中科院研究生院信息工程学院课件数值分析数值分析第三次作业及答案

合集下载

数值分析习题答案

数值分析习题答案

数值分析习题答案数值分析习题答案数值分析是一门研究利用数值方法解决数学问题的学科。

在实际应用中,我们经常会遇到各种各样的数学问题,而数值分析提供了一种有效的方法来解决这些问题。

在学习数值分析的过程中,我们经常会遇到一些习题,下面我将为大家提供一些数值分析习题的解答。

习题一:给定一个函数f(x) = x^2 - 3x + 2,求解f(x) = 0的根。

解答:要求解方程f(x) = 0的根,可以使用二分法。

首先,我们需要确定一个区间[a, b],使得f(a)和f(b)异号。

根据f(x) = x^2 - 3x + 2的图像,我们可以选择区间[0, 3]。

然后,我们可以使用二分法来逐步缩小区间,直到找到根的近似值。

具体的步骤如下:1. 计算区间中点c = (a + b) / 2。

2. 计算f(c)的值。

3. 如果f(c)接近于0,那么c就是方程的一个根。

4. 如果f(c)和f(a)异号,那么根位于[a, c]之间,令b = c。

5. 如果f(c)和f(b)异号,那么根位于[c, b]之间,令a = c。

6. 重复步骤1-5,直到找到根的近似值。

通过多次迭代,可以得到方程f(x) = 0的一个近似根为x ≈ 1。

这个方法可以用来解决更复杂的方程,并且在实际应用中有广泛的应用。

习题二:给定一个函数f(x) = sin(x),求解f(x) = 0的根。

解答:对于这个问题,我们可以使用牛顿迭代法来求解方程f(x) = 0的根。

牛顿迭代法是一种通过不断逼近函数的根的方法,具体步骤如下:1. 选择一个初始近似值x0。

2. 计算函数f(x)在x0处的导数f'(x0)。

3. 计算下一个近似值x1 = x0 - f(x0) / f'(x0)。

4. 重复步骤2和步骤3,直到找到根的近似值。

对于函数f(x) = sin(x),我们可以选择初始近似值x0 = 1。

然后,我们可以计算f'(x0) = cos(x0) = cos(1) ≈ 0.5403。

数值分析第三次作业

数值分析第三次作业

26.解:(1).J 法:J ∴法收敛.GS 法:()11102210221101110122100210G B D L U ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦022023002-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦()()()212322det 0232020,2,21G G I B B λλλλλλλλλρ--=-=--∴===∴=GS ∴法不收敛.()2.J 法:()()131231*********()12202101121101212012125det 412125550,,,1222J J J B D L U I B i i B λλλλλλλλλρ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦--==+--∴===-∴=J ∴法不收敛.GS 法:()()()1312310220221101101122022022det 11002201J J J B D L U I B B λλλλλλλλρ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+=--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦--===⇒===∴=()1120111200011220212120021120014120G B D L U ----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-=-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦01212012120012-⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦()()()21231212det 01212120120,12,121G G I B B λλλλλλλλλρ--=+=+=+∴===-=GS ∴法收敛27.解:()1010911102,702106A b -⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭A 为严格对角占优阵,J ∴法和GS 法均收敛.J 法的分量形式为:()()()11111,1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i n a -+==+⎛⎫=--= ⎪⎝⎭∑∑J ∴法的迭代格式为:(1)()12(1)()()213(1)()321(9)101(72)101(62)10k k k k k k k x x x x x x x +++⎧=+⎪⎪⎪=++⎨⎪⎪=+⎪⎩取初值(0)0x =,J 法的数值结果是:迭代次数k()1k x ()2k x ()3kx 1 0.900000 0.700000 0.600000 2 0.970000 0.910000 0.740000 3 0.991000 0.945000 0.782000 4 