电流互感器选型

合集下载

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法电流互感器的选用原则及方法1、额定电压电流互感器额定电压应大于装设点线路额定电压。

2、变比应根据一次负荷计算电流IC选择电流互感器变比。

电流互感器一次侧额定电流标准比(如20、30、40、50、75、100、150、2×a/C)等多种规格,二次侧额定电流通常为1A或5A。

其中2×a/C表示同一台产品有两种电流比,通过改变产品的连接片接线方式实现,当串联时,电流比为a/c,并联时电流比为2×a/C。

一般情况下,计量用电流互感器变流比的选择应使其一次额定电流I1n不小于线路中的负荷电流(即计算IC)。

如线路中负荷计算电流为350A,则电流互感器的变流比应选择400/5。

保护用的电流互感器为保证其准确度要求,可以将变比选得大一些。

3、准确级应根据测量准确度要求选择电流互感器的准确级并进行校验。

下表为不同准确级电流互感器的误差限值:准确级选择的原则:计费计量用的电流互感器其准确级不低于0.5级;用于监视各进出线回路中负荷电流大小的电流表应选用1.0—3.0级电流互感器。

为了保证准确度误差不超过规定值,一般还校验电流互感器二次负荷(伏安),互感器二次负荷S2不大于额定负荷S2n,所选准确度才能得到保证。

准确度校验公式:S2≤S2n。

二次回路的负荷l:取决于二次回路的阻抗Z2的值,则:S2=I2n2︱Z2︱≈I2n2(∑︱Zi︱+RWl+RXC)或S2V1≈∑Si+I2n2(RWl+RXC)式中,Si、Zi为二次回路中的仪表、继电器线圈的额定负荷和阻抗,RXC为二次回路中所有接头、触点的接触电阻,一般取0.1Ω,RWL为二次回路导线电阻,计算公式化为:RWL=LC/(r×S)。

