中科院课件--《现代信号处理的理论和方法》Chapter+1
合集下载
现代信号处理方法1_2

但应当指出,并不是所有的时-频分布都 满足表中的所有性质,实际中适用的时-频 分布并非一定要满足所有的性质,应该根据 具体情况进行合理取舍。
1.3.4 核函数的基本性质要求
由(1.3.5)式
( , v)
P(t , f )e j 2 ( vt f ) dtdf Az ( , v) P (t , f )e j 2 ( vt f ) dtdf
则(1.3.1)式化为
1 * 1 j 2f P(t , f ) z (t ) z (t )e d 2 2
(1.3.2)
上式就是著名的Wigner-Ville分布 .
记
上式是一个双线性变换(双时间信号)。关于 时间t作Fourier反变换
k z (t , ) z (t ) z (t ) 2 2
j 2 ( vt f )
如果时-频分布 p (t , 核函数的性质要求.
P (t , f )e z (u 2 ) z (u 2 )e
*
dtdf
(1.3.5)
j 2vu
du
f )有特定性质要求, 由上式可决定对
互时-频分布定义
两个连续信号 x(t ),y(t )的互时-频分布定义为:
P(t , ) 0
在上面的特性中,边缘特性和非负特性保 证了时-频分布准确反映信号的谱能量、瞬 时功率和总能量。边缘特性可以保证信号的 总体量(平均时间、平均频率、时宽和带宽 等)正确给定。非负性则可以进一步保证分 布的条件期望是切合实际的和物理解释。非 负性和边缘特性一起可以保证时-频分布的 强有限支撑。
2 2 * 1 2 z1 , z2 * 2 1 z2 , z1
1.3.4 核函数的基本性质要求
由(1.3.5)式
( , v)
P(t , f )e j 2 ( vt f ) dtdf Az ( , v) P (t , f )e j 2 ( vt f ) dtdf
则(1.3.1)式化为
1 * 1 j 2f P(t , f ) z (t ) z (t )e d 2 2
(1.3.2)
上式就是著名的Wigner-Ville分布 .
记
上式是一个双线性变换(双时间信号)。关于 时间t作Fourier反变换
k z (t , ) z (t ) z (t ) 2 2
j 2 ( vt f )
如果时-频分布 p (t , 核函数的性质要求.
P (t , f )e z (u 2 ) z (u 2 )e
*
dtdf
(1.3.5)
j 2vu
du
f )有特定性质要求, 由上式可决定对
互时-频分布定义
两个连续信号 x(t ),y(t )的互时-频分布定义为:
P(t , ) 0
在上面的特性中,边缘特性和非负特性保 证了时-频分布准确反映信号的谱能量、瞬 时功率和总能量。边缘特性可以保证信号的 总体量(平均时间、平均频率、时宽和带宽 等)正确给定。非负性则可以进一步保证分 布的条件期望是切合实际的和物理解释。非 负性和边缘特性一起可以保证时-频分布的 强有限支撑。
2 2 * 1 2 z1 , z2 * 2 1 z2 , z1
最新现代信号处理第1章ppt课件

信号是传载信息的物理量,是信息的表现形式。
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展
信号处理的本质是信息的变换和提取。
信息的提取就要借助各种信号获取方法以及信号处理 技术。
信号测量系统和信号处理的工作内容的成本已达到装 备系统总成本的50%-70%。
1.1 现代信号处理的内容和意义
信号处理技术的应用领域:
电子通讯; 机械振动信号的分析与处理; 自动测量与控制工程领域; 语音分析、图像处理与声纳探测; 生物医学工程。
(1.4.4)
R x(y ) x ( t)y ( t)d t x ( t)y ( ,t)
(1.4.5)
内积可视为 x (t与) “基函数”关系紧密度或相似性的一种度量。
1.4 信号处理的内积与基函数
信号的内积与基函数
傅里叶变换是应用最为广泛的信号处理方法,函数 x (t ) 的傅里叶变换为
cn
1 T
T/2 x(t)eintdt
T/ 2
(1.3.6)
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
傅里叶级数具有两个独特的性质:
