特性变化,并将其转换为电信号输出。
我们详细探讨了液态金属磁流变弹性体的制备过程、柔性电极的设计以及传感器的集成方法。
通过对不同条件下传感器的性能进行测试和分析,我们验证了该传感器在触觉感知方面的有效性和优越性。
我们还讨论了该传感器在机器人触觉感知系统中的应用前景,以及潜在的商业化应用潜力。
触觉传感器及其在医疗设备中的应用研究

触觉传感器及其在医疗设备中的应用研究一、引言随着社会经济的发展和人们健康意识的增强,医疗设备在人们日常生活中的重要性越来越明显。
而在医疗设备中,触觉传感器则是一个不可或缺的组成部分。
触觉传感器具有较为广泛的应用,既可用于人体生理监测,也可用于医用机器人手术等领域。
本文将从触觉传感器的概念入手,介绍其应用于医疗设备领域的最新研究进展。
二、触觉传感器的概念触觉传感器是一种将力、形变、压力等机械刺激转换为电信号的传感器。
触觉传感器通常由感应元件与信号处理器两部分组成。
感应元件主要是用于与外界物体进行接触,获取机械刺激信号。
传统触觉传感器的感应元件通常采用金属片、电容板、光栅等自由面的结构设计,其中光栅结构是应用最广泛的一种,并且具有精度高、稳定性好等优点。
而信号处理器则是用于将感应元件获得的机械信号转换为电信号,进行相应的处理,得到目标物体的相关参数。
三、触觉传感器在医疗设备中的应用1. 睡眠监测仪近年来,随着人们生活水平的提高,失眠、痛风等睡眠障碍问题受到了广泛关注,市场需求也日渐扩大。
触觉传感器技术则具有得到有效入眠指标的优势。
例如可使用触觉传感器对睡眠者体表的压力分布进行全面监测,通过算法分析准确计算出睡眠效率等数据,为睡眠控制或睡眠治疗提供技术保障。
2. 手术机器人触觉传感器也在手术机器人等医疗领域中发挥着重要作用。
手术机器人具有精度高、操作轻松等优点,并且触觉传感器技术的引入也使得手术机器人操作更为安全,能够有效避免术中伤害等情况。
例如,可在手术机器人的手衣上添加触觉传感器,实时监测机器人手术器械对人体组织的压力、形状等状态,以便更好地掌握术中情况。
3. 心脏监护仪等生理监测设备触觉传感器技术也应用于生理监测设备中。
例如,可使用触觉传感器对心脏监护仪进行增强,通过监测人体心跳来预测疾病,并且提供详细的心脏功能参数。
通过这些参数检测,医生可以更好地掌握身体的状况,为治疗提供更好的参考。
四、触觉传感器在医疗设备中的前景触觉传感器在医疗设备中具有广泛的应用前景。
传感器技术发展现状与趋势文献

传感器技术发展现状与趋势文献传感器技术是现代工业、农业、医疗、环保等领域中不可或缺的一项技术。
随着科技的不断进步和应用领域的不断扩展,传感器技术也在不断发展和创新。
本文将从传感器技术的发展现状和趋势两个方面展开,探讨传感器技术的未来发展方向。
一、传感器技术的发展现状传感器技术的发展可以追溯到20世纪初,当时主要应用于工业自动化控制领域。
随着科技的不断进步和应用领域的不断扩展,传感器技术也得到了广泛应用。
目前,传感器技术已经涉及到了工业、农业、医疗、环保、交通等多个领域。
在工业领域,传感器技术已经成为工业自动化控制的重要组成部分。
传感器可以实时监测生产过程中的温度、压力、流量等参数,从而实现对生产过程的精确控制和优化。
在农业领域,传感器技术可以实现对土壤湿度、温度、光照等参数的监测,从而实现对农作物的精准管理和优化。
在医疗领域,传感器技术可以实现对患者的生命体征、病情等参数的监测,从而实现对患者的精准治疗和护理。
在环保领域,传感器技术可以实现对环境污染物的监测和控制,从而实现对环境的保护和治理。
在交通领域,传感器技术可以实现对车辆、行人等的监测和控制,从而实现对交通流量的优化和管理。
二、传感器技术的发展趋势随着科技的不断进步和应用领域的不断扩展,传感器技术也在不断发展和创新。
未来,传感器技术的发展趋势主要包括以下几个方面:1. 多功能化未来的传感器将不仅仅是单一的测量仪器,而是具备多种功能的智能传感器。
例如,可以实现对多种参数的监测和控制,同时还可以实现数据处理、通信等功能。
2. 微型化未来的传感器将越来越小,甚至可以实现微型化。
微型化的传感器可以更加方便地嵌入到各种设备和系统中,实现对设备和系统的实时监测和控制。
3. 无线化未来的传感器将越来越倾向于无线化。
无线传感器可以实现对设备和系统的远程监测和控制,从而提高工作效率和安全性。
4. 智能化未来的传感器将越来越智能化。
智能传感器可以通过学习和适应,实现对环境和设备的自主控制和优化。
电阻式柔性触觉传感器的研究与医养健康领域应用现状

研究与技术丝绸JOURNAL OF SILK电阻式柔性触觉传感器的研究与医养健康领域应用现状Research on resistive flexible tactile sensors and their current applications in the field of medical and health care殷㊀霞,张士进,田明伟,刘㊀红(青岛大学纺织服装学院,青岛266071)摘要:近年来,可穿戴智能系统的进步对柔性压力传感器提出迫切的需求㊂其中,电阻式柔性触觉传感器因其原理简单㊁易于加工㊁集成效率高等特点得到了迅速发展㊂但是,如何实现传感器在宽压力监测范围内,具有高灵敏度仍是研究者们要面临的挑战㊂为了解决上述问题,除了选择先进的功能材料和合适的衬底材料,优化传感器结构也是一个重要的研究方向㊂本文立足于传感器件的结构设计,分别介绍了一维的纤维∕纱线传感器件,基于表面微结构㊁纳米结构构筑的二维平面传感器件及具有空间结构和高空隙的多维立体结构传感器件,通过以上结构设计实现了传感器件性能的提升,最后分析了其在医养健康领域的实际应用进展㊂关键词:电阻式柔性触觉传感器;结构设计;医养健康;一维纤维∕纱线传感器件;二维平面结构传感器件;多维立体结构传感器件;健康监测中图分类号:TP 212.3;TQ 342.8㊀㊀㊀㊀文献标志码:A ㊀㊀㊀㊀文章编号:10017003(2024)02007609DOI :10.3969∕j.issn.1001-7003.2024.02.009收稿日期:20230914;修回日期:20231220作者简介:殷霞(2000),女,硕士研究生,研究方向为服装舒适性与功能服装㊂通信作者:刘红,讲师,lh 1221@ ㊂㊀㊀触觉是人类感知和识别物体的重要方式,在没有触摸的情况下,人类将无法获得物体的基本特征[1]㊂皮肤作为人体最大的器官,含有大量的神经传感器,赋予人们触觉感知能力,是人类感知外界环境中压力㊁温度㊁湿度及物体形状等物理信息最重要的途径㊂受人体皮肤的启发,仿生电子皮肤被开发并应用到人机交互㊁可穿戴医疗设备和智能机器人等各个领域[2]㊂对于仿生电子皮肤而言,其最重要的部分是可以模仿人体的触觉传感器[3]㊂常见的柔性触觉传感器依据其传感机制可分为电容式㊁压电式㊁摩擦电式和电阻式[4-5],如图1[6-10]所示㊂电容式传感器由两个平行电极和两电极之间的介电层组成,通过将压力刺激转化为电容信号进行传感,具有毫秒响应时间及出色的应变能力,但其灵敏度会随着器件尺寸的减小而降低[11-14]㊂压电式传感器是基于外加应变引起的压电材料极化导致电势变化,具有固有频率高㊁性能稳定等特点[15],但由于压电材料产生的输出电压是脉冲信号,故其大多应用于测量动态压力,而不能稳定地测量静态信号[16]㊂为了满足传感器自供电这一需求,基于摩擦电纳米发电机(TENG )[17]研发的传感器近几年受关注较多㊂摩擦电传感器通过将人体在运动过程中产生的能量进行收集并保存在电容器中,从而实现自供电[18],但极易受外部静电感应产生信号干扰的特性,限制了其应用场景[19]㊂而电阻式传感器因其工作原理简单㊁成本较低㊁信号采集方便等特性,成为了目前研究最多且应用最广泛的触觉传感器[4,20-22]㊂图1㊀柔性触觉传感器分类及其应用Fig.1㊀Classification