式中,r为导线的导电率,铜线r=53m/(Ωmm2),铝线r=32m(Ωmm2),S为导线截面积(mm2),LC为导线的计算长度(m)。

设互感器到仪表单向长度为L1,。

电流互感器选型原则和方法

电流互感器选型原则和方法

电流互感器选型原则和方法电流互感器选型原则和方法一、前言电流互感器是一种非常重要的电力设备,广泛应用于电力系统中。

它的作用是将高电流转换为低电流,以便于测量、保护和控制等方面的应用。

因此,正确地选择适合的电流互感器对于保证系统运行的安全稳定具有非常重要的意义。

本文将从以下几个方面介绍电流互感器选型原则和方法。

二、选型原则1.符合使用条件在选择电流互感器时,首先需要考虑它是否符合使用条件。

例如,需要考虑其额定电压、额定频率、额定负荷等参数是否符合实际使用条件。

2.精度要求在选择电流互感器时,需要根据实际需求来确定其精度要求。

一般来说,精度越高的电流互感器价格越贵。

因此,在保证测量精度的前提下,应尽可能选择价格适中的产品。

3.安装方式在选择电流互感器时,需要考虑其安装方式。

一般来说,有固定式和插入式两种安装方式。

固定式适用于较小的负荷,在大型变压器等设备上使用插入式更为方便。

4.环境条件在选择电流互感器时,需要考虑其工作环境。

例如,需要考虑其耐受温度、防护等级等参数是否符合实际使用条件。

5.品牌和质量在选择电流互感器时,需要考虑其品牌和质量。

一般来说,知名品牌的产品质量相对较高,因此应尽可能选择知名品牌的产品。

三、选型方法1.确定额定电流在选择电流互感器时,首先需要确定其额定电流。

一般来说,应根据实际需求来确定额定电流。

例如,在测量小电流时可以选择额定电流较小的产品,在测量大电流时可以选择额定电流较大的产品。

2.确定精度等级在确定额定电流后,需要根据实际需求来确定精度等级。

一般来说,有0.5、1、3等精度等级可供选择。

应根据实际需求来确定最佳精度等级。

3.确定安装方式在确定精度等级后,需要考虑安装方式。

一般来说,固定式适用于较小的负荷,在大型变压器等设备上使用插入式更为方便。

4.确定环境条件在确定安装方式后,需要考虑环境条件。

例如,需要考虑其耐受温度、防护等级等参数是否符合实际使用条件。

5.选择品牌和质量在确定环境条件后,需要选择品牌和质量。

电气工程规范要求中的电流互感器选型与应用指南

电气工程规范要求中的电流互感器选型与应用指南

电气工程规范要求中的电流互感器选型与应用指南电气工程中,电流互感器(Current Transformer,CT)被广泛应用于电能计量、保护与控制等方面。

正确选型和应用电流互感器对于保证电力系统的安全运行至关重要。

本文旨在根据电气工程规范要求,为读者提供电流互感器选型与应用的指南。

1. 电流互感器选型要点电流互感器选型需要综合考虑以下几个要点:1.1 额定电流根据实际需求,选择适当的额定电流范围。

一般来说,电流互感器的额定电流应大于系统最大负荷电流的1.2-1.5倍,以保证互感器在额定条件下的准确度和稳定性。

1.2 负荷能力互感器的负荷能力是指互感器在一定时间内能承受的短时过载电流。

根据负荷能力要求,选取具有足够负荷能力的互感器,以应对系统可能出现的短时过载情况。

1.3 准确度等级根据测量的准确度要求,选择合适的准确度等级。

电气工程规范通常规定了准确度等级的要求,请参考相关规范标准进行选择。

1.4 频率响应特性电流互感器的频率响应特性应与实际应用系统的频率要求相匹配,以保证测量的准确性。

2. 电流互感器应用指南电流互感器在电力系统中的应用具有重要意义,以下是电流互感器的应用指南:2.1 安装位置电流互感器应安装在电力系统中电流变化较小的位置,以获得准确的测量结果。