1、函数 x (t ) 可分解为无限多个互相正交的分量 gn(t):cneint 的和,其中正交是指 g m 与 g n 的内积对所有 mn成立, 即
gm,gn:T 1 T T //2 2gm (t)gn(t)d t0
mn
2、正交分量 或 可用一个简单的基函数
的整数m
或n的膨胀g生m 成,g 线n 性累加逼近任何函数 g1(。t)
x(t) 小波变换中,通过母小波的伸缩和平移生成小波族。
1.3 非平稳信号处理和信号的正交分解
1.3.2 信号的正交分解
第一章 绪论
1.1 现代信号处理的内容和意义 1.2 信号的分类 1.3 非平稳信号处理和信号的正交分解 1.4 信号处理的内积与基函数 1.5 现代信号处理的应用现状与进展
中科院课件---《现代信号处理的理论与方法》课程回顾祥解

随机信号 x(t)的k阶矩:
, xk t xt k1
mkx 1, ,k1 Ext xt 1 xt k1
随机信号 x(t)的k阶累积量:
ckx 1, ,k1 cumxt, xt 1, , xt k1
矩和累积量的估计
矩的估计:
mˆ k1
累积量的估计:
谱、双谱和三谱的BBR公式:
Py
2 x
H
H
*
2 x
H 2
By 1,2 3xH 1 H 2 H * 1 2
Ty 1,2,3 4xH 1 H 2 H 3 H * 1 2 3
FIR系统辨识
n
L1
2
2
2
30 1
1
4
6
Lm
5
1
2 c3y n1, n2 3x h k h k n1 h k n2
二次叠加原理
设
z(t) c1z1(t) c2 z2 (t)
则
Pz (t,) | c1 |2 Pz1 (t,) | c2 |2 Pz2 (t,) c1c2*Pz1,z2 (t,) c1*c2Pz2,z1 (t,)
式中: Pz1 Pz2
z1(t)和z2(t)的自时频分布;
P 和 分 z1,z2
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。
, xk t xt k1
mkx 1, ,k1 Ext xt 1 xt k1
随机信号 x(t)的k阶累积量:
ckx 1, ,k1 cumxt, xt 1, , xt k1
矩和累积量的估计
矩的估计:
mˆ k1
累积量的估计:
谱、双谱和三谱的BBR公式:
Py
2 x
H
H
*
2 x
H 2
By 1,2 3xH 1 H 2 H * 1 2
Ty 1,2,3 4xH 1 H 2 H 3 H * 1 2 3
FIR系统辨识
n
L1
2
2
2
30 1
1
4
6
Lm
5
1
2 c3y n1, n2 3x h k h k n1 h k n2
二次叠加原理
设
z(t) c1z1(t) c2 z2 (t)
则
Pz (t,) | c1 |2 Pz1 (t,) | c2 |2 Pz2 (t,) c1c2*Pz1,z2 (t,) c1*c2Pz2,z1 (t,)
式中: Pz1 Pz2
z1(t)和z2(t)的自时频分布;
P 和 分 z1,z2
幅值和相位分别为:
at s2 t sˆ2 t
t
arctan
sˆt st
瞬时频率
❖ 瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
fi
t
1
2
d dt
arg
zt
1
0 E
'(t) | x(t) |2 dt
➢ 信号的中心频率是其瞬时频率在整个时间轴上的加 权平均。
现代信号处理算法PPT课件

26
通信信号处理
— 子空间方法
基于子空间的多用户检测 基于子空间的MIMO信道估计 基于子空间的自适应阵列 基于子空间的波达方向估计 基于子空间的时延和Doppler频移的估计 盲空时信号处理的子空间方法
27
通信信号处理
— 空时编码
基于空时编码的多用户接收机 基于空时编码的信道估计 自适应天线 空时处理的TDMA
作为信息载体的信号处理经历了从模拟到数字,从确 知到随机的发展过程,正阔步迈向以非平稳信号、非 高斯信号为主要研究对象和以非线性、不确定性为主 要特征的智能信号处理时代。
6
序言
通信担负着信息流通的功能,近一、二十年获得异乎 寻常的发展;各种基于因特网和移动网的新业务相继 出现,新概念和新技术层出不穷。标志性技术有:IP 技术、3G,4G移动通信技术、宽带接入技术、基于波 分复用技术的光传送网(WDM-OTN)技术。