0.994000 0.955500 0.789000 50.9955500.9572500.791100GS 法的分量形式为:()()()111111,1,2,,i nk k k ii ij j ij j j j i ii x b a x a x i n a -++==+⎛⎫=--= ⎪⎝⎭∑∑GS ∴法的迭代格式为:(1)()12(1)(1)()213(1)(1)321(9)101(72)101(62)10k k k k k k k x x x x x x x +++++⎧=+⎪⎪⎪=++⎨⎪⎪=+⎪⎩取初值(0)0x =,GS 法的数值结果是: 迭代次数k ()1k x()2k x()3kx10.900000 0.790000 0.758000 2 0.979000 0.949500 0.789900 3 0.994950 0.957475 0.791495 4 0.9957475 0.9578738 0.7915748 50.9957874 0.95789370.7915787()123210,99,950A∆=∆=∆=∴对称正定,()1110000101001011100102010105020110000105J B D L U -⎛⎫⎛⎫ ⎪ ⎪⎛⎫ ⎪⎪ ⎪⎪ ⎪=+=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭212,310101111det()()00,10520201051()20J J I B B λλλλλλλλρ-∴-=--=-=⇒==±-∴=∴SOR 法的最优松弛因子为:[]2221.01282111/2011()opt J B ωρ==≈+-+-()10.01282opt opt L ρωω=-=对应的渐近收敛率为:R=-ln ()() 4.35654opt opt R L L ωρω=SOR 法的分量形式为:()()()()()111111,1,2,,i nk k k k iii ij j ijjj j i ii x x b a x a xi n a ωω-++==+⎛⎫=-+--= ⎪⎝⎭∑∑∴SOR 法(ω取最佳松弛因子)的迭代格式为:(1)()()112(1)()(1)()2213(1)()(1)3321.012820.01282(9)101.012820.01282(72)101.012820.01282(62)10k k k k k k k k k k x x x x x x x x x x +++++⎧=-++⎪⎪⎪=-+++⎨⎪⎪=-++⎪⎩取初值(0)0x =,SOR 法的数值结果是: 迭代次数k ()1k x()2k x()3kx10.911538 0.801296 0.770006 2 0.981009 0.954035 0.791074 3 0.995588 0.957822 0.791571 4 0.995785 0.957894 0.791579 50.9957890.9578950.79157928.一定收敛.证明:对于11122122a a A a a ⎛⎫=⎪⎝⎭,A 对称正定,()212211122122111221201,2,,det()0,iia i a a A a a a a a a a ∴===-对于J 法:121111121121222221000()01000J a aa a B D L U a a a a -⎛⎫⎛⎫-⎪ ⎪-⎛⎫⎪ ⎪=+== ⎪ ⎪ ⎪-⎝⎭- ⎪ ⎪⎝⎭⎝⎭122211212121,2121122112222det()0J a a a a I B a a a a a a λλλλλ-==-=⇒=22121122121122()1J a a a a B a a ρ∴=∴J 法收敛. GS 法:12221112121221122112212112222121122121122det()00,0()1G G a a a a I B a a a a a a a a a a a B a a λλλλλλλρ⎛⎫-==-=⇒==⎪⎝⎭-∴=∴GS 法收敛.∴对于系数矩阵对称正定的2阶线性方程组,J 法和GS 法一定收敛. 30.证明:由线性代数知识知:∃可逆矩阵使121s J J p B P J J -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中,i in n iJ R ⨯∈对应于特征值()121,2,,i s i s n n n nλ=++=()0B ρ=∴B 的所有特征值为0,120101,1,2,,10i i r r i s J R i s r r r n⨯⎛⎫⎪⎪⎪∴=∈=++= ⎪ ⎪ ⎪⎝⎭1i r =时,11i J R ⨯∈1i r 时, 0,i i r r i i J J R ⨯=∈12kkkk s J J J J ⎡⎤⎢⎥⎢⎥∴=⎢⎥⎢⎥⎢⎥⎣⎦最多迭代到第n 次,即k=n 时,10,0k k k J B PJ P -=== 设x *是Ax b =的精确解,误差向量()()k k e x x *=-()()()()()()110k k k k ke x x B x x B e B e--**=-=-===所以最多迭代到第n 次时,()()()00,k k k e B e x x *===所以结论成立31.