一般建议在负荷侧主线中安装电流互感器。

2.2 联结方式电流互感器一般采用窄口安装,并与电流回路并联连接。

联结方式包括螺栓联结和焊接联结,应根据实际情况选择合适的方式。

2.3 防护措施电流互感器应采取适当的防护措施,以保证其运行的可靠性和安全性。

常见的防护措施包括绝缘罩、过压保护和电磁兼容设计等。

2.4 定期检测和维护为了保证电流互感器的准确度和稳定性,应定期进行检测和维护工作。

检测项目包括互感器的绝缘电阻、绝缘强度等,维护工作包括清洁互感器表面和紧固联结件等。

3. 总结与展望本文针对电气工程规范要求中的电流互感器选型与应用问题,提供了相应的指南。

电流互感器变比选型标准

电流互感器变比选型标准

电流互感器变比选型标准
电流互感器是一种重要的电气测量仪表,主要用于测量电力系统
中的电流。

在电能计量中,电流互感器被广泛应用。

通过测量电流互
感器的变比,能够准确地计算电力系统中的电能消耗。

因此,在选型
电流互感器的过程中,变比是重要的考虑因素之一。

选型标准:
1.系统额定电流:电流互感器变比的选型应基于电力系统中的额
定电流。

因此,首先需要确定所要安装电流互感器的电路额定电流值。

2.功率因数:在选型电流互感器的过程中,需要考虑电路的功率
因数。

直流电路通常需要测量变流器的电流,而交流电路需要测量电
力系统的负载电流。

在使用电流互感器时,应根据电路的功率因数和
变流器的过剩电流选择合适的变比。

3.输出信号:电流互感器可以输出电流信号或电压信号。

在选型
电流互感器时,应根据实际的应用需求选择合适的输出信号类型。

4.环境因素:在考虑电流互感器变比的选择时,应考虑安装环境
的影响。

例如,应考虑温度、湿度和腐蚀等因素。

5.精度:电流互感器的精度越高,电路的测量结果越准确。

在选
型电流互感器时,应考虑其精度性能。

总之,电流互感器变比的选型应考虑实际应用需求、系统额定电流、功率因数、环境因素和精度等因素。

正确选型的电流互感器能够
保证电力系统的运行稳定性和测量准确性。

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法

一文看懂电流互感器选型原则和方法及使用方法电流互感器是一种用于测量电流的传感器,广泛应用于电力系统中。

其主要作用是将高电流通过磁耦合的方式转换为低电流,以便进行测量和保护。

选型电流互感器时,需要考虑一系列的原则和方法,以确保其能够满足系统的要求,并提供可靠的测量数据。

首先,选型电流互感器时需要考虑的是额定电流范围。

根据实际应用中的最大电流需求,选取适当的额定电流范围。

过小的额定电流范围会导致互感器无法承受高电流,而过大的额定电流范围则会使互感器的量程过大,从而影响测量的准确性。

其次,选型电流互感器还需要考虑的是准确度等级。

准确度等级决定了互感器的测量准确性,一般分为0.1级、0.2级、0.5级等。

根据实际应用的要求,选择适当的准确度等级。

通常情况下,对于保护设备来说,需要选择较高的准确度等级,而对于测量设备来说,可以选择较低的准确度等级。

另外,选型电流互感器还需要考虑的是频率响应范围。

频率响应范围决定了互感器在不同频率下的测量准确性。

一般来说,电力系统的频率为50Hz或60Hz,因此选择能够覆盖该频率范围的互感器。

此外,选型电流互感器还需要考虑的是绝缘水平和安装方式。

绝缘水平决定了互感器能够承受的绝缘电压,一般根据系统的绝缘等级选择相应的互感器。

安装方式决定了互感器的安装方法,常见的有插入式、夹式和固定式等。

使用电流互感器时,需要注意以下几点。

首先,要确保互感器的额定电流与系统的最大电流相匹配,以免互感器过载。

其次,要注意互感器的接线方式,确保正确连接。

另外,要定期检测互感器的准确度,以确保测量结果的可靠性。

此外,要注意互感器的维护和保养,定期清洁和检查互感器,确保其正常工作。

综上所述,电流互感器的选型原则和方法包括考虑额定电流范围、准确度等级、频率响应范围、绝缘水平和安装方式等因素。

在使用电流互感器时,需要注意互感器的额定电流、接线方式、准确度检测以及维护保养等方面。

只有选择适合的互感器并正确使用,才能确保测量的准确性和可靠性。

电流互感器的选型

电流互感器的选型

电流互感器5P25/5P25/5P25/0.5/0.2S该互感器有三个保护用绕组5P25,绕组精度5%,精度保证范围,允许电流到额定值的25倍;一个测试绕组0.5,测试精度0.5%;还有一个特殊用途的测量绕组0.2S,测量精度平均0.2%。

5P30 :5P表示是保护用互感器,准确级次为5P级,就是当电流在额定准确限值一次电流下综合误差值为5%。

30表示准确限值倍数为30倍,0.5为测量用电流互感器准确级次;0.2S 为特殊用途互感器的准确级次。

测量用电流互感器二次负荷这里没有标出,一般选用15伏安或1伏安。

测量用电流互感器的误差是在负荷变动下电流误差略有变化,变化范围当负荷在5-120%变动时,误差变动范围为0.75-0.2%一.按一次侧计算电流占电流互感器一次侧额定电流的比例根据<<电气装置的电测量仪表装置设计规范>>(GBJ63-90)的规定,在额定值的运行条件下,仪表的指示在量程的70%~100%处,此时电流互感器最大变比应为: N=I1RT /(0.7*5);I1RT ----变压器一次侧额定电流, A; N----电流互感器的变比;显然按此原则选择电流互感器变比时,变比将很小,下面列出400~1600kVA变压器按此原则选择时,电流互感器的最大变比:向左转|向右转从上表可以看出, 对于630kVA变压器,电流互感器的最大变比为15,当取50/5=10时,额定电流仅占电流量程3.64/5=72.8%。

这可能是一些设计人员把630kVA变压器的供电出线断路器处电流互感器变比取50/5的一个原因,另外在许多时候,设计时供电部门往往不能提供引至用户处的电源短路容量或系统阻抗,从而使其他几个条件的校验较难进行,这可能是变比选择不当得另一个原因。

从下面的分析中,我们将发现按此原则选择时,变比明显偏小,不能采用。

二.按继电保护的要求为简化计算及方便讨论,假设:(1)断路器出线处的短路容量,在最大及最小运行方式下保持不变;(2)电流互感器为两相不完全星型接线;(3)过负荷及速断保护采用GL-11型过电流继电器;(4)操作电源为直流220V,断路器分闸形式为分励脱扣。

电流互感器

385
TA5060-2
30Ω
3.0V
≤0.2%

266
TA5060-2M
37.5Ω
3.75V
≤0.25%
TA4555-02
80Ω
8.0V
≤0.5%

卧式穿芯(Φ61+□3×40)
Φ61×25.5
100
TA500-2
240Ω
24V
≤1%
≤0.2%
立式穿芯(φ23.4)焊接安装
22.5×58.2×58.2
350
800A/0.2A
TAR4076-02
25Ω
5V
≤0.5%

