植物逆境生物学基因工程
植物生物技术利用生物技术改良植物品质

植物生物技术利用生物技术改良植物品质植物生物技术是近年来发展迅速的一个领域,它利用生物技术的手段对植物进行改良,以提高植物的品质和产量。
本文将从遗传改良、基因工程和无性繁殖三个方面阐述植物生物技术在植物品质改良中的应用。
一、遗传改良遗传改良是通过杂交育种、选择育种等手段,选取具有优良性状的植物进行繁殖,以获得具有更好品质的新品种。
例如,在小麦育种中,选取具有耐病性和高产性的小麦杂交繁殖,得到了优质高产的小麦品种。
遗传改良不仅可以提高植物的品质,还可以增强植物的抗病性和适应性,提高植物的产量和抗逆能力。
二、基因工程基因工程是植物生物技术中的重要手段,通过直接修改植物的基因组,使其获得具有特定功能的新基因,从而改良植物的品质。
基因工程可以用来增加植物的营养价值,提高植物对逆境的耐受性,改善植物的抗虫性等。
例如,转基因玉米通过插入细菌的基因,产生了一种可以抵抗昆虫害虫侵袭的新品种,大大减少了农药的使用,提高了玉米的品质和产量。
三、无性繁殖无性繁殖是指通过植物组织培养、离体培养等技术手段,将植物的一部分组织或细胞培养成新的植株,而无需通过种子繁殖。
无性繁殖可以保留植物优良性状的同时,避免了自然交配可能带来的杂交退化。
例如,薯蓣的繁殖就采用了无性繁殖技术,使得不同种类的薯蓣得以大规模繁殖,提高了薯蓣的产量和质量。
总结起来,植物生物技术利用遗传改良、基因工程和无性繁殖等手段,成功改良了很多植物的品质。
这些技术的应用不仅提高了植物的产量和品质,还能够改善植物的抗病性和适应性,为农业生产和食品安全提供了有力支持。
随着生物技术的不断发展和创新,相信植物生物技术在植物品质改良中的应用还将取得更大的突破。
植物逆境生理与分子生态学研究

植物逆境生理与分子生态学研究植物在自然界中扮演着重要的角色,是构成生态系统的重要组成部分。
由于天气、土地、水源等自然条件的不可预测性,植物在生长过程中必须面对各种逆境因素的挑战,如高温、低温、干旱、盐碱等环境压力,这些逆境因素极大地影响了植物生长发育和产量,对保障人类粮食安全和生态环境健康具有重要意义。
因此,研究植物逆境生理和分子生态学,对于提高作物产量、改良植物基因组、增强植物适应性具有重要的理论和实践意义。
植物逆境生理研究植物在面对高温、低温、干旱、盐碱等环境逆境时,会产生一系列的生理生化反应以维持生命活动,从而适应环境变化,这就是植物逆境生理的基本原理。
比如,在干旱胁迫下,植物会产生一系列的生理变化,包括调节植物蒸腾作用、增加根系积累水分、增加叶片厚度等机制以维持植物生命活动。
而在高温胁迫下,植物会产生内源性热休克蛋白,这种蛋白质可以防止细胞受到氧化损伤。
目前,植物逆境生理的研究主要基于分子生物学、生物化学、细胞生物学、遗传学和植物生理学等领域,研究手段包括实验室试验和野外实验。
通过这些手段,研究人员可以深入探究植物对环境变化产生的生理反应和分子机制,阐明植物逆境胁迫与生物学调节之间的关系。
植物分子生态学研究植物分子生态学是研究植物逆境生理与环境条件之间相互作用的重要学科。
正是得益于分子生态学的发展,科学家们才可以深入探究植物生长发育的基本原理,了解植物与环境的相互作用方式,并据此制定相应的应对措施。
植物分子生态学主要研究内容包括:1)植物基因组中与环境逆境相关的基因/转录因子;2)植物与环境互作的分子机制。
常见的研究手段包括基因工程技术、转录组学、蛋白质组学和代谢组学等手段。
除此之外,植物分子生态学还包括植物与微生物互作、植物与气候变化等内容的研究。
研究人员通过对植物以及其与环境之间的相互作用机理的探究,开创了一系列的新研究领域,并逐步突破了传统植物学的界限,推动了植物科学的发展。