解:(1)根据迭代公式(1)()()()k k k x x Ax b α+=--,有: (1)()()k k xI A x b αα+=-+ ∴迭代矩阵13212B I A ααααα--⎛⎫=-= ⎪--⎝⎭ 12132det()(1)(14)0121,14I B λααλλαλααλαλαλα-+∴-==-+-+=-+∴=-=-当{}()max 1,141B ραα=--时,迭代收敛111110121411141ααααα⎧---⎧⎪⇒⇒⎨⎨---⎪⎩⎩012α∴时,此迭代方法收敛{}()()m a x 1,141,00.441,0.40.5B B ρααααραα=---⎧∴=⎨-≤⎩ 0.4α∴=时,()Bρ最小,迭代收敛最快()12,n λλ为A 的特征值,11,1n αλαλ∴--为I A α-的特征值{}1()m a x 1,1n I A ρααλαλ∴-=--必要性:迭代收敛()1I A ρα⇒-111110211nαλαλαλ-⎧-⎪∴⇒⎨-⎪⎩所以必要性成立 充分性:()1111102022,1,2,11,1,2,()max 11i i ini i i ni nI A αλαλλλαλρααλ--=∴≤=∴-=∴-=-所以此迭代法收敛,充分性成立 (3) 1102αλ-时,111121,0()21,2n n in I A αλαλλρααλαλλλ-⎧-≤⎪+⎪-=⎨⎪-⎪+⎩根据图像,12nαλλ=+时,()I A ρα-最小33.解:()()()()()()()()()()()()()()()1()1121()111211111(1)()11111,k k k k k k x D L Ux D L b x L D U x L b x D U L D L Ux D U L D L b D U bC D U L D L U g D U L D L b D U b+--++-------+-----⎧=-+-⎪⎨⎪=--⎩⇒=--+--+-∴=--=--+-分析收敛性:()()()()()1111L D L D L DD LI D D L----=--+-=-+-⎡⎤⎣⎦()()()1111D D L I D L D D D L LD ----⎡⎤=---=-⎣⎦()()111C D U D D L LD U---∴=--()()()()()11112D L D D U L D U D L I DL D U L D U D L U-------=----=--=()()111I C I D L D D U LD U ---⎡⎤∴-=---⎣⎦()()()()111I D L D D U D L D D U A ---⎡⎤⎡⎤=------⎣⎦⎣⎦()()()()1111I I D L D D U A D L D D U A ----⎡⎤⎡⎤=-+--=--⎣⎦⎣⎦ 令()()1M D L D DU -⎡⎤=--⎣⎦1C I M A -∴=-因为A 对称正定,所以D 也正定 令 1111222,()D D D W D D U ----==-TM W W ∴=()()11111112222TWCW D D L LD D D L LD -----⎡⎤⎡⎤=--⎢⎥⎢⎥⎣⎦⎣⎦ 令()11122P DD L LD--=-1T W C W P P -∴=所以C 与T PP 相似,其特征值均为非负实数1111()T I WCW W I C W WM AW W AW -------=-==所以 1I WCW --为对称正定矩阵,其特征值()110WCW λ--C ⇒的特征值()C λ满足()01C λ≤,故该迭代法收敛35.解:1112112111122212Ax Bx b x A Bx A b Bx Ax b x A Bx A b ----⎧+==-+⎧⎪⇒⎨⎨+==-+⎪⎩⎩∴J 法的迭代公式为:(1)()111111(1)()1222110000k k k k J x x A b A B A Bx x A b A B C A B +---+---⎛⎫⎛⎫⎛⎫⎛⎫-∴=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-∴= ⎪-⎝⎭若λ为矩阵1A B --的特征值,对应的特征向量为11111,0n x R x A Bx x λ-∈≠∴-= 11111111111111111111J J x x x A B x C x x x A B x x x x A B x C x x x A B x λλλλλλ----⎡⎤-⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤===-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦∴若n 阶矩阵1A B --有特征值12,,,n λλλ,则2n 阶矩阵J C 有特征值12,,,nλλλ±±±38.(1)解:因为系数矩阵A 对称正定,所以可以运用共轭梯度法(CG )解此方程组 取()()00,0Tx =,()()()()000r p b Ax 0,1T∴==-=-,()()()()()()00r ,r 12p ,Ap α==()()()0,-T10001x xp2α⎛⎫∴=+= ⎪⎝⎭,()()(),0T10003r rAp2α⎛⎫=-=- ⎪⎝⎭,()()()()()(),11r ,r 94r r β==()()(),-T110039p r p 24β⎛⎫=+= ⎪⎝⎭()()()()()()11111r ,r 12p ,Ap α==,()()()()1,-2T2111x x p α=+=()2x 即为所求方程的精确解。