10
信号处理的基础(续)
这些论文是:
The past, present, and future of multimedia signal processing. IEEE SP Magazine, July 1997
The past, present, and future of neural networks for signal processing. IEEE SP Magazine, Nov. 1997
30
通信信号处理
— Monte Carlo 统计信号处理
❖ Kalman滤波与Monte Carlo信号处理 - Kalman滤波: 线性状态空间模型问题(过程噪声和观测噪声 服从正态分布),解决高斯噪声情况下参数估计和滤波问题。 - MC处理(又称粒子滤波,particle filtering,使用MC仿真实现 递推Bayes滤波):非线性状态空间模型问题、解决非高斯噪 声情况下的参数估计和滤波问题。
通信信号处理
— 子空间方法
基于子空间的多用户检测 基于子空间的MIMO信道估计 基于子空间的自适应阵列 基于子空间的波达方向估计 基于子空间的时延和Doppler频移的估计 盲空时信号处理的子空间方法
27
通信信号处理
— 空时编码
基于空时编码的多用户接收机 基于空时编码的信道估计 自适应天线 空时处理的TDMA
作为信息载体的信号处理经历了从模拟到数字,从确 知到随机的发展过程,正阔步迈向以非平稳信号、非 高斯信号为主要研究对象和以非线性、不确定性为主 要特征的智能信号处理时代。
6
序言
通信担负着信息流通的功能,近一、二十年获得异乎 寻常的发展;各种基于因特网和移动网的新业务相继 出现,新概念和新技术层出不穷。标志性技术有:IP 技术、3G,4G移动通信技术、宽带接入技术、基于波 分复用技术的光传送网(WDM-OTN)技术。
10
信号处理的基础(续)
这些论文是:
The past, present, and future of multimedia signal processing. IEEE SP Magazine, July 1997
The past, present, and future of neural networks for signal processing. IEEE SP Magazine, Nov. 1997
30
通信信号处理
— Monte Carlo 统计信号处理
❖ Kalman滤波与Monte Carlo信号处理 - Kalman滤波: 线性状态空间模型问题(过程噪声和观测噪声 服从正态分布),解决高斯噪声情况下参数估计和滤波问题。 - MC处理(又称粒子滤波,particle filtering,使用MC仿真实现 递推Bayes滤波):非线性状态空间模型问题、解决非高斯噪 声情况下的参数估计和滤波问题。
现代信号处理课件

当两种假设为等可能时,即P(H0)=P(H1)
P( H 0 ) H1 Lnl ( z ) Ln Ln ........( 1 28 ) H0 P( H1 )
则有 η=1,Lnη=0
21:20 24
§1-3最大后验概率准则 Maximum Posteriori Probability
称为最大后验概率准则,常简称为MAP准则。
即 p(z |H0) < p(z |H1)----(1-30) 时 判决为H1,否则判决为H0。 P(z | Hi), i=0, 1 为在给定观测值为z的条件下,Hi为真的概率, 此值为后验概率。
最大后验概率准则与最小总错误概率准则是等价的
21:20
26
例1: 设一个二元通信系统发送1V,0V的信号,受到2 为1/12w加性高斯噪声的干扰。系统发送1V 0V信号的 概率分别是0.6和0.4,代价分别为C00= -2, C01=8, C10= 6,
假设――所要检验的对象的可能情况或状态
检验――检测系统所做的判决过程
21:20 13
检测分类
二元检测:只有两种可能的假设
多元检测:有多个可能的假设 复合假设:信号是一随机过程的实现,其均 值或方差可处于某个数值范围内
序列检测:按取样观测值出现的次序进行处 理和判决
21:20 14
二元假设检验可能的情况
H0假设为真,判决H0(正确);代价-C00 H1假设为真,判决H0(漏警);代价-C01