and application of flexible tactile sensors电阻式触觉传感器的工作原理主要基于压阻效应,当传感器受到外界施加的压力时,外部压力被转换为电阻信号,以此来完成电信号的输出[23-24]㊂合理的结构设计,不仅可大幅67第61卷㊀第2期电阻式柔性触觉传感器的研究与医养健康领域应用现状度提升传感器的灵敏度及其他各项性能,而且还可以灵活地调整传感器的灵敏度和响应特性,以满足特定的应用需求[25-26]㊂对传感层进行结构创新设计,改变导电材料间的接触电阻及导电弹性复合材料中的导电路径,是提高电阻式触觉传感器性能重要的研究方向[27]㊂将柔性电阻式触觉传感器与可穿戴设备结合监测人体生理信号,如血压㊁心率㊁脉搏等,可为患者提供个性化康复方案[6,28]㊂也可将纤维∕纱线基柔性触觉传感器编织成床垫㊁坐垫等产品,实现身体不同部位的压力分布监测,可有效预防压疮生成[29-30],在医养健康领域具有重要意义㊂本文综述了近年来电阻式柔性触觉传感器的最新进展㊂首先根据其结构设计分别介绍了在不同维度上的研究进展,包括一维纤维∕纱线传感器件㊁二维平面结构传感器件㊁多维立体结构传感器件㊂随后分析了其在医养健康领域的实际应用进展㊂最后,讨论总结了电阻式柔性触觉传感器目前所面临的挑战㊂1㊀电阻式柔性触觉传感器的结构设计1.1㊀一维纤维∕纱线基传感器件一维纤维∕纱线结构因其柔软性㊁可编织性㊁形状适应性故具有优异的纺织加工性能[31-32],较多集成到纺织服装当中应用㊂大多数纤维∕纱线通过采用湿法同轴[33-34]㊁静电纺丝[35-36]㊁对纤维∕纱线进行特殊后处理(喷涂㊁浸渍[37]㊁原位生长[38]㊁化学气相沉积[39])的方法制备核壳结构㊂Hu等[39]通过化学气相沉积(CVD)工艺制造以石墨烯纤维作为芯层,原位生长的碳纳米管分层作为壳层的碳杂化纤维(CHF),如图2(a)所示㊂具有核壳结构的纤维∕纱线,纤维芯和外部的壳或包覆层可以相互作用,提高纤维材料的抗拉㊁抗压㊁抗弯等力学性能,也可以防止纤维芯受到外界环境的影响,同时可以根据需求调节其芯层或外壳的成分和厚度,从而使纤维材料可适应不同的应用领域和环境,且基于核壳结构的压阻式传感器件普遍具有较高的灵敏度和线性度㊂Zhong等[40]通过湿法纺丝制备的芯层为镀银尼龙,壳层为表面具有微孔结构的碳纳米管(CNTs)∕热塑性聚氨酯(TPU)的核壳压阻纱线,灵敏度高达84.5N-1㊂利用同轴纺丝和后处理方法相结合的方式[41],可制备具有三层核壳结构的导电复合纤维㊂Wang 等[42]将湿纺制备的已经具有核壳结构的纤维,又通过在纤维表层发生银镜反应,形成紧密堆叠的Ag纳米颗粒层,制备了具有三层核壳结构的导电复合纤维,如图2(b)所示㊂除了通过同轴纺丝实现纤维的核壳结构,还可选择在纺纱的过程中将纤维加捻成特殊的纱线结构,如包芯纱㊁包缠纱等赋予纱线核壳结构㊂Ding等[43]以柔性乳胶长丝为芯层,紧图2㊀一维纤维∕纱线基传感器件原理和结构示意Fig.2㊀Schematic diagram of the principle and structure ofone-dimensional fiber∕yarn-based sensor elements密缠绕包裹PET长丝为壳层,在PET长丝上沉积导电聚吡咯形成导电网络,且制备的导电纱线对应力非常敏感,如图2(c)所示㊂近年来,与核壳结构类似地使用弹性管状材料,如(弹性微管[44]㊁中空橡胶管[45])对液态导电金属进行封存,制作导电纱线的方法受到较多关注㊂与传统的核壳结构纱线相比,该方法制作的导电纱线,具有高度可拉伸和耐水洗的优点㊂Yu等[44]使用将液态金属合金共晶镓铟(eGaIn)沉积到弹性微管内制备的导电纱线编织的功能性织物,即使在洗衣机内经过了典型的洗涤循环,仍保持高功能性㊂综上所述,现有的一维纤维∕纱线传感器件主要基于核壳结构,其虽具有较高线性度,但传感器件的灵敏度和分辨率易受到纤维直径和长度的限制,在测量一些微小变化时可能精度不高㊂此外,纤维在使用过程中易疲劳和损伤,传感器的耐久性和稳定性受到影响㊂因此,在制作纤维∕纱线传感器件的时候,可选择使用更加耐久和稳定的纤维材料,如碳纤维和聚合物纤维等㊂1.2㊀二维平面结构传感器件可穿戴电阻式应变传感器通常由绝缘的柔性聚合物基体和导电材料两部分构成,为了获得高性能的传感器,除了需要选择合适的弹性基板及导电性好的敏感材料外,在二维导电层上设计并构建精细的微观结构或纳米级几何形状,是提高传感器灵敏度较为有效的方法㊂目前已出现的较为常见的微观结构如棘突结构[46-47]㊁微圆顶结构[48]㊁微纳米棒状结构[49]㊁微金字塔结构[50]㊁空心球微结构[17]㊁皱纹结构[15]㊁互锁结构[28]㊁微柱结构[51]及各种仿生微结构[21,52],这些微结构可以为传感器两电极之间提供丰富的接触点,来提高传感器的性能㊂77Vol.61㊀No.2Research on resistive flexible tactile sensors and their current applications in the field of medical and health care在这些微观结构中,因人类表皮的微观结构与砂纸表面具有相似的形貌,使用砂纸作为模板来制备的具有随机高度分布的棘突微结构[53],不仅可检测细微压力的极限且具有成本较低,制作工艺简单等优点㊂Sun 等[54]将石墨与聚二甲基硅氧烷(PDMS )的混合液倒在砂纸模板上,直接形成具有棘突结构的导电膜㊂皱纹结构的开发同样是仿制人类皮肤的一种微结构设计,类似于褶皱的结构为传感器提供了可拉伸性㊂Jia 等[15]通过梯度减少氧化石墨烯(rGO )形成具有皱纹结构的导电层,制备的传感器表现出出色的灵敏度,如图3(a )所示㊂为了设计出合理的微观结构,将特殊的生物∕植物表面微结构进行仿制,是一种便捷且能有效提高传感器灵敏度的方法㊂Yan 等[21]通过仿制银杏叶表面微结构制备的MXene 基压力传感器,灵敏度高达403.46kPa -1,如图3(c )所示㊂除了选择在织物㊁薄膜㊁凝胶等柔性基体表面进行微观结构设计,还可采用静电纺丝喷涂的方法[55],由于纤维的交错排列,同样可以在传感层表面形成精细的多层网络微结构㊂Gao 等[56]用柔性锡(IV )掺杂的SrTiO 3,采用溶胶-凝胶静电纺丝法制备的柔性陶瓷纳米纤维膜,在小于400Pa 的低压范围下灵敏度可达2.24kPa –1,且表现出优异的稳定性,如图3(b )所示㊂图3㊀二维平面结构传感器件原理和结构示意Fig.3㊀Schematic diagram of the principle and structure of atwo-dimensional planar structure sensor element综上所述,二维平面结构传感器件只能在有限的压力范围内具有高灵敏度,为了提高其应力监测范围,设计新型的织物表面微结构,增大阻值变化是有效的解决途径㊂同时在对织物进行导电处理时选择适合的导电材料,增加导电通道,通过改善导电材料的分散性可提高织物的导电性㊂1.3㊀多维立体结构传感器件多维立体结构设计的电阻式压力传感器,得益于其空间结构存在高孔隙且基材具有良好的弹性,相邻多孔骨架之间的 接触效应 可产生大幅度的电阻变化,使其总能在宽线性范围内具有高灵敏度㊂常见的制备多维立体空间结构的策略主要包括多层微结构叠加[52,57,58]㊁赋予三维(3D )多孔基材传感性能[59-61]㊁导电 骨架 团聚三维结构[62]㊂多层微结构构筑的立体结构可以很好地优化传感器线性传感范围,相较于单层微结构,使传感器能够在大的压力范围下保持高灵敏度[63]㊂Lee 