数值分析课后部分习题答案

数值分析课后部分习题答案


x * = 2.00021 = 0.200021 × 101 ,即 m = 1
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 2 ; y* = 0.032 = 0.32 × 101 ,即 m = 1
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 4 ; z * = 0.00052 = 0.52 × 10−3 ,即 m = −3
1 1 × 10m − n = × 10−3 , 2 2
由有效数字与绝对误差的关系得 即
m − n = −3 ,所以, n = 0 .
1 1 × 10m − n = × 10−3 ,Fra bibliotek2 2=
f [x1 , x2 ,⋯ , x n ]-f [ x0 , x1 ,⋯ , x n−1 ] g[ x1 , x2 ,⋯ , x n ] − g[ x0 , x1 ,⋯ , x n−1 ] + x n − x0 x n − x0
( x − 1)( x − 2)( x − 3) 1 =- ( x − 1)( x − 2)( x − 3) , (0 − 1)(0 − 2)(0 − 3) 6
x ( x − 2)( x − 3) 1 = x ( x − 2)( x − 3) , (1 − 0)(1 − 2)(1 − 3) 2 x( x − 1)( x − 3) 1 =- x( x − 1)( x − 3) , (2 − 0)(2 − 1)(2 − 3) 2 x( x − 1)( x − 2) 1 = x ( x − 1)( x − 2) , (3 − 0)(3 − 1)(3 − 2) 6

BUAA数值分析大作业三

BUAA数值分析大作业三

北京航空航天大学2020届研究生《数值分析》实验作业第九题院系:xx学院学号:姓名:2020年11月Q9:方程组A.4一、 算法设计方案(一)总体思路1.题目要求∑∑===k i kj s r rsy x cy x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。

),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。

2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。

1. ),(i i y x 与),(i i y x f 的数表的获得对区域D ={ (x,y)|1≤x ≤1.24,1.0≤y ≤1.16}上的f (x , y )值可通过xi=1+0.008i ,yj=1+0.008j ,得到),(i i y x 共31×21组。

将每组带入A4方程组,即可获得五个二元函数组,通过简单牛顿迭代法求解这五个二元数组可获得z1~z5有关x,y 的表达式。

再将),(i i y x 分别带入z1~z5表达式即可获得f(x,y)值。

2.乘积型最小二乘曲面拟合2.1使用乘积型最小二乘拟合,根据k 值不用,有基函数矩阵如下:⎪⎪⎪⎭⎫ ⎝⎛=k i i k x x x x B 0000 , ⎪⎪⎪⎭⎫ ⎝⎛=k j jk y y y y G 0000数表矩阵如下:⎪⎪⎪⎭⎫⎝⎛=),(),(),(),(0000j i i j y x f y x f y x f y x f U记C=[rs c ],则系数rs c 的表达式矩阵为:11-)(-=G G UG B B B C T TT )(通过求解如下线性方程,即可得到系数矩阵C 。

UG B G G C B B T T T =)()(2.2计算),(),,(****j i j i y x p y x f (i =1,2,…,31 ; j =1,2,…,21) 的值),(**j i y x f 的计算与),(j i y x f 相同。

数值分析习题(含答案)

数值分析习题(含答案)

数值分析习题(含答案)第一章绪论姓名学号班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-?,那么近似数0.003400有几位有效数字?(有效数字的计算)解:2*103400.0-?=x ,325*10211021---?=?≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算)解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需41*1021-?≤-ππ,3*310211021--?+≤≤?-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ?有几位有效数字?(有效数字的计算)解:3*1021-?≤-aa ,2*1021-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102110211021)()(---?≤?+?≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---?≤=?+?≤-+-≤-b b a a a b ba ab 故b a ?至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算)解:已知δ=-**xx x ,则误差为δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值分析第三次作业解答