H0假设为真,判决H1(虚警);代价-C10 H1假设为真,判决H1(正确);代价-C11
21:20 15
贝叶斯准则(Bayes)
代价、风险最小
源有两个输出,两个输出发生的概率已知,即先验概率已知P(H0), P(H1)分 别为假设H0和H1发生的概率。
P( H 0 ) H1 Lnl ( z ) Ln Ln ........( 1 28 ) H0 P( H1 )
则有 η=1,Lnη=0
21:20 24
§1-3最大后验概率准则 Maximum Posteriori Probability
称为最大后验概率准则,常简称为MAP准则。
即 p(z |H0) < p(z |H1)----(1-30) 时 判决为H1,否则判决为H0。 P(z | Hi), i=0, 1 为在给定观测值为z的条件下,Hi为真的概率, 此值为后验概率。
最大后验概率准则与最小总错误概率准则是等价的
21:20
26
例1: 设一个二元通信系统发送1V,0V的信号,受到2 为1/12w加性高斯噪声的干扰。系统发送1V 0V信号的 概率分别是0.6和0.4,代价分别为C00= -2, C01=8, C10= 6,
假设――所要检验的对象的可能情况或状态
检验――检测系统所做的判决过程
21:20 13
检测分类
二元检测:只有两种可能的假设
多元检测:有多个可能的假设 复合假设:信号是一随机过程的实现,其均 值或方差可处于某个数值范围内
序列检测:按取样观测值出现的次序进行处 理和判决
21:20 14
二元假设检验可能的情况
H0假设为真,判决H0(正确);代价-C00 H1假设为真,判决H0(漏警);代价-C01
H0假设为真,判决H1(虚警);代价-C10 H1假设为真,判决H1(正确);代价-C11
21:20 15
贝叶斯准则(Bayes)
代价、风险最小
源有两个输出,两个输出发生的概率已知,即先验概率已知P(H0), P(H1)分 别为假设H0和H1发生的概率。
现代信号与信息处理理论

平方代价函 数可得到最 小均方估计
绝对值代价函 数可得到条件 中位数估计
均匀代价函数 可得到最大后 验概率估计
平均代价为
C c( ˆ(z)) f (z,)dzd
19
2020/2/27
估计理论
➢贝叶斯估计就是使平均代价最小的估计
或等价于 其中令
C c( ˆ(z)) f ( | z) f (z)dzd
现代信号与信息处理方法
1
2020/2/27
课程内容
➢随机信号特性与分析理论 ➢信号检测与估计理论 ➢高阶谱理论 ➢周期谱理论
2
2020/2/27
参考文献
➢ Steven M. Kay 著,罗鹏飞译,《统计信号处理基础 : 估 计与检测理论》,电子工业出版社,2003
➢ 《高阶统计量及其谱分析》,张贤达,清华大学出版社, 2005
1
(z A)2
f (z | A)
exp 2v
2v2
f (A | z) f (z | A) f (A) f (z)
Aˆmap
A0 z
A0
z A0 A0 z A0
z A0
27
2020/2/27
估计理论
估计量
A0
Aˆmap
平均代价<====>均方误差 使平均代价最小等价于使均方误差最小
----最小均方估计
21
2020/2/27
估计理论
C(ˆ | z) ( ˆ)2 f ( | z)d
令 C(ˆ |
ˆ
z)
2
( ˆ)
中科院课件--《现代信号处理的理论和方法》Chapter+2

满足各子集合的并集 I p I,即 I1, I2, , I p 1, 2, , k
mx I 随机信号x t 的k阶矩
cx I 随机信号x t 的k阶累积量
mx
Ip
符号集为I
的矩
p
cx
Ip
符号集为I
的累积量
p
❖ 矩与累积量之间的相互关系:
q
mx I E x1 , , xk cx I p qp1 I p I p1
ln 22
2
由于 ' 2, '' 2, k 0, k 3, 4,
可得高斯变量的各阶累积量为:
0
ckx 2
0
k 1 k 2 k 3, 4,
矩与累积量的转换关系
❖ 集合I={1,2,…,k}的无序、非空、无交连分割
令{ x1,…, xk}是k个随机变量组成的集合,其符号集为I={1,2,…,k}。
cum x1 , , xk cum xi1 , , xik i 1
,ik 是1, , k 的一个排列.