等[28]堆叠多层具有互锁微圆顶结构设计的传感层,如图4(a )所示㊂由于逐层之间的应力分布,使传感器在0.0013~353kPa 的宽压力范围内可线性响应㊂直接赋予三维(3D )多孔基材传感性能的策略,避免了逐层组装的麻烦,具有低成本㊁可大规模制备等优点㊂常用的多孔基材主要包括泡沫[64]㊁海绵[65]㊁热塑性弹性体(TPE )[66]等,这些材料具有丰富的3D 网络结构,便于将导电材料涂覆到其弹性体骨架上㊂Zhang 等[67]在海绵上浸渍碳纳米管(CNT ),上下电极采用银浆涂覆作为导电层,制作了一款价格低廉且具有高性能和简单制造工艺的传感器㊂其中,将海绵经预压缩处理后在其骨架上获得裂纹结构的设计[68],对于弹性三维微孔压阻材料来说具有重要研究意义㊂Zhang 等[69]将通过导电纤维素纳米纤维(CNF )㊁AgNWs 制备的导电海绵经预压缩处理后,在海绵骨架表面产生裂纹结构,如图4(b )所示(根据压缩速率不同,裂纹产生的密度也会随之变化),基于小应变的 裂纹效应 ,该传感器的检测限可低至0.2%㊂虽然基于聚合物材料的传感器具有高灵敏度和较大的工作压力范围,但聚合物材料普遍存在弹性回复性差㊁恢复滞后等问题,因此继续探索其他新型材料构筑3D 结构是必要的㊂Chen 等[70]将水性MXene 油墨和植物纤维通过物理发泡的方法来制作类似于海绵的三维结构,再对其通过组装㊁浸涂㊁封装后制备的压阻式传感器表现出的可压缩应变达60%㊂图4㊀多维立体结构传感器件原理和结构示意Fig.4㊀Schematic diagram of the principle and structure of a multidimensional three-dimensional structure sensor element87第61卷㊀第2期电阻式柔性触觉传感器的研究与医养健康领域应用现状综上所述,多维立体结构的传感器件主要存在弹性回复性差㊁制造难度较大等问题,弹性回复性差主要是由于传感器材料在反复压缩过程中发生塑性失真㊁疲劳等㊂其次传感器立体结构设计得不均匀,弹性变形后也很难回复到原有状态㊂在未来可以引入新的材料制备技术和制造工艺,如微纳米加工技术㊁3D打印等,以提高传感器的制造精度,从根本上改善传感器的回复性㊂2㊀电阻式柔性触觉传感器在医养健康领域应用现状2.1㊀临床医学及生命体征监测应用随着医疗技术和条件的快速发展,多样化的传感器作为可穿戴医疗设备的重要组成部分,已经应用于各个方面㊂其中,电阻式柔性触觉传感器对微小应力变化非常敏感,可以检测到细微的触摸和压力信息,对临床应用兴起的机器人辅助微创手术的发展具有重要意义㊂Aubeeluck等[71]将多壁碳纳米管(MWCNTs)和热塑性聚氨酯(TPU)复合材料制备的油墨进行丝网印刷得到柔性薄膜,再将具有微结构的叉指电极薄膜进行多层叠加后进行封装,设计和制造了一种9mm2的超薄柔性电阻触觉传感器,用于机器人辅助微创手术中磁性微夹持器手术工具,提高了手术的安全性㊂生命体征是人体基本身体机能的测量值,用于评估人体的身体健康状况㊂而传感器是各类探知生命体征智能端口的核心元器件,是采集生命体征信息㊁构建数字化管理平台㊁实现健康风险科学预警的重要途径㊂电阻式柔性触觉传感器通过模仿皮肤的传感特性制备的电子皮肤可有效地克服传统医疗设备笨重㊁繁琐等缺陷,实现对人体体征信息的全方位监测㊂Chao等[24]将MXene油墨丝网印刷到丝素纳米纤维膜上制备的MXene∕蛋白质的电阻式压力传感器组装的电子皮肤具有良好的生物相容性,通过电阻变化检测人类的脉冲波型,来评估佩戴者的心血管状况及判断是否存在血管老化和动脉僵硬等问题,如图5(a)所示㊂Li等[27]通过将壳聚糖和MXene交替涂覆到PU海绵骨架上制备的传感器能有效检测许多非接触运动,可以隔着塑料面罩检测呼吸和说话,并进行语音识别,在未来临床医学监测方面具有巨大的潜力,如图5 (b)所示㊂此外,针对当代年轻人的生活需求及生活方式的转变,将传感器集成在腕带㊁手表㊁护膝等可穿戴设备中,更易于在日常生活运动中对心率进行监测㊂Gao等[72]演示了一种具有微流体膜片的压力传感器,分别将传感器嵌入聚二甲基硅氧烷(PDMS)腕带和PDMS手套,在触摸或握住物体时,根据阻值变化可提供手的全面触觉反馈㊂佩戴该传感手腕进行运动,可实时测量运动者脉搏变化,进行心率监测㊂图5㊀电阻式柔性触觉传感器在生命体征监测领域的应用Fig.5㊀Application of resistive flexible tactile sensors in thefield of vital sign monitoring2.2㊀居家健康监测及康复治疗应用居家健康监测可以有效地进行个人健康管理及中老年疾病预防,不仅能提高治疗效果,而且还可节省公共医疗资源㊂对于老年人和慢性病患者而言,居家健康监测设备可提供长期的照护支持㊂足底压力监测对损伤预防㊁运动生物力学具有重要意义㊂Lee等[28]通过传感器阵列制作的智能鞋垫,可以清楚地监测行走过程中的高脚压分布,如图6(a)所示㊂对于一些老年人的步态监测,某些区域的异常步态和过度的脚压可能与很多疾病相关,如糖尿病足溃疡㊁帕金森病患者的特征性步态模式,监测老年人的步态模式和姿势可以对这些疾病进行早期诊断㊂Kim等[73]以隐形眼镜为基板,设计了一款可以监测眼内压的透明和可拉伸的多功能隐形眼镜传感器,如图6(b)所示㊂用于无线监测佩戴者的葡萄糖和眼内压,不仅适用于糖尿病患者,还可以帮助青年佩戴者评估眼睛健康,如青光眼筛查㊁视力保护等㊂Hu等[39]使用制备的碳杂化纤维(CHF)组装的光纤传感器,将其安装在腰椎和颈椎上,可捕获各种生理信号,时实精确记录坐姿信号,当坐姿不规范时,基于该传感器的警告系统会发出警示,帮助指导纠正坐姿,改善不良的生活方式㊂此外,通过与触觉显示器相结合,实现人机交互,将日常监测数据可视化,对康复治疗具有重要意义㊂Zhong等[23]将传感器固定在纺织手套的指关节区域,并且基97Vol.61㊀No.2Research on resistive flexible tactile sensors and their current applications in the field of medical and health care于该传感器建立人机界面,如图6(c )所示㊂佩戴患者根据电脑提示做出指定手势,开发了一个智能康复训练平台,以有趣和具有挑战性的方式帮助患者训练和提高手指关节技能,在康复医疗㊁外骨骼机械手甚至工业制造方面显示出潜在的应用前景㊂图6㊀电阻式柔性触觉传感器在居家健康监测及康复治疗领域的应用Fig.6㊀Application of resistive flexible tactile sensors in the field ofhome health monitoring and rehabilitation therapy3㊀结㊀论电阻式柔性触觉传感器因其原理简单㊁成本较低等特点,在柔性可穿戴领域中具有显著优势㊂本文综述了近年来电阻式柔性触觉传感器结构设计在不同维度上的最新进展,结果表明:不论是一维纤维∕纱线基传感器件㊁二维平面结构设计传感器件,还是多维立体传感器件,都需要对其结构进行创新设计,才能够在原有的基础上,实现传感性能大幅度提升㊂在已确定传感器件的形状和尺寸要求下,构筑 微结构 增大两电极间的接触点∕空隙是提升传感器灵敏度较为有效的策略㊂同时,除了注重其结构设计,还可以围绕材料的选择进行创新㊂此外,虽然电阻式柔性传感器虽已经在柔性电子㊁医疗监测㊁人机交互等各个领域都有了较大的进展,但目前同样存在一些方向需要突破㊂1)柔性电阻式触觉传感器在长时间使用或复杂环境中可能会受到损坏或性能下降的影响㊂为了提高稳定性和可靠性,需要改进材料的耐久性和稳定性,解决电阻元件的老化问题,并增强传感器的保护措施㊂2)根据使用者的需求对传感器进行功能设计,整合其他传感器模块,如温度㊁湿度等,提供更广泛的应用领域㊂3)在进行传感器设计和制造时,考虑成本效益和生产难度,开发低成本且可批量生产的传感器是未来的发展重点㊂‘丝绸“官网下载㊀中国知网下载参考文献:[1]CASTELLANOSG M ,CONZALEZ M C ,RUBIO G B ,et al.ACognitive Psychological Approach to Identify the Significant of the Role of Visual Sense in Haptic Sense [C ].Wuhan :International Conference on Biometrics and Kansei Engineering (ICBAKE ),2013.