数值分析第三次作业解答

数值分析第三次作业解答思考题:1:(a )对给定的连续函数,构造等距节点上的Lagrange 插值多项式,节点数目越多,得到的插值多项式越接近被逼近的函数。

×;(b) 对给定的连续函数,构造其三次样条函数插值,则节点数目越多,得到的样条函数越接近被逼近的函数。

√(c) 高次的Lagrange 插值多项式很常用。

×(d) 样条函数插值具有比较好的数值稳定性。

√3. 以0.1,0.15,0.2为插值节点,计算()f x = Lagrange 插值多项式 2()P x , 比较2(0)P 和(0)f ,问定理4.1的结果是否适用本问题? 解: 构造插值多项式:0122022(0.15)(0.2)()0.050.1(0.1)(0.2)()0.050.05(0.1)(0.15)()0.10.05()()()()(0)0;(0)0.1403x x l x x x l x x x l x P x x x x f P --=⨯--=⨯--=⨯=++==在(0,2)区间,5''''''23()(0.2)118.585458f x x f -=≤=从而,对任意的 '''3()(0,0.2),(0)0.05933!f ξξω∈≤ 不存在'''32()(0,0.2),(0)(0)(0)0.14033!f f P ξξω∈=-=。

演示程序:x=0:0.01:0.2; y=x.^(1/2);plot(x,y,'r')pause,hold onx0=[0.1,0.15 ,0.2]; y0=x0.^(1/2); x=0:0.01:0.2; y1=lagrangen(x0,y0,x); plot(x,y1,'b')5:(a )求()f x x =在节点123452,0.5,0, 1.5,2x x x x x =-=-=== 的三次样条插值(150M M ==)。

数值分析(课后习题答案详解).ppt

数值分析(课后习题答案详解).ppt

x x 41 2 0 . 25 0 . 5451 1 1 再解 3 x 0 . 875 ,得 x 1 . 2916 2 2 2 0 3 1 . 7083 . 5694 x x 3 3
4 41 2 T 故得 GG 分解: A 1 2 3 2 2 3 3 3 1 1 16 11 4 2 T 3 1 LDL 分解为: A 1 4 4 1 2 3 1 1 9 1 2 2
一.习题1(第10页)
1-1.下列各数都是经过四舍五入得到的近似值 ,试分 别指出它们的绝对误差限,相对误差限和有效数字的位数.
x1=5.420,x2=0.5420,x3=0.00542,x4=6000,x5=0.6105.
解 绝对误差限分别为: 1=0.510-3,2=0.510-4, 3=0.510-5,4=0.5,5=0.5104 . 相对误差限分别为: r1=0.510-3/5.420=0.00923%, r2=0.00923%,r3=0.0923%,4=0.0083%,5=8.3%. 有效数位分别为: 4位,4位,3位,4位,1位. 1-2.下列近似值的绝对误差限都是0.005,试问它们有
2 11 2 1 2 故得 Crout 分解: A 4 3 13 6 12 1 1
1 2 11 2 1 2 LDM 分解为: A 21 13 3 3 4 1 1 1
几位有效数字. a=-1.00031,b=0.042,c=-0.00032