结论植物逆境生理与分子生态学是植物科学研究的重要方向之一,也是人类粮食安全和生态环境健康保障的重要基础。
生物学在植物抗逆性研究中的应用

生物学在植物抗逆性研究中的应用植物生物学是研究植物生活过程的科学,而植物抗逆性研究是其中重要的一个领域。
植物在环境中面对各种逆境时,能够通过一系列的适应和调节机制来应对,保证其正常生长和生存。
近年来,生物学在植物抗逆性研究中的应用取得了显著进展,为解决全球粮食安全和生态环境问题提供了有力的支持。
一、遗传学研究生物学在植物抗逆性研究中的应用首先体现在遗传学方面。
通过遗传学研究,可以揭示植物抗逆性的遗传基础并挖掘相关的基因资源。
研究人员可以使用不同的遗传材料,包括野生种、近缘种、突变体等,通过亲本杂交和后代的分析,筛选出抗逆性相关基因,并对其功能进行进一步的研究。
例如,通过遗传定位与克隆,可以鉴定出参与植物耐盐机制的关键基因,从而为培育抗盐性植物提供遗传资源。
遗传学研究不仅可以帮助我们深入了解植物抗逆性的分子机制,还为育种工作提供了重要的理论依据。
二、生理学研究生物学在植物抗逆性研究中的应用还体现在生理学方面。
生理学研究可以揭示植物在逆境胁迫下的生物化学和生理变化过程。
通过对植物在不同逆境胁迫下的生理指标进行测定和分析,可以了解植物对逆境的响应机制和适应策略。
同时,研究人员可以通过植物生理学实验,验证外源物质在增强植物抗逆性中的作用。
例如,一些植物生理学研究证实,外源植酸和茉莉酸等物质可以促进植物对盐胁迫的适应反应,从而提高植物的抗逆性。
生理学研究不仅有助于探究植物抗逆性的机制,还为植物抗逆性调控和增强提供了理论基础。
三、分子生物学研究分子生物学是研究生物体分子结构和功能的一门学科,也是植物抗逆性研究中的重要手段之一。
通过分析植物在逆境胁迫下基因的表达和蛋白质的变化,可以揭示植物在分子水平上的抗逆性机制。
例如,通过研究植物转录因子家族及其在逆境胁迫下的表达变化,可以揭示转录因子在调控植物抗逆性中的重要作用。
此外,分子生物学研究还可以利用基因工程技术对关键基因进行功能验证,从而进一步验证和加深对植物抗逆性机制的认识。
分子生物学在植物抗逆性研究中的应用

分子生物学在植物抗逆性研究中的应用植物在面对环境中的各种压力和逆境条件时,能够表现出一定的抵抗力,称为植物的抗逆性。
植物的抗逆性是由一系列的表型和生理响应所调控的,而分子生物学则为我们研究这些调控机制提供了关键的工具和方法。
本文将介绍分子生物学在植物抗逆性研究中的应用,并探讨其在未来的发展前景。
1. 基因表达谱分析基因表达谱分析是研究植物在逆境条件下响应机制的重要手段之一。
通过测定植物在逆境条件下的转录组变化,可以揭示出逆境应答信号通路的激活和抑制机制。
例如,在逆境条件下,植物会激活一系列的逆境反应基因,如编码抗氧化酶和其他逆境蛋白的基因。
通过基因表达谱分析,可以深入了解这些基因的调控网络和功能。
2. 蛋白质组学研究蛋白质组学研究可以帮助我们了解植物在逆境条件下蛋白质的表达和功能变化。
通过质谱分析等技术手段,可以鉴定出植物中大量逆境蛋白,如抗氧化酶、抗逆酶和膜转运蛋白等。
这些蛋白的表达和功能变化可以为我们理解植物在逆境条件下的应答机制和信号传递提供重要线索。
3. 信号转导途径研究在植物抗逆性研究中,信号转导途径是一个重要的研究方向。
植物在面对逆境条件时,通过一系列的信号传递和响应来实现适应和生存。
分子生物学研究揭示了一些重要的信号转导途径,如激素信号转导途径、MAPK信号转导途径等。
通过深入研究这些途径的调控机制,可以为我们设计和培育抗逆性植物提供重要的基础。
4. 基因工程和转基因技术基因工程和转基因技术是分子生物学在植物抗逆性研究中的重要应用之一。