[2]WANG C ,LIU C ,SHANG F ,et al.Tactile sensing technology inbionic skin :A review [J ].Biosensors and Bioelectronics ,2023(220):114882.[3]王康.基于MXene 的高性能柔性触觉传感器[D ].长春:吉林大学,2021.WANG Kang.High Performance Flexible Tactile Sensor Based on MXene [D ].Changchun :Jilin University ,2021.[4]CAO M ,SU J ,FAN S ,et al.Wearable piezoresistive pressuresensors based on 3D graphene [J ].Chemical Engineering Journal ,2021(406):126777.[5]潘晓君,鲍容容,潘曹峰.可穿戴柔性触觉传感器的研究进展[J ].高等学校化学学报,2021,42(8):2359-2373.PAN X J ,BAO R R ,PAN C F.Research progress of flexible tactile sensors applied to wearable electronics [J ].Chemical Journal of Chinese Universities ,2021,42(8):2359-2373.[6]ZHONG M J ,ZHANG L ,LIU X ,et al.Wide linear range andhighly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces [J ].Chemical Engineering Journal ,2021(412):128649.[7]LI X P ,LI Y ,LI X ,et al.Highly sensitive ,reliable and flexiblepiezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets [J ].Journal of Colloid and Interface Science ,2019(542):54-62.[8]LEE Y ,PARK J ,CHO S ,et al.Flexible ferroelectric sensors withultrahigh pressure sensitivity and linear response over exceptionally broad pressure range [J ].Acs Nano ,2018,12(4):4045-4054.8第61卷㊀第2期电阻式柔性触觉传感器的研究与医养健康领域应用现状[9]LEE H J,YANG J C,CHOI J,et al.Hetero-dimensional2DTi3C2T x MXene and1D graphene nanoribbon hybrids for machine learning-assisted pressure sensors[J].Acs Nano,2021,15(6): 10347-10356.[10]IQBAL S M A,MAHGOUB I,DU E,et al.Advances inhealthcare wearable devices[J].Npj Flexible Electronics,2021,5(1):9.[11]MENG K,XIAO X,WEI W,et al.Wearable pressure sensors forpulse wave monitoring[J].Advanced Materials,2022,34(21): 2109357.[12]HWANG J,KIM Y,YANG H,et al.Fabrication of hierarchicallyporous structured PDMS composites and their application as a flexible capacitive pressure sensor[J].Composites Part B: Engineering,2021(211):108607.[13]BAI N,WANG L,WANG Q,et al.Graded intrafillablearchitecture-based iontronic pressure sensor with ultra-broad-range high sensitivity[J].Nature Communications,2020(1):209. [14]BOUTRY C M,KAIZAWA Y,SCHROEDER B C,et al.Astretchable and biodegradable strain and pressure sensor for orthopaedic application[J].Nature Electronics,2018(1):314-321.[15]YANG Y,PAN H,XIE G,et al.Flexible piezoelectric pressuresensor based on polydopamine-modified BaTiO3∕PVDF composite film for human motion monitoring[J].Sensors and Actuators A: Physical,2020(301):111789.[16]CHEN Z,WANG Z,LI X,et al.Flexible piezoelectric-inducedpressure sensors for static measurements based on nanowires∕graphene heterostructures[J].Acs Nano,2017,11(5):4507-4513.[17]CAI Y W,ZHANG X N,WANG G G,et al.A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS∕MXene composite films for E-skin[J].Nano Energy,2021(81):105663.[18]JIN T,SUN Z,LI L,et al.Triboelectric nanogenerator sensors forsoft robotics aiming at digital twin applications[J].Nature Communications,2020(11):5381.