中科院研究生院信息工程学院课件数值分析数值分析第三次作业及答案

中科院研究生院信息工程学院课件数值分析数值分析第三次作业及答案

数值分析第三次作业及答案1. (P201(4))用梯形方法解初值问题 '0;(0)1,y y y ⎧+=⎨=⎩ 证明其近似解为2,2nn h y h -⎛⎫= ⎪+⎝⎭并证明当0h →时,它收敛于原初值问题的准确解.xy e -=111112111000 [(,)(,)]2(,)()22222222 1,.2,.lim l n n n n n n n n n n n n n n nn n n h hy y f x y f x y hf x y y y y y y h h h y y y y h h h h y y h h n y nh x y +++++++-→=++=-⇒=+-----⎛⎫⎛⎫⎛⎫⇒==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭-⎛⎫=⇒= ⎪+⎝⎭=⇒=证:梯形公式为由因用上述梯形公式以步长经步计算到故有0022im lim 22x nhx h h h h e h h -→→--⎛⎫⎛⎫== ⎪ ⎪++⎝⎭⎝⎭2. (P202(6)) 写出用四阶经典的龙格—库塔方法求解下列初值问题的计算公式:''3,01;,01;(1)1)2)(0)1;(0) 1.y y x y x y x x y y ⎧=<<⎧=+<<⎪+⎨⎨=⎩⎪=⎩ 12113224330.2(,)(,) 1.1()0.1 22221)(,) 1.11()0.112222(,) 1.n n n n n n n n n n n n n n n nn n n n h k f x y x y h h h h k f x y k x y k x y h h h h k f x y k x y k x y k f x h y hk x h y hk ===+=++=+++=++=++=+++=++=++=+++=解:令1123412132431222()0.222(22)0.2214 1.22140.021463/(1)3(0.1)/(10.1)2)3(0.1)/(10.1)3(0.2)/(10.2)0.2(6n n n n n n n n n nn n n n n n x y hy y k k k k x y k y x k y k x k y k x k y k x y y k ++⎧⎪⎪⎪⎨⎪⎪⎪++⎩=++++=++=+⎧⎪=+++⎪⎨=+++⎪⎪=+++⎩=+123422).k k k +++3. (P202(7)) 证明对任意参数t ,下列龙格库塔-公式是二阶的:12312131();2(,);(,);((1),(1)).n n n nn n n n h y y K K K f x y K f x th y thK K f x t h y t hK +⎧=++⎪⎪⎪=⎨⎪=++⎪=+-+-⎪⎩'''2'''31'123'2'()()()()[(,())(,())(,())]23!()[((,)(,)22(,)(,)())((,)(,n n n n x n n y n n n n n n n n n x n n y n n n n n n x n n y h y x y x hy x f x y x f x y x f x y x hh hy y K K y f x y f x y th f x y thf x y O h f x y f x y ζ++=++++=++=++++++证:由一元函数的泰勒展开有又由二元函数的泰勒展开有'22''32''311)(1)(,)(1)(,)())](,)[(,)(,)(,)]()2(),(,())[(,())(,())(,())]()2()y n n n n n n n x n n y n n n n n n n n n n x n n y n n n n n n t h f x y t hf x y O h h y hf x y f x y f x y f x y O h y y x h y y hf x y x f x y x f x y x f x y x O h y x y +++-+-+=++++==++++为考虑局部截断误差,设上式有比较与31111 ()()n n n R y x y O h t +++=-=两式,知其局部误差为故对任意参数,公式是二阶的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析第三次作业及答案1. (P201(4))用梯形方法解初值问题 '0;(0)1,y y y ⎧+=⎨=⎩ 证明其近似解为2,2nn h y h -⎛⎫= ⎪+⎝⎭并证明当0h →时,它收敛于原初值问题的准确解.xy e -=111112111000 [(,)(,)]2(,)()22222222 1,.2,.lim l n n n n n n n n n n n n n n nn n n h hy y f x y f x y hf x y y y y y y h h h y y y y h h h h y y h h n y nh x y +++++++-→=++=-⇒=+-----⎛⎫⎛⎫⎛⎫⇒==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭-⎛⎫=⇒= ⎪+⎝⎭=⇒=证:梯形公式为由因用上述梯形公式以步长经步计算到故有0022im lim 22x nhx h h h h e h h -→→--⎛⎫⎛⎫== ⎪ ⎪++⎝⎭⎝⎭2. (P202(6)) 写出用四阶经典的龙格—库塔方法求解下列初值问题的计算公式:''3,01;,01;(1)1)2)(0)1;(0) 1.y y x y x y x x y y ⎧=<<⎧=+<<⎪+⎨⎨=⎩⎪=⎩ 12113224330.2(,)(,) 1.1()0.1 22221)(,) 1.11()0.112222(,) 1.n n n n n n n n n n n n n n n nn n n n h k f x y x y h h h h k f x y k x y k x y h h h h k f x y k x y k x y k f x h y hk x h y hk ===+=++=+++=++=++=+++=++=++=+++=解:令1123412132431222()0.222(22)0.2214 1.22140.021463/(1)3(0.1)/(10.1)2)3(0.1)/(10.1)3(0.2)/(10.2)0.2(6n n n n n n n n n nn n n n n n x y hy y k k k k x y k y x k y k x k y k x k y k x y y k ++⎧⎪⎪⎪⎨⎪⎪⎪++⎩=++++=++=+⎧⎪=+++⎪⎨=+++⎪⎪=+++⎩=+123422).k k k +++3. (P202(7)) 证明对任意参数t ,下列龙格库塔-公式是二阶的:12312131();2(,);(,);((1),(1)).n n n nn n n n h y y K K K f x y K f x th y thK K f x t h y t hK +⎧=++⎪⎪⎪=⎨⎪=++⎪=+-+-⎪⎩'''2'''31'123'2'()()()()[(,())(,())(,())]23!()[((,)(,)22(,)(,)())((,)(,n n n n x n n y n n n n n n n n n x n n y n n n n n n x n n y h y x y x hy x f x y x f x y x f x y x hh hy y K K y f x y f x y th f x y thf x y O h f x y f x y ζ++=++++=++=++++++证:由一元函数的泰勒展开有又由二元函数的泰勒展开有'22''32''311)(1)(,)(1)(,)())](,)[(,)(,)(,)]()2(),(,())[(,())(,())(,())]()2()y n n n n n n n x n n y n n n n n n n n n n x n n y n n n n n n t h f x y t hf x y O h h y hf x y f x y f x y f x y O h y y x h y y hf x y x f x y x f x y x f x y x O h y x y +++-+-+=++++==++++为考虑局部截断误差,设上式有比较与31111 ()()n n n R y x y O h t +++=-=两式,知其局部误差为故对任意参数,公式是二阶的。