通过引入特定的抗逆基因,例如抗氧化酶基因和腺苷酸激酶基因,可以提高植物的抗逆性。
同时,也可以通过基因敲除和基因静默等技术手段研究植物的基因功能和调控网络。
总结起来,分子生物学在植物抗逆性研究中发挥着不可替代的作用。
通过基因表达谱分析、蛋白质组学研究、信号转导途径研究以及基因工程和转基因技术等手段,我们可以深入了解植物在逆境条件下的应答机制和调控网络。
植物抗逆育种策略研究途径

植物抗逆育种策略研究途径植物是地球上生命的重要组成部分,它们在面对各种环境变化和逆境胁迫时表现出了惊人的适应能力。
然而,随着全球气候变暖、土地退化、盐碱化、病虫害等问题的日益严重,传统育种方式已经无法满足人类对高产高质量植物的需求。
因此,植物抗逆育种成为了当前重要的研究领域之一。
本文将探讨植物抗逆育种的策略和研究途径。
一、分子育种策略分子育种是利用分子生物学和基因工程技术来改良植物性状的方法。
它可以通过选择或改变植物基因组中与逆境抗性相关的基因,以提高植物的逆境抗性。
在分子育种策略中,研究人员通常会使用转基因技术,将具有抗性基因的外源DNA片段导入植物体内,使得植物获得新的性状。
例如,在研究盐碱逆境下植物抗逆机制时,研究人员发现一些植物中富含盐碱逆境抗性基因。
通过转基因技术,他们将这些基因导入其他植物中,例如水稻。
结果表明,这些转基因水稻在盐碱环境中表现出了更好的生长和生存能力。
分子育种策略不仅可以加快育种进程,而且可以精确地改良植物的性状,因此在植物抗逆育种中具有巨大的潜力。
二、遗传育种策略遗传育种是传统育种方式中的一种方法,通过选择和培育植物中具有抗逆性状的个体或种质进行繁殖,以增加植物种群中抗逆性状的占比。
在遗传育种策略中,研究人员通常会进行大规模的种质筛选和亲本组合试验,选择具有抗逆性状的亲本进行配对,以提高后代的抗逆性。
以抗病育种为例,研究人员可以通过人工感染病原菌或病虫害,筛选出对相应病原菌具有抗性的品种或个体,然后将其作为亲本进行交配。
通过连续选择和后代筛选,可以逐步提高植物种群对病原菌的抗性。
遗传育种策略在植物抗逆育种中具有广泛的应用,并已在许多作物中取得了显著的效果。
三、基因组学研究途径基因组学作为一门新兴的研究领域,为植物抗逆育种提供了全新的研究途径。
通过对植物基因组的深入研究,研究人员可以鉴定和分析与植物逆境抗性相关的基因,探索逆境应答和抗逆机制。
同时,基因组学研究还可以帮助筛选抗逆育种候选基因,并加速基因发现的速度。
植物逆境生理学

植物逆境生理学植物逆境生理学是研究植物在环境逆境下的生理响应和适应机制的学科。
逆境是指植物在生长和发育过程中遭受的各种不良外界因素,如高温、低温、干旱、盐碱、酸碱、重金属等。
逆境对植物的生长和产量产生极大的影响,因此研究植物逆境生理学对于提高农作物的逆境抗性和生产能力具有重要意义。
1. 逆境对植物生理的影响逆境条件下,植物会产生一系列的生理变化。
首先,植物会启动一系列的防御机制,如合成特定的抗氧化物质、活性氧清除酶等,来抵抗逆境中产生的活性氧物质对细胞的损伤。
其次,植物会调节自身的生长和发育进程,以适应逆境环境。
例如,在干旱条件下,植物会降低水分蒸腾速率,减少水分的损失。
另外,植物还会调节离子平衡和渗透调节,以维持细胞内外的稳定环境。
2. 植物逆境胁迫信号传导逆境胁迫会激活植物内部的逆境信号传导途径,从而引起相应的生理反应。
逆境信号传导主要通过植物激素、钙离子和二氧化碳浓度等多个信号分子参与。
例如,在高盐胁迫条件下,植物会产生较高的烟酸腺嘌呤二核苷酸(NADPH)浓度,从而降低植物内部的氧化胁迫。
另外,植物还会通过激活多种激素信号传导途径来调节逆境胁迫反应,如乙烯、脱落酸等。