[19]ZHU G,YANG W Q,ZHANG T,et al.Self-powered,ultrasensitive,flexible tactile sensors based on contact electrification [J].Nano Letters,2014,14(6):3208-3213.[20]JIA J,HUANG G,DENG J,et al.Skin-inspired flexible and high-sensitivity pressure sensors based on rGO films with continuous-gradient wrinkles[J].Nanoscale,2019,11(10):4258-4266. [21]CHENG Y,MA Y,LI L,et al.Bioinspired microspines for a high-performance spray Ti3C2T x MXene-based piezoresistive sensor[J].Acs Nano,2020,14(2):2145-2155.[22]PAN L,CHORTOS A,YU G,et al.An ultra-sensitive resistivepressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J].Nature Communications, 2014(5):3002.[23]PENG Y,YANG N,XU Q,et al.Recent advances in flexibletactile sensors for intelligent systems[J].Sensors,2021,21(16): 5392.[24]DING Y,XU T,ONYILAGHA O,et al.Recent advances inflexible and wearable pressure sensors based on piezoresistive3D monolithic conductive sponges[J].Acs Applied Materials& Interfaces,2019,11(7):6685-6704.[25]CHEN B,ZHANG L,LI H,et al.Skin-inspired flexible and high-performance MXene@polydimethylsiloxane piezoresistive pressure sensor for human motion detection[J].Journal of Colloid and Interface Science,2022(617):478-488.[26]YAN J F,MA Y,JIA G,et al.Bionic MXene based hybrid filmdesign for an ultrasensitive piezoresistive pressure sensor[J].Chemical Engineering Journal,2022,431(4):133458. [27]佘明华,徐瑞东,韦继超,等.纺织基柔性触觉传感器及可穿戴应用进展[J].丝绸,2023,60(3):60-72.SHE M H,XU R D,WEI J C,et al.Textile-based flexible tactile sensors and wearable applications[J].Journal of Silk,2023,60(3):60-72.[28]CHAO M Y,HE L,GONG M,et al.Breathable Ti3C2T x MXene∕Protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents[J].Acs Nano,2021,15(6):9746-9758.[29]OH Y S,KIM J H,XIE Z,et al.Battery-free,wireless softsensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries[J].Nature Communications,2021,12(1):5008.[30]CHO S,HAN H,PARK H,et al.Wireless,multimodal sensorsfor continuous measurement of pressure,temperature,and hydration of patients in wheelchair[J].Npj Flexible Electronics,2023,7(1):8.[31]HAN J,XU C,ZHANG J,et al.Multifunctional coaxial energyfiber toward energy harvesting,storage,and utilization[J].Acs Nano,2021,15(1):1597-1607.[32]YU R,ZHU C,WAN J,et al.Review of graphene-based textilestrain sensors,with emphasis on structure activity relationship[J].Polymers,2021,13(1):151.[33]XU L,JIAO X,SHI C,et al.Single-walled carbon nanotube∕copper core-shell fibers with a high specific electrical conductivity [J].Acs Nano,2023,17(10):9245-9254.18Vol.61㊀No.2Research on resistive flexible tactile sensors and their current applications in the field of medical and health care[34]TANG Z,JIA S,WANG F,et al.Highly stretchable core-sheathfibers via wet-spinning for wearable strain sensors[J].Acs Applied Materials&Interfaces,2018,10(7):6624-6635. [35]WU J,WANG M,DONG L,et al.A trimode thermoregulatoryflexible fibrous membrane designed with hierarchical core-sheath fiber structure for wearable personal thermal management[J].Acs Nano,2022,16(8):12801-12812.[36]LI P,GAO X,ZHAO B,et al.Multi-color tunable and whitecircularly polarized luminescent composite nanofibers electrospun from chiral helical polymer[J].Advanced Fiber Materials,2022, 4(6):1632-1644.