1000A/0.2A
TA7888-2
100Ω
20V
≤0.5%

≥4
立式穿芯(Φ45+□21×61.5)
母线或底板通用安装
116×101×45
750
190
TAR2243-01
30Ω
3V
≤0.5%

立式穿芯(□4.5×22)
19×48×32
85
200A/0.2A
TAR2243-02
7.5Ω
1.5V
≤0.5%

≥6
立式穿芯(□4.5×22)
19×48×32
85
TA4252-1
30Ω
6.0V
≤0.5%

≥4
立式穿芯(Φ23+□11×32)
母线或底板通用安装
母线或底板通用安装
73×25×73
385
250A/0.1A
TA3547-1
50Ω
5.0V
≤0.5%

变压器保护整定中的电流互感器选型要点

变压器保护整定中的电流互感器选型要点在电力系统中,变压器是起到转换电压的重要设备之一,而变压器的保护则是确保其正常运行的关键。

在变压器保护中,电流互感器的选型是至关重要的环节。

本文将介绍变压器保护整定中的电流互感器选型要点。

1. 了解电流互感器的基本原理和工作方式在选型之前,我们首先应该对电流互感器的基本原理和工作方式进行了解。

电流互感器是一种将高电流变换成低电流的设备,常用于变压器保护中测量和监测电流的变化。

了解电流互感器的基本原理和工作方式可以帮助我们更好地进行选型,确保选用的电流互感器符合实际需求。

2. 根据变压器的额定电流确定互感器的额定电流根据变压器的额定电流确定互感器的额定电流是选型的首要步骤。

互感器的额定电流应与变压器的额定电流相匹配,这样能够保证互感器在运行时能够正常工作,并能够准确地测量变压器的电流。

3. 考虑系统的故障电流和过电流能力除了变压器的额定电流,我们还需要考虑系统的故障电流和过电流能力。

互感器在选型时应具备足够的过电流能力,以应对系统可能出现的故障情况。

同时,互感器选定后,还需要对其进行过电流能力测试,确保其能够在实际运行中承受系统的故障电流。

4. 考虑互感器的准确度等级和净变比互感器的准确度等级和净变比也是选型的重要参数。

准确度等级是指互感器的输出信号与输入信号之间的误差范围,一般通过等级来表示,例如0.2级、0.5级等。

在选择准确度等级时,需根据实际需求以及经济性进行综合考虑。

净变比是指互感器中主次侧电流的比值,也是选型时需要注意的参数之一。

5. 考虑互感器的热特性和过载能力互感器在运行中会产生一定的热量,因此其热特性和过载能力也是选型时需要考虑的因素。

热特性是指互感器在长期运行中的温升情况,需根据实际运行条件来选择合适的热特性参数。

过载能力则是指互感器能够承受的超过额定电流一定时间的能力,选型时需确保互感器具备足够的过载能力,以应对可能出现的突发情况。

6. 考虑安装环境和维护要求最后,在选型时还需要考虑互感器的安装环境和维护要求。

互感器的选型及应用中的注意事项

互感器应用中的注意事项及选型互感器是将一次系统的电压、电流信息准确地传递到二次侧相关设备;将一次系统的高电压、大电流变换为二次侧的低电压(标准值)、小电流(标准值),使测量、计量仪表和继电器等装置标准化、小型化,并降低了对二次设备的绝缘要求;将二次侧设备以及二次系统与一次系统高压设备在电气方面很好地隔离,从而保证了二次设备和人身的安全。

1. 互感器定义:是电流互感器和电压互感器的统称,用于将高电压、大电流转换为低电压、小电流的器件,用于测量或保护系统。

1.1分类互感器根据测试对象的不同可以分为:电流互感器和电压互感器。

2.电流互感器电流互感器(又称CT)是按一定比例和准确度转换电流的大小的仪器,电流互感器在电工测量和继电保护中的主要作用是将高压电流和低压大电流变成电压较低的小电流,供给仪表和继电保护装置,并将仪表和继电保护与高压电路隔开。