3. 逆境胁迫对植物基因表达的影响逆境胁迫可以引起植物基因表达谱的改变,进而导致植物发生一系列的生理变化。
以高温胁迫为例,研究发现许多与热休克蛋白、膜稳定性和脯氨酸等相关的基因表达受到调控,从而增加植物对高温的适应能力。
另外,逆境胁迫还可以引起DNA甲基化和组蛋白修饰等表观遗传调控机制的改变,从而调节基因的表达。
4. 植物逆境生理研究的应用植物逆境生理研究对于农作物育种和生产具有重要的应用价值。
通过研究逆境胁迫下植物的适应机制,可以筛选出逆境抗性较强的品种,并通过遗传改良和基因工程等手段培育具有高逆境抗性的农作物品种。
此外,逆境生理研究还可以为农业生产提供科学合理的农艺措施,以减少逆境对农作物产量和品质的不利影响。
总结起来,植物逆境生理学的研究对于揭示植物在逆境环境中的生理适应机制具有重要意义,同时也为农业生产提供了科学依据和技术支持。
基因工程改良植物抗逆性及品质分析

基因工程改良植物抗逆性及品质分析基因工程技术的发展对于植物育种具有重要的意义。
可以通过基因工程技术改良植物的抗逆性,提高植物的产量和品质。
本文将探讨基因工程改良植物抗逆性及品质分析的研究进展和应用。
一、基因工程改良植物抗逆性的研究进展1. 转录因子的应用转录因子是一类能够调控基因表达的蛋白质,通过基因工程技术改良植物的抗逆性已取得一定的成果。
例如,通过转录因子的调控,植物能够更好地抵抗逆境,如干旱、病虫害等。
2. 外源基因的导入通过导入外源基因,能够使植物产生特定的蛋白质,进而提高植物的抗逆性。
一些抗生素、抗菌肽等外源基因的导入已经在植物育种中得到了应用。
3. RNA干扰技术RNA干扰技术是通过人为干扰RNA的合成和降解过程,来调控特定基因的表达。
这项技术在抗逆性改良中具有重要的应用潜力。
例如,在改良植物的抗虫性方面,可以通过RNA干扰技术降低害虫相关基因的表达,从而提高植物的抗虫能力。
二、基因工程改良植物品质分析的研究进展1. 蛋白质分析蛋白质是决定植物品质的重要因素之一。
通过基因工程技术,可以改良植物的蛋白质组成和含量,从而提高植物的品质。
例如,通过增加某些关键蛋白质的合成,可以提高植物的营养价值和口感。
2. 代谢产物分析代谢产物是植物代谢活动的产物,也是植物品质的重要因素之一。
基因工程技术可以改变植物代谢途径和代谢产物的合成,从而改善植物的品质。
例如,通过改变合成花青素的基因,可以使植物呈现出鲜艳多彩的花朵。
3. 顶级代谢物分析顶级代谢物是植物特有的次级代谢产物,具有重要的生物活性和药用价值。
通过基因工程技术改良植物的顶级代谢物合成能力,可以增加植物的药用价值和市场竞争力。
例如,改良植物中特定类别次级代谢物的合成能力,有望提高植物的药用效果。
三、基因工程改良植物抗逆性及品质分析的应用1. 农业生产中的应用基因工程改良植物的抗逆性和品质分析在农业生产中具有广泛的应用前景。
通过提高作物的抗逆性,可以减少因干旱、病虫害等逆境导致的产量损失。
基因工程技术在植物抗逆育种中的应用

基因工程技术在植物抗逆育种中的应用人类对于植物的需求与日俱增,同时,全球气候变化和各种环境压力也对植物的生长和发展提出了更高的要求。
为了满足人类对粮食安全和环境保护的需求,科学家们研发出了一种被广泛应用的技术——基因工程技术。
基因工程技术的应用在植物抗逆育种中起到了重要的作用,本文将对其应用进行探讨。
一、基因工程技术简介基因工程技术是指在分子水平上对生物基因进行修改、转移和操作的一门技术。
通过选择优良的基因并将其转移到目标物种中,可以增强物种的抗逆性、产量和品质等方面的特点。
基因工程技术的出现为植物抗逆育种提供了新的途径。
二、植物抗逆育种的意义植物在面对各种逆境时,会出现生长发育受限、产量下降、品质变差等问题。