例: c3x m, n c3x n, m c3x n, m n c3x n m, m
c3x m n, n c3x m, n m
c3x m, n m cum x t , x t m, x t n m
第二章 高阶统计和高阶谱方法
❖ 2.1 矩与累积量 ❖ 2.2 矩与累积量的性质 ❖ 2.3 高阶谱 ❖ 2.4 非高斯信号与线性系统 ❖ 2.5 相位估计 ❖ 2.6 系统辨识
2.1 矩与累积量
❖ 引言 ❖ 高阶矩与高阶累积量的定义 ❖ 高斯信号的高阶矩与高阶累积量 ❖ 矩与累积量的转换关系
引言
ln
dk
0
jk
mx I 随机信号x t 的k阶矩
cx I 随机信号x t 的k阶累积量
mx
Ip
符号集为I
的矩
p
cx
Ip
符号集为I
的累积量
p
❖ 矩与累积量之间的相互关系:
q
mx I E x1 , , xk cx I p qp1 I p I p1
ln 22
2
由于 ' 2, '' 2, k 0, k 3, 4,
可得高斯变量的各阶累积量为:
0
ckx 2
0
k 1 k 2 k 3, 4,
矩与累积量的转换关系
❖ 集合I={1,2,…,k}的无序、非空、无交连分割
令{ x1,…, xk}是k个随机变量组成的集合,其符号集为I={1,2,…,k}。
cum x1 , , xk cum xi1 , , xik i 1
,ik 是1, , k 的一个排列.
例: c3x m, n c3x n, m c3x n, m n c3x n m, m
c3x m n, n c3x m, n m
c3x m, n m cum x t , x t m, x t n m
第二章 高阶统计和高阶谱方法
❖ 2.1 矩与累积量 ❖ 2.2 矩与累积量的性质 ❖ 2.3 高阶谱 ❖ 2.4 非高斯信号与线性系统 ❖ 2.5 相位估计 ❖ 2.6 系统辨识
2.1 矩与累积量
❖ 引言 ❖ 高阶矩与高阶累积量的定义 ❖ 高斯信号的高阶矩与高阶累积量 ❖ 矩与累积量的转换关系
引言
ln
dk
0
jk
现代信号处理ModernSignalProcessing40页PPT

凡不是广义平稳的信号
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1
约
束
遍历性
若 N li m E 2N 11tN Nx(tt1)Lx(ttk)(t1,L,tk)2 0
则 {x(t)}称 为 均 方 遍 历 信 号 。
2.两个随机信号的二阶统计量
互相关函数
Rxy()@E{x(t)y*(t)}
相同部分相乘(相同符号) 不同(随机)部分相乘 (平均意义上,相互抵消)。
考核方式 习题(11%) 计算机仿真(实验3次,24%) 考试(65%)
第一章 随机信号
本章主要介绍随机信号的基本概念:相关 函数、功率谱密度、两个信号的正交、统计不 相关和统计独立、相干信号以及它们的几个典 型应用。
1.信号分类
信号——信息的载体
连 续 时 间 信 号s(t) t 离 散 时 间 信 号s(k) k为 整 数
▪ 时分多址(TDMA: time-division multiple access): 各个用户的信号波形在时域上无重叠 正交(时域正交)
用户1和用户2之间有一个保护时隙
b
a si
(t)s*j (t)dt
0,
i j
共享:整个频带
正交的两个典型应用(续)
▪ 频分多址(FDMA: frequency-division multiple access): 各个用户的信号波形在频域上无重叠 频域正交
E wi 2 qiHqi
im1
im1
由wi qiHx得:E wi 2 E qiHxxHqi qiHE xxH qi qiHRxqi
正交的两个典型应用(续)
M
最优化: min Em min
q
H i
R
x
q
i
im 1
约
束
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d3
0 -5 0 1 100 200 300 400
a4
0 -5 0 100 200 300 400