4. (P203(11)) 导出具有下列形式的三阶方法:'''10112201122()n n n n n n n y a y a y a y h b y b y b y +----=+++++'''101122011221'10121201223''12121213 ()()()()()[()()()]()()()(2)()(424)()(8312)2!3!n n n n n n n n n n n n n n n y y x y x a y x a y x a y x h b y x b y x b y x y x x y a a a y x a a b b b hy x h h a a b b y x a a b b y +----++==+++++=+++--+++++--+--++解:假设则将在处展开'''34(4)512120121201212121213()(16432)()()4!121424183121n x h a a b b y x O h a a a a a b b b a a b b a a b b ++--+++=⎧⎪--+++=⎪⎨+--=⎪⎪--++=⎩该公式的三阶方程为 取任一组满足方程组的参数均可。

5. (P236(3))为求方程32010 1.5x x x --==在 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式。

1) 211,x x=+迭代公式2111;k kx x +=+2) 321,x x =+迭代公式1k x +=3) 21,1x x =-迭代公式1k x +=试分析每种迭代公式的收敛性。

解:32321.4 1.410.2160 1.5 1.510.1250--=-<--=>[1.4,1.5]∴为有根区间。

22'3321221)11/()11/()0.7311.411/k k x x x x x x x x ϕϕ+=+=+=-≤≈<∴=+迭代公式收敛。

2232'233112 1.52)1()()12/(1 1.0)0.63133k x xx x x x x ϕϕ+⨯=+==+⨯≤+≈<∴=-()迭代公式3322'2111(1.51)3)()()(1)1.41122k x x x x x x ϕϕ--+-===--≥≈>-∴=迭代公式6. (P236(6))已知()x x ϕ=在区间[,]a b 内只有一根,而当a x b <<时,'()1,x k ϕ≥>试问如何将()x x ϕ=化为适于迭代的形式?将x tgx =化为适于迭代的形式,并求 4.5x =(弧度)附近的根。

1'''1''11111(())()1()1 (()) 1.()()()()(0,1,) [4.k k k kx x x k x x x x x x x x k x tgx x arctgx x arctgx ϕϕϕϕϕϕϕϕππ--++=≥>=<=⇒=⇒===⇒=+⇒=+--解:由反函数微分法则有 故当时,有将则迭代法是收敛的。

对 用搜索法知在(5)045,4.50] 4.45 4.49341x x ==内有根,取迭代,。

7. (P237(12))应用牛顿法于方程30x a -=的迭代公式,并讨论其收敛性。

3'23'22''3''''4443()()3()2()()33322()033222()(3)03f x x a f x x f x x a ax x x x f x x x ax x a a a x x x a ϕϕϕϕϕ=-=-∴=-=-=+=-⇒==--=⇒==≠∴解:为二阶收敛。

因迭代公式为 31223k k kx ax x ++=32122(33k k k k k k k k kx a x x x x x x x +-+⇒=-=两边同除k x1k=因20kk x +>故由01k<< 1) 当0,a >2k k x x ⇒><-312221133333k k k k k k x a a x x x x x ++==++≥=又由故当00,a x >取初值,迭代序列}k x {2) 当0,a<2k k x x ⇒>-<312221133333k k k k k k x a a x x x x x ++==++≤=又由故当00,a x <<取初值,迭代序列}k x { 故综上此为局部收敛。

相关文档
最新文档