针对这些问题,通过植物抗逆育种可以培养出更具抵抗力的作物品种,提高作物的产量和品质,满足人类对粮食的需求,减轻对土地和其他自然资源的压力,实现绿色可持续发展。
三、基因工程技术在植物抗逆育种中的应用1. 转基因植物的抗逆性提升通过转基因技术,科学家可以将一些与抗逆能力相关的基因导入目标作物中,从而提高其抗逆性。
例如,将耐旱基因导入水稻中,使其在干旱条件下仍能正常生长发育;将耐盐基因导入小麦中,提高其抵抗盐碱土的能力。
这些转基因作物能够更好地适应恶劣环境,保证农作物的产量和质量。
2. 基因编辑技术的应用基因编辑技术是一种通过精确修饰目标基因序列来改变物种基因组的方法。
利用CRISPR/Cas9等基因编辑工具,科学家们能够针对植物在抗逆性方面存在的问题进行基因修饰。
例如,针对一些敏感于低温的作物,可以通过基因编辑技术来修饰相关基因,增强其抗寒性。
这种技术的应用在植物抗逆育种中具有广阔的发展前景。
3. RNA干扰技术的利用RNA干扰技术是一种通过RNA分子干涉基因转录和翻译的过程,从而实现基因沉默的方法。
科学家们可以利用RNA干扰技术来抑制一些负调控因子的表达,以提高植物在逆境条件下的抗逆性。
通过RNA 干扰技术,可以选择性地靶向抑制一些抑制因子,增强植物的抗逆能力,提高作物的产量和品质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五:细胞膜脂组分
1、抗旱基因筛选
植物抗旱相关基因分为两大类: 第一类基因 编码在植物抗性中直接起保护作用的蛋白质, 属于 功能基因;
第二类基因 编码在 信号传导和逆激基因表达过程中起调 节作用的蛋白质因子, 属于调节基因。
2、抗涝基因筛选
主要针对缺氧窒息和低氧耐受以及抗 氧化
2、抗涝基因筛选
(四)内源激素变化 1、ABA与植物的抗性 逆境下,植物体内游离ABA迅 速积累,含量为原来的十几倍至 几十倍。
脱落酸能提高植物的抗逆性,因为:
◆ABA能维持细胞结构和膜结构的稳定, 防止逆境对细胞器和膜系统的伤害 ◆ABA能防止水分散失,促进根系吸水 ◆ABA能改变体内代谢,促进某些物质 的积累 ◆ABA能调节植物自身的保护功能
CaMV 35S 启 动子的驱动下导入矮牵牛。结果预示 vhb 基因 在抗涝作 物培育 和 提高水培植物缺氧耐受能力的分子育种方面具有较良好的 应用 前景。
1、粪透明 颤 菌血 红 蛋 白 基 因(vhb) 的 编 码 区, 将 其 置于
2、已经有实验表明已经成功将明颤菌血红蛋白基因(vgb)转入油菜中
2、逆境种类 水分(干旱、涝渍)、 温度:[高温(热 害)、低温(寒害)]、盐碱、 环境污染
二、植物抗逆的生理基础
(一)生物膜的应变 在正常情况下,膜为液晶态。 膜中脂肪酸碳链越长,膜固化温 度越高。相同碳链长度时,不饱 和键数目越多,固化温度越低。
●膜脂饱和脂肪酸和抗旱性 呈密切正相关 ●膜脂不饱和脂肪酸直接增大 膜的流动性,提高抗冷性 ●膜脂中磷脂含量和抗冻性呈 密切正相关
2、乙烯与植物的抗性 植物在淹水、干旱、低温、 高温等逆境条件下,体内的乙 烯含量会迅速增加,增加的这 部分乙烯称为逆境乙烯。(stress
ethylene)
(五)渗透调节作用 1、渗透调节的概念 在水分亏缺情况下,植物要维 持正常的生理活动过程,细胞就必 _ 须具有一定的膨压。ψP=ψw ψs 当水势下降时,要维持细胞膨压不 变,只有使渗透势下降。
植物逆境生理 Stress Physiology
第五章 植物抗性的基因工程
生命科学学院
内容导航
1
逆境及其种类 植物抗逆的生理基础 筛选抗逆基因 基因工程技术育种
2 3 4
一、逆境的概念和种类
1、逆境的概念