[37]INNOCENT M T,ZHANG Z,CAO R,et al.Piezoresistive fiberswith large working factors for strain sensing applications[J].Acs Applied Materials&Interfaces,2023,15(1):2277-2288. [38]LIU Z,ZHENG Y,JIN L,et al.Highly breathable and stretchablestrain sensors with insensitive response to pressure and bending[J].Advanced Functional Materials,2021,31(14):2007622. [39]HU Y F,HUANG T,ZHANG H,et al.Ultrasensitive andwearable carbon hybrid fiber devices as robust intelligent sensors [J].Acs Applied Materials&Interfaces,2021,13(20):23905-23914.[40]ZHONG W B,MING X,JIANG H,et al.Full-textile humanmotion detection systems integrated by facile weaving with hierarchical core-shell piezoresistive yarns[J].Acs Applied Materials&Interfaces,2021,13(44):52901-52911. [41]ZHOU J,XU X,XIN Y,et al.Coaxial thermoplastic elastomer-wrapped carbon nanotube fibers for deformable and wearable strain sensors[J].Advanced Functional Materials,2018,28(16): 1705591.[42]WANG Y H,ZHU J,SHEN M,et al.Three-layer core-shell Ag∕AgCl∕PEDOT:PSS composite fibers via a one-step single-nozzle technique enabled skin-inspired tactile sensors[J].Chemical Engineering Journal,2022(442):136270.[43]DING X C,ZHONG W,JIANG H,et al.Highly accuratewearable piezoresistive sensors without tension disturbance based on weaved conductive yarn[J].Acs Applied Materials&Interfaces, 2020,12(31):35638-35646.[44]YU L T,YEO J C,SOON R H,et al.Highly stretchable,weavable,and washable piezoresistive microfiber sensors[J].Acs Applied Materials&Interfaces,2018,10(15):12773-12780. [45]ZHANG J,WANG Y,ZHOU J,et al.Multi-functional STF-basedyarn for human protection and wearable systems[J].Chemical Engineering Journal,2023,453(2):139869.[46]LI W,JIN X,HAN X,et al.Synergy of porous structure andmicrostructure in piezoresistive material for high-performance and flexible pressure sensors[J].Acs Applied Materials&Interfaces, 2021,13(16):19211-19220.[47]YANG M,CHENG Y,YUE Y,et al.High-performance flexiblepressure sensor with a self-healing function for tactile feedback[J].Advanced Science,2022,9(20):2200507.[48]YAO B,YE Z,LOU X,et al.Wireless rehabilitation trainingsensor arrays made with hot screen-imprinted conductive hydrogels with a low percolation threshold[J].Acs Applied Materials& Interfaces,2022,14(10):12734-12747.[49]CHEN D,LIU Z,LI Y,et al.Unsymmetrical alveolate PMMA∕MWCNT film as a piezoresistive e-skin with four-dimensional resolution and application for detecting motion direction and airflow rate[J].Acs Applied Materials&Interfaces,2020,12(27): 30896-30904.[50]CHOONG C L,SHIM M B,LEE B S,et al.Highly stretchableresistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J].Advanced Materials,2014,26(21): 3451-3458.[51]PARK H,JEONG Y R,YUN J,et al.Stretchable array of highlysensitive pressure sensors consisting of polyaniline nanofibers and au-coated polydimethylsiloxane micropillars[J].Acs Nano,2015, 9(10):9974-9985.[52]SHI J,WANG L,DAI Z,et al.Multiscale hierarchical design of aflexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J].Small,2018,14(27):1800819. [53]PANG Y,ZHANG K,YANG Z,et al.Epidermis microstructureinspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J].Acs Nano,2018,12(3):2346-2354.[54]SUN Q J,ZHUANG J,VENKATESH S,et al.Highly sensitiveand ultrastable skin sensors for biopressure and bioforce measurements based on hierarchical microstructures[J].Acs Applied Materials& Interfaces,2018,10(4):4086-4094.