电流互感器的二次侧额定电流均为5A,这使得测量仪表和继电保护装置的使用安全、方便,也使其在制造上可以标准化,简化制造工艺并降低成本。

根据结构不同,电流互感器又可以分为:a、普通电流互感器。

其结构较为简单,有相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。

其工作原理已变压器基本相同,一次绕组的匝数(N1)较少,直接串联于电源线路中,一次负荷电流(I1)通过一次绕组时)产生的交变磁通,感应产生按比例减小的二次电流(I2);二次绕组的匝数(N2)较多,。

与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,由于一次绕组与二次绕组有相等的安培匝数,I1N1=I2N2,电流互感器额定电流比电流互感器实际运行中的负荷阻抗小。

二次绕组接近于短路状态,相对于一台短路运行的变压器。

图 1 普通电流互感器b、穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形或其它形状的铁心起一次绕组作用。

二次绕组直接均匀缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路。

电流传感器和互感器选型

电流传感器和互感器选型通常的电流传感器/互感器是把大电流转换为同频同相的小电流以便于测量或实现隔离。

根据不同的变换原理,一般有基于电磁感应原理、霍尔效应、磁通门这几种技术的电流传感器/互感器。

一、电流互感器电流互感器类似于一个初级匝数很少,次级匝数较多的变压器。

理想情况下初次级电流之比与匝数比成反比,电流变换比例以初次级额定电流标注,例如“300A/5A”,表示被测电流为额定值300A时输出电流为5A。

由于初次级线圈均存在漏感和电阻,以及励磁电流、铁芯磁化曲线非线性,会导致互感器产生比值误差和相位误差。

用于计量计费的互感器准确度一般为0.1~1级。

由互感器原理可知,它是不能测量直流电流的,通常设计为工频测量,准确度为工频下的参数,带宽较窄,不适合用于谐波分析和非正弦测量。

使用电流互感器一定注意不能将次级开路,否则将会产生高压危及人身和设备安全。

图1 电流互感器二、电流钳电流钳内的铁芯分成两部分,避免断开被测回路,非常便于测量且使用很广泛。

有基于电磁感应原理和霍尔效应两种类型。

基于电磁感应原理的电流钳与互感器一样,铁芯被分成两部分,闭合时两部分铁芯需要紧密结合,有些电流钳次级连接了电阻输出为电压信号,没有内部电阻的输出为电流信号。

受到两部分铁芯闭合程度的影响,电流钳精度通常比互感器差。

同样地基于电磁感应的电流钳也只能测量交流。

基于霍尔效应的电流钳在铁芯中加工一个气隙放置霍尔元件。

利用霍尔元件测量气隙中的磁感应强度,根据控制方式不同,有开环和闭环两种类型。

开环霍尔型使用线性度较好的霍尔元件,霍尔元件输出电压正比于被测电流。

闭环霍尔型使用零磁通技术,铁芯上有补偿线圈。

当初级有被测电流在铁芯中产生磁通时,霍尔元件检测铁芯中的磁感应强度,通过负反馈将此误差电压转换为电流驱动补偿线圈,抵消铁芯中的磁通,最终被测电流与补偿线圈产生的磁通量大小一致方向相反,通过测量补偿线圈的电流即可按照匝数比换算出被测电流。

开环和闭环霍尔型电流钳都可以测量直流和交流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电流互感器选型
选择电流互感器时需要考虑以下几个因素:
1. 测量范围:根据需要测量的电流范围选择合适的互感器。

确保互感器的额定测量范围覆盖了实际测量电流的最大值。

2. 精度要求:根据测量精度的要求选择合适的互感器。


感器的精度一般以类别或百分比表示,例如0.2级或0.5%。

3. 安装方式:根据现场安装的条件选择合适的安装方式,
常见的安装方式有穿芯式、带壳式、母线式等。

4. 外形尺寸:根据现场安装空间的限制选择合适的互感器
外形尺寸。

5. 额定电流:根据被测电流的额定值选择合适的互感器,
确保互感器的额定电流符合实际应用需求。

6. 防护等级:根据现场工作环境的要求选择合适的防护等级,以确保互感器的安全可靠工作。

7. 频率响应:根据被测电流的频率范围选择合适的互感器,确保互感器在指定频率范围内有良好的响应。

综合考虑以上因素,选择适合的电流互感器能够确保测量
的准确性和可靠性。

相关文档
最新文档