所有对植物生命活动及生长发育不利的环 境条件,统称为逆境(stress environment)。
增加植物体细胞内活性氧浓度的环境因素
活 性 氧 与 植 物 膜 伤 害 机 制
植物体内的防御系统能降低或消 除活性氧的攻击能力。 ●酶促防御系统 SOD、CAT、POD三者的活性协调 一致,使活性氧维持在一个低水平, 这三种酶称为保护酶。 ●非酶促防御系统(抗氧化剂) VitC、VitE、GSH、Car等。
2、与盐胁迫信号传导有关的基因
SOS途径:5个耐盐性基因:SOSl,SOS2,SOS3,SOS4, SOS5。其中SOSl,SOS2,SOS3在一条共同SOS信号传导途 径中起作用。 钙信号途径:Urao等疆妇从损南芥中克隆蓟两个依赖钙 (Ca2+)的蛋白激酶(calmodulin-independent protein ki—nases ,CDPK)基因eDNA:cATCDPKl和cATCDPK2,并确定了其核 苷酸序列。
Liu等发现属予同一个基因家族的两个转录因子基因DREBIA和 DREB2A,表达产物为DRE结合因子,结合在rd29A基因的启动子区 域,分析认为DREBlA和DREB2A是相互独立的、在分属不同的干旱 和盐胁迫信号传导途径中起着反式作用因子的作用。
四、基因工程技术育种Tha Nhomakorabeak You!
(二)逆境蛋白的表达 在逆境条件下,植物的基因表 达发生改变, 启动一些与逆境 相适应的基因,合成热激蛋白、 抗冻蛋白、盐胁迫蛋白等。
(三)抗氧化防御系统 逆境下植物组织通过多种途径产 生大量的活性氧(active oxygen): 例如: 超氧自由基(O-2) 羟自由基(.OH) 过氧化氢(H2O2)、 单线态氧(1O2)
(2)甜菜碱与植物抗逆性 甜菜碱是一种含氮化合物, 具有很高的溶解度,在生理 pH范围不带净电荷,无毒, 在逆境条件下细胞原生质中 的积累量高于液泡,可作为 细胞质渗透物质
甜菜碱的生理作用: ◎作为细胞质的解毒剂 ◎作为酶的稳定剂 ◎作为生物合成中的甲基的 供体 ◎参与磷脂的生物合成
(3)可溶性糖和游离氨基酸
●酶促防御系统 SOD、CAT、POD三者的活性协调一致,使活 性氧维持在一个低水平,这三种酶称为保护酶。 ●非酶促防御系统(抗氧化剂) VitC、VitE、GSH、Car等
三:内源激素变化 ABA与植物的抗性 乙烯与植物的抗性 四:渗透调节物质 由外界环境进入细胞内的各种无机离子,如
K+、Cl-等;细胞自身合成的有机物,主要是脯氨酸和甜菜碱 。
植物在水分胁迫下,通过代 谢活动增加溶质,提高细胞液 浓度,降低渗透势,从而降低 水势,维持吸水能力,保证正 常代谢与生长的现象,称为渗 透调节(osmoregulation or osmotic
adjustment)
2、渗透调节物质
决定细胞渗透势的可溶性 物质分为两类: ●由外界环境进入细胞内 + 的各种无机离子,如K 、Cl 等; ●细胞自身合成的有机物, 主要是脯氨酸和甜菜碱
4、抗高温基因筛选
主要是高温抗性转录因子转化植物,提高 植物高温抗性 物高温抗性转录因子 目前已经发现的植物高温抗性转录因子有 热激转录因子、脱水应答元件结合蛋白、 MYB类转录因子、WRKY转录因子以及其它 转录因子。