d4
0 -1 0 100 200 300 400
4、 盲信号处理技术
利用系统的输出观测数据,通过某种信号处 理的手段,获取我们感兴趣的有关信息。 盲源分离、盲均衡、盲系统辨识
第一章 信号分析基础
x(n)
↓2
d3(n)
H0(z)
↓2
H1(z)
↓2
H0(z)
↓2
a3(n)
j=1 j=2
H0(z) a2(n)
↓2
信号的二进制分解
j=3
x(t ) sin(2 f1t ) sin(2 f 2t ) sin(2 f3t ) s1 (t ) s2 (t ) s3 (t ) f1 1Hz, f 2 20Hz, f3 40Hz, f s 200 Hz, N 400
x ( n)
v0 (n)
↑M
u0 ( n )
G0(z)
x1 (n)
H1(z) ↓M
v1 (n)
↑M
u1 (n)
G1(z)
xM 1 (n)
HM-1(z) ↓M
vM 1 (n)
↑M
uM 1 (n)
GM-1(z)
ˆ ( n) x
M 通道滤波器组
例 假定要传输如图所示信号x(t),它由两个正弦信号加白噪 声组成。若用数字方法,其传输过程包括对x(t)的数字化、 量化、编码及调制等步骤。若对信号用抽样率fs进行抽样, 每一个抽样数据为16bit,那么其1s数据所需bit数是16fs。对 其抽样信号x(n)作傅里叶变换,频谱如图所示。
Energy spectral density
0.4
Frequency [Hz]
365 182 0
0.3
0.2
0.1
0
20
40
60 80 Time [s]
100
120
1.3.1 信号的时间分辨率和频率分辨率
分辨率是指对信号所能作出辨别的时域或频 域的最小间隔。
x(t)
A 2AT X(Ω)
-T
0
t
H0 ( z)
0
/2
2
6 4
1.5 1
x0(t)
0 -2 -4 0 100 200 300
x1(t)
2
0.5 0 -0.5 -1 0 100 200 300
60
40
the Spectrum of x0(t)
40 20 0 -20
the Spectrum of x1(t)
0 0.2 0.4 0.6 0.8
T
0
Ω
傅立叶变换无法根据信号的特点来自动地调节 时域及频域的分辨率。
1.3.2 不确定原理
对于能量有限信号,其时宽和带宽的乘积总能满 足下面的不等式,即
1 t f 4π
式中, Δt表示信号有效持续时间,Δf表示信号的有效带宽。 频域分辨率和时域分辨率不能同时任意小,即不可能存在既
现代信号处理的理论与方法
刘艳 信息科学与工程学院 Email: yanliu@
预修课程
概率论与数理统计 信号与系统 数字信号处理 随机过程
课程特点及主要内容
以平稳随机信号处理技术为基础,主要讲授 现代数字信号处理的新理论和新技术。 非平稳随机信号的处理方法; 非高斯信号处理方法; 多抽样率信号处理技术; 盲信号处理技术
例1 信号x(t ) exp( jt 2 ) 称为线性频率调制信号, 在雷达领域又称作chirp信号。该信号的瞬时频率 为i (t ) 2t,正比于时间,故该信号的频率是时变 的。
Signal in time 1
Real part
Linear scale
0.5 0 -0.5 WV, lin. scale, contour, Threshold=5%
1.1 1.2 1.3 1.4 1.5
随机信号的统计描述 信号的时间和频率 信号的时间分辨率和频率分辨率 信号的时宽和带宽 信号的分解
1.1.1 信号的分类
信号的分类:
确定性信号 随机信号: 平稳随机信号 非平稳随机信号
1.1.2 随机信号的统计描述
均值、均方值和方差:
d t t dt
傅立叶频率和瞬时频率的区别:
傅立叶频率是一个独立的量,而瞬时频率是时间的 函数; 傅立叶频率和傅立叶变换相联系,而瞬时频率和 Hilbert变换相联系; 傅立叶频率是一个“全局性”的量,它是信号在整 个时间区间内的体现,而瞬时频率是信号在特定时 间上的“局部”体现,理论上讲,它应是信号在该 时刻所具有的频率。
幅值和相位分别为:
ˆ t at x t x
2 2
j t
x ˆ t t arctan x t
1.2.3 瞬时频率
瞬时频率:表征了信号在局部时间点上的瞬态频 率特性,整个持续期上的瞬时频率反映了信号频 率的时变规律。
20 0 -20 -40
0
0.2
0.4
0.6
0.8
由于x(n)的能量主要集中在x0(n)即v0(n)中,故对它的每一个
抽样点仍用16bit表示,这样对v0(n),1s数据所需bit数是16fs/2。
由于x1(n)即v1(n)中几乎不包含有用信息,故可用少的bit数来 表示,如用4bit,则v1(n)所需bit数是4fs/2;
*
由Parseval’s定理,上式可写成
1 dx(t ) * 0 j x (t )dt E dt 1 j ( t ) j ( t ) j ( t ) ( j ) a '( t ) e ja ( t ) ( t ) e a ( t ) e dt E 2 1 1 (t )[a(t )] dt j a '(t )a (t )dt E E 1 (t )a 2 (t )dt E 1 (t ) | x(t ) |2 dt E
成绩评定
课堂作业 40%
闭卷考试 60%
教材及参考书
张贤达,《现代信号处理》第二版,清华大学出版社,北 京,2002。 胡广书,《现代信号处理教程 》,清华大学出版社,北京, 2004。 邹谋炎,《反卷积和信号复原》,国防工业出版社,北京, 2001。 杨绿溪,《现代数字信号处理》,科学出版社,北京, 2007。 丁玉美,《数字信号处理—时域离散随机信号处理》,西 安电子科技大学出版社,2002。 Roberto Cristi, Modern Digital Signal Processing, Thomson-Brooks/Cole,2004。
a1 (n) d1 (n)
0
a2 (n) d2 (n)
100Hz
0
0
/ 2 50Hz
a3 (n)
d 3 ( n) / 4 25Hz
a4 (n) d4 (n) /8 12.5Hz 0
频带的二进制逐级分解
5
5
x(t)
0 -5 50 100 200 300 400
x(t)
0 -5 10 100 200 300 400
a1
0 -5 50 100 200 300 400
d1
0 -1 50 100 200 300 400
a2
0 -5 50 100 200 300 400
d2
0 -5 50 100 200 300 400
a3
0 -5 0 5 100 200 300 400
时域和频域的密度函数分别为
| x(t ) |2 / E 和
x(t)的“时间均值”
| X () |2 / E
1 2 (t ) t | x(t ) | dt t0 E
x(t)的“频率均值”
()
1 2 E
2 | X ( ) | d 0
t0和0又称x t 的时间中心与频率中心
mx (n) E[ X (n)] x(n) p X n ( x, n)dx
2 2
D (n) E[ X (n) ] | x(n) |2 p X n ( x, n)dx
2 x
(n) E[ X (n) mx (n) ] E[| X n | ] m (n)
*
j
d STFTx (t , )
WT
* WTx (a, ) x(t ), a , (t ) x(t ) a , (t ) dt
3、 多抽样率处理技术
信号的子带分解:将信号的频谱均匀或非均匀地分 解成若干部分,每一部分都对应一个时间信号。
x0 (n)
H0(z) ↓M
求解中心频率:
将xt 写成xt at e
j t
的形式,令
H () X ()
由傅立叶变换性质可得
则
dx(t ) h(t ) j dt
2 E 1
0
X () X ()d
*
2 E
1
H ( ) X ( ) d
是带限又是时限的信号波形。
1.4 信号的时宽和带宽
信号的“时间中心”及“时间宽度”,频率 的“频率中心”及“频带宽度”分别说明了 信号在时域和频域的中心位置及在两个域内 的扩展情况。 对给定的信号x(t) ,假定它是能量信号,即其 能量 1 2 2 2