[55]ZHOU Y,ZHAO L,TAO W,et al.All-nanofiber networkstructure for ultrasensitive piezoresistive pressure sensors[J].Acs Applied Materials&Interfaces,2022,14(17):19949-19957. [56]GAO X,ZHOU F,LI M,et al.Flexible stannum-doped SrTiO3nanofiber membranes for highly sensitive and reliable piezoresistive pressure sensors[J].Acs Applied Materials&Interfaces,2021,13(44):52811-52821.[57]XU J,ZHANG L,LAI X,et al.Wearable RGO∕MXenepiezoresistive pressure sensors with hierarchical microspines for detecting human motion[J].Acs Applied Materials&Interfaces,28。
仿生学灵敏触觉传感器的研究与设计

仿生学灵敏触觉传感器的研究与设计绪论近年来,随着科技的迅速发展,仿生学在机器人领域中扮演着重要的角色。
仿生学的目标是从自然界中汲取灵感,将生物的优秀特性应用于工程设计中。
在机器人领域中,灵敏触觉传感器的研究与设计是一个具有挑战性的任务。
它模拟了人类的触觉系统,使机器人能够感知和理解环境,从而更好地适应各种任务和工作场景。
本文将介绍仿生学灵敏触觉传感器的研究与设计。
第一部分:仿生学灵敏触觉传感器的原理1.1 仿生学灵敏触觉传感器的概述仿生学灵敏触觉传感器是一种模拟生物触觉系统的传感器。
它通过感知外部环境的物理量变化,如接触力、振动、形状等来获取信息,并将其转化为电信号进行处理和分析。
1.2 仿生学灵敏触觉传感器的感知机制仿生学灵敏触觉传感器主要通过两种感知机制来获取外部环境信息:压力感知机制和振动感知机制。
压力感知机制通过感知接触物体的压力大小来获取信息,振动感知机制则通过感知外部环境的振动频率和幅度来获取信息。
1.3 仿生学灵敏触觉传感器的结构仿生学灵敏触觉传感器通常由传感元件、信号处理电路和数据输出组成。
传感元件负责感知外部环境的物理量变化,信号处理电路将传感元件采集到的信号进行放大、滤波和编码处理,数据输出则将处理后的信号输出为可理解的形式。
第二部分:仿生学灵敏触觉传感器的应用2.1 仿生学灵敏触觉传感器在机器人领域的应用仿生学灵敏触觉传感器在机器人领域中具有广泛的应用前景。
它可以使机器人更好地感知外部环境,从而更好地完成各种任务。
例如,它可以用于机器人的自主导航,使机器人能够避免障碍物并规避危险。
此外,它还可以用于机器人的物体抓取,使机器人能够更精准地抓取物体并进行操作。
2.2 仿生学灵敏触觉传感器在医疗领域的应用仿生学灵敏触觉传感器在医疗领域中也具有重要的应用价值。
例如,它可以用于仿生机器人辅助手术,使医生在进行手术时能够更好地感知患者的组织和器官状态,从而提高手术精确度。
此外,它还可以用于制造智能假肢,使残疾人能够感受到外界的触觉刺激。
新型传感器的研究现状及未来发展趋势

新型传感器的研究现状及未来发展趋势传感器是一种现代化技术所必需的元件,它能够将各种物理量转化为电信号。
传感器的应用范围广泛,例如自动化生产、交通运输、医疗诊断、安全监测等领域,因此传感器技术的发展对现代化生产、生活、科学技术的发展有着非常重要的作用。
传感器的种类很多,根据测量的物理量不同,可以分为温度传感器、压力传感器、流量传感器、湿度传感器、加速度传感器、光学传感器等等。
在这些传感器中,新型传感器是一种备受关注的技术。
一、新型传感器的研究现状1. MEMS技术传感器MEMS是微电子机械系统(Micro-Electro-Mechanical System)的缩写,它是一种微型化的电气机械系统,它能够将机械元件和电子元件进行集成化处理。
因此,MEMS技术传感器的优势在于体积很小、功耗低、响应速度快、可靠性高、价格便宜等等。
如今,MEMS技术传感器的应用已经非常广泛,例如手机中的加速度传感器、陀螺仪、磁力计、压力传感器等等,这些传感器的应用大大提升了手机的功能和用户体验。
2. 光纤传感器光纤传感器是一种基于光学原理的传感器,它使用光的传输来测量物理量。
与传统传感器相比,光纤传感器具有很多优势,例如高灵敏度、抗干扰能力强、安全可靠、经济实用,能够实现长距离传递、分布式检测等等。
目前,光纤传感器主要应用在石油天然气、交通运输、环境监测、生命科学等领域。
例如,在石油天然气开采中,光纤传感器可以测量油井的温度、压力、流量等参数,可以帮助确定油井的产量和工作状态,并且可以提高油井的生产效率。
3. 生物传感器生物传感器主要是应用在医疗诊断领域中的,它能够检测人体内的生物分子、细胞和组织等信息。
例如,可以测量血液中的血糖、白细胞计数、酸碱度等指标,可以帮助医生进行疾病的诊断和治疗。
目前,生物传感器技术发展非常迅速,尤其是以DNA、RNA 等为基础的生物传感器,它可以快速、准确地检测病原体、基因变异等信息,有望成为未来医疗诊断中的主要手段。
2023年触觉传感器行业市场发展现状

2023年触觉传感器行业市场发展现状近年来,随着智能科技的快速发展,触觉传感器的应用范围不断扩大,市场需求逐渐增长,触觉传感器行业也不断壮大。
本文将就当前触觉传感器市场的发展现状进行分析。
一、市场规模当前,触觉传感器市场呈现出逐渐扩大的趋势。
根据市场研究公司的数据显示,2019年全球触觉传感器市场规模约为30.9亿美元,预计到2025年将达到60.2亿美元,年复合增长率约为11.3%。
从应用领域来看,触觉传感器广泛应用于自动驾驶、工业机器人、虚拟现实、医疗设备、智能家居等领域,市场潜力巨大。
在自动驾驶领域,触觉传感器可以通过感知车辆接触路面的情况,进而提升车辆行驶的安全性和舒适性;在工业机器人领域,触觉传感器可以实现机器人的力量控制、物体识别和精细操纵等功能;在虚拟现实领域,触觉传感器可以增强用户的沉浸感和互动感;在医疗设备领域,触觉传感器可以为手术操作提供精确的指引,减少手术风险;在智能家居领域,触觉传感器可以实现用户与智能家居设备的更加智能、直观的交互方式。
二、市场主要厂商当前,全球触觉传感器市场具有一定的竞争格局,市场主要厂商包括Synaptics、Tekscan、Tacterion、Sensel、Touchsense等。
Synaptics是全球最大的触摸屏和触控板解决方案供应商之一,同时也是触觉传感器领域的重要企业。
其触摸解决方案广泛应用于智能手机、平板电脑、电视、笔记本电脑等各种终端设备中。
Tekscan是一家专门从事压力传感技术领域的企业,其研发的Force Sensing Resistor(FSR)技术广泛应用于工业机器人、医疗设备等领域。
Tacterion是一家创新型企业,其核心技术是基于柔性传感器的触觉传感解决方案,可以用于工业机器人、虚拟现实、汽车等领域。
Sensel是一家创新型触觉传感器公司,其产品可以实现多点触控和力度感应,适用于智能手机、平板电脑、笔记本电脑、智能手表等设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值水池、北斗导航 系统、智能船舶等主题 引关注 [J].船舶工程 , 导航 系统设计 [J].武汉理工大学学报,2015,37(06):104-108.