1、热激转录因子:最近的研究表明,HSFs与HSPs一同组成了HSF— HSP环路,作为调节网调节热胁迫应答基因的转录激活。 2、水应答元件结合蛋白:DREB类基因的过表达能够激活热激相关 基因的表达,提高植物对高温的耐受力。预测调节高温的遗传学 级联放大反应时,DREBs和HSFs可能产生了互作。 3、 MYB类转录因子:MYB能够使植物对高温、低温、干旱及盐碱 等胁迫环境应答。 4、WRKY转录因子:。WRKy基因也广泛参与植物对高温的应答。 WRKY转录因子在基因表达过程中既是抑制物也是激活物 5、它转录因子:核转录因子X一盒结合基因1(Nuclear transcription factor X—box binding 1gene)促进获得抗热性的产生。锌指蛋白、碱 性亮氨酸拉链(basic leucine zipper,bZIP)以及多蛋白结合因子 (Multiprotein-bridging factor 1 c,MBFlc)等转录因子也积极地参与 了植物对高温胁迫的响应
LEA蛋白基因
LEA蛋白即种子胚胎发生后期富集蛋白质,是在种子成熟和发育 阶段合成的一系列蛋白,也表达在因受干、低温和盐渍胁迫而失 水的营养组织中
COR蛋白基因
Artus 使 COR15am 多肽在转基因拟南芥中大量组成型表达后,与野 生型相比,转基因植物分别提高了叶绿体和原生质体的寒冷耐受 性并增强了原生质膜的稳定性,减轻了寒冻所造成的损伤损害。
,结果表明转vgb基因的油菜相比较对照在抗涝方面明显得到增强。
3、构建pBI121- MhGLB1表达载体,并对番茄进行农杆菌侵染的遗传
转化。对转基因番茄的抗涝性进行了初步检测发现:与野生型植株相 比,转基因番茄在水涝下其光合速率下降比较缓慢。(抗氧化)
3、抗寒基因筛选
动物抗冻蛋白 ( AFP)
鱼类抗冻蛋白基因转入烟草和番茄已获得较好表达 , 将人工合成的 黄盖鲽鱼抗冻蛋白基因导入玉米原生质体 ,在植物细胞中获得表达 ; 利用农杆菌将比目鱼体内抗冻蛋白 (AFP) 基因转入番茄 ,发现基因 番茄不但稳定转录 AFP 的 mRNA ,还产生一种新的蛋白质 ,这种转基 因番茄的组织提取液在冰冻条件下能有效阻止冰晶增长 ; Kimberly 等将类型 Ⅰ鱼类抗冻蛋白基因转移至烟草中并在低温下 检测到抗冻蛋白活性。
逆境下植物体内可溶性糖和游 离氨基酸增加的原因: ☆大分子糖类和蛋白质分解加 强而合成受抑制; ☆光合产物形成过程中直接转 向低分子量的物质蔗糖等; ☆从植物其它部分输入
三、抗逆基因的筛选
抗性基因种类:
1、抗旱基因 2、抗涝基因 3、抗寒基因 4、抗高温基因 5、抗盐基因
筛选办法:
一:逆境蛋白的表达 在逆境条件下,植物的基因表达发 生改变, 启动一些与逆境相适应的基因,合成热激蛋白、 抗冻蛋白、盐胁迫蛋白等。 二:抗氧化防御系统
1、小分子渗透调节物质合成相关基因
脯氨酸:P5CS的编码基因被克隆并研究的较多:Strizhov 等发现,在拟南芥(Arabidopsis thaliana)中PSCS是有两个不 同基因编码的。 甜菜碱:。BADH是一个60kD的多肽二聚体,主要集中在 菠菜(Spinacia oleracea L.)和甜菜(Beta vulgarisL.)叶绿体 基质中。 可溶性糖:草杆蘩(Bacillus subtilis)中鹩果聚糖蔗糖转移酶 基因 (Sac B)研究的较多。
3、耐盐性相关的调控元件和因子
在拟南芥中,Pilon-Smits等报道了一批受脱水诱导的基因 Rd(Responsive to dehydration),其中一个受脱水和低温诱导基因 rd29A的启动子中的一个9 bp的脱水响应元件(dehydration response element,DRE),碱基序列为TACCGACAT,是一种典型的顺式作用 元件。
(1)脯氨酸在抗逆中的作用
1.作为渗透物质,保持原生质 与环境的渗透平衡,防止失水; 2.与蛋白质结合增强蛋白质的 水合作用,增加蛋白质的可溶性 和减少可溶性蛋白质的沉淀,保 护生物大分子结构和功能的稳定。
逆境下积累的脯氨 酸主要集中在细胞质, 使细胞渗透势明显降低, 大大提高吸水能力。故 脯氨酸是细胞质渗透物 质。