8
信 息记 录材料 2 01 8年8月 第 1 9卷 第8期
浅谈剪切质量对焊缝 的影响
王 建 东 (河 钢 股 份 有 限公 司唐 山 分公 司信 息 自动 化 部 河 北 唐 山 0 6 3 0 0 0)
1引言
Bao课题组利用具有空心球微结构制作 了锯齿状压 阻式触
近 年来,人口老龄化现象 日益突出,医疗保健水平亟待 觉传感器阵列,可测量微小压力,灵敏度超高。
提高,机器人与可穿戴医疗设备等的需求逐渐增多,其关键技
2014年 ,韩国的 Hyunhyub No课题组利用互锁结构 ,
术——触觉传感器的开发与应用已经成为当今学术研究的热点 制作 了可 以感知压力方向的触觉传感器 。可 以检测振动 ,
2017(11): 7—9.
UCA3CTL1&=~ UCSWRST://初始化 USCI状态机 [2】范 甬 .基于北斗导航 系统 的智能配网线路综合监 测系统研究
UCA3IE 1= UCRXIE: //使能 肋 串口 Rx中断
[D】.华北电力大学 (北京 ),2017.
#endif
[3]胡敏 .基于 aPs的北斗智能位置眠务平台设计 嘲.南京大学,2017.
服务功能,同时要保障对于地理信息发布认识 ,提高位置 服务平台设计管理 ,利用全 国最优化 的资源打造权威和开 放式 的定位信息发布平 台。同时需保障信息发布的优质性、 廉价性和便捷性,从而很好地保障 良好移动终端应用模式, 并据此开发合理终端产品,提高发布者 的边界产 品设计,
【6]陈友荣,万锦 昊,陈俊洁,任条娟 .基 于车车通信 的车辆 防 碰撞算法 … .电信科学 ,2016,32(11):32-41. 【7]蔡志强 .基于 hndro i d平台移动数字终端的 出租汽车服 务管 理信息 系统 [D].华东理工大学,2017. [8】宁天枫 .北斗 /GPs双模 定位 的轻型 电动物流车远程监控终
促进服务灵活数字信息服务水平 ,优化针对平 台合理设计。 端研制 【D].中国科学技术大学,2016.
【参考文献 】
[I】李慧 .“船舶与海工配套设备技 术” 专场:创新 引领未来数
[9].北斗 高精度 智 能考训 系统在 阅兵车辆 编 队训 练 中的应 用 【J].计算机测量与控制 ,2015,23(09):3256-3257. 【1 0]唐荣年 ,曾雄梅 .基于北斗卫星和蓝牙技术的 hndro i d手机
之一。触觉传感器可覆盖于复杂三维载体表面,通过接触感知 灵敏度高。同年,意大利理工学院的 Lucie Viry课题组
外界习 晓的各种信息,其研发需要综合运用多学科的知识。
开发了一种基 于电容原理的全柔性三轴力触 觉传感器。此
2麓觉传感器研究现状
传感器基于导 电织物 电极和高弹性材料 ,便于制造 ,加工
【摘要】介绍了国内外近年来触觉传感器的研究进展。指出了触觉传感器存在柔弹性不够,可扩展性差,成本高等
技术难题。触觉传感器可广泛应用于可穿戴设备、智能机器人等领域。
【关键词 】传感 器;柔弹性;触 觉
【中图分类号】TP212
【文献标识码 】h
【立 章编号】1009—5624(2018)08—0008—02
觉传感器阵列 ,可包裹于半径 2mm的圆柱之上,并保持正 简单 ,制造成本低 ,应用前景广阔。
常工作 。2005年,Takao Someya课题组又 引入“渔网”结构,
2012年,东华大学的吕晓洲等人基于 PCB板耦合 电极和
使传感器的柔性大大增加 。
PDMS制作了电容式触觉传感器,其特点在于能够实时测量三
)
…4 张丽珍 ,杨加庆,邵祺 ,杨朦朦,胡庆松 ,张 乐 .基于北斗
|卑
定位 系统的虾塘投饵管控 系统的设计和实现 [J].全球定位 系统,
2017,42(02): 83-87.
5结语
[5]张俊雄,杜子龙,丁贤根 .基于北斗救援和 ISPS规则的船舶
综上所述,智能终端服务平台需要及时开发 良好系 统 人员安保管理 系统研究 [J].船舶工程 ,2017,39(02):53-58+68.
【摘要】大型焊机已经是冷轧薄板厂不可或缺的设备,其作用是将生产中的带钢的带头和带尾焊接在—起,保证生
产的连续性 ,焊接 质量是焊机 最重要的的一个性能指标 ,如果焊缝质量 不合格,直接影响生产 的连续性,影 响焊接质 量
信 息 感器研 究现状
周 建 辉 , 司新 毅 ,及 冲 冲 ,余 志永 , 刘 迎 娟 (1华 北 理 工 大 学 迁安 学 院 河 北 唐 山 0 6 4 4 0 0)
(2中 国 水 务投 资有 限公 司 北 京 1 0 0 0 5 3)
肤种类繁多,本文主要针对本领域 中的部分典型研究工作 很 大进 展 。2008年,合肥工 业大学 的黄 英等人基 于压敏
进行介绍与分析 。
导 电橡胶制作 了触觉传感器阵列,可检测三维压力,并针
2004年 ,东京大学 Takao Someya等人研发了一种触 对导 电橡胶的压阻效应设计 了不同的结构 。其制作工艺
201 1年,Zhenan Bao课题组将碳纳米管喷涂于 PDMS 维界面应力 。这项研究对医学领域有重要的贡献,可检测
基底制作了 电容式触觉传感器阵列 ,具有高弹性 。2014年, 截肢表面和假肢接口之间的应力分布以及人体足底应力分布。
UCA3MCTL =Ox06://波 特 率微 调
早在二十世纪七十年代 ,国际上就 已开始对 电子皮肤 成本低 ,具有 良好 的顺应性、鲁棒性和稳定性。这种特有
的探索与研 究。近年来 ,经过各国科研人员的不断努力, 的 电介质 多层结构和独创的材料组合方式 ,使传感器表现
电子皮肤 的设计与开发取得了显著 的进步。 目前 ,电子皮 出了卓越 的性能,国内学者对触觉传感器 的研究也取得 了