2011数值分析试题及答案

合集下载

2011级数值分析试卷

2011级数值分析试卷

菏泽学院数学系2011级 2013-2014学年第一学期数学与应用数学专业《数值分析和计算方法》期末试卷(A )(110分钟)题号 一 二 三 四 五 总分得分 阅卷人一.选择题(将正确选项前的代号写在题号前的括号内,每小题3分,共15分)( )1.若用最小刻度为0.5mm 的刻度尺测量物体,其误差限为( )A.0.25mmB.1.0mmC.0.5mmD.0mm ( )2.下列具有最高代数精度的求积公式是( )A.龙贝格求积公式B.复合辛普森求积公式C.牛顿-科特斯求积公式D.高斯求积公式( )3.已知2,1,0,,1)(==-=i i x x x f i i i 。

则函数)(x f 的插值多项式为( )A. 145412-+x x B.1-xC.-145412-+x x D.2+-x( )4.下列给出的是用不动点迭代法求032=-x 的根3*=x 的迭代函数,则相应的迭代方法局部收敛的是A.x x 3=)(ϕ B.3)(2-+=x x x ϕC.2321)(2-+=x x x ϕD.)3(21)(xx x +=ϕ( )5.线性方程组AX=b 能用高斯消元法求解的充要条件是( )A.A 为对称矩阵B.A.为实矩阵C.A 的各阶顺序主子式不为零D.0≠A得分 阅卷人二.填空题(请将正确答案填写在每小题的横线上,每空4分,共20分)1.计算积分⎰b adx x f )(的梯形公式为 。

2.设向量T n x )2,1,0( =,则=∞x 。

3.用牛顿法求方程0)(=x f 的根的公式为 。

4.已知n=3时的牛顿-科特斯系数83,83,81)3(2)3(1)3(0===C C C ,则=)3(3C 。

5.已知点,5,4,3,2,1,1=-=i i x i 则二阶差分=∆32x 。

三.判断题(对的在题前括号内划√,错的划×,每题2分,共10分)( )1.高斯求积公式的系数都是正的,故计算总是稳定的。

数值分析测试题答案

数值分析测试题答案
(3) 解:
构造另一种迭代公式: 1 xk + 1 = xk - (xk2 - 3),k = 0,1,2 4 1 1 ∴ψ ( x) = x - (x 2 - 3),ψ' ( x) = 1 - x, 4 2 ψ' ( x * ) =ψ'
( 3) = 1-
3 = 0.134 < 1,收敛。 2
5π π π ( ) sin f x = sin x , x ∈ [ , ] 5. 已知函数 18 ,给出误差估计。 6 3 ,在函数图像上取型值点做二次插值多项式,计算
∴ N (x) = -11 +14(x + 2) -12(x + 2)(x +1) +12x(x +1)(x + 2)
7. 插值与下面表列 i xi yi 的自然样条定义如下:
3 s x a x 1 b x 1 1,1 x 2 0 S x 3 2 3 s x c x 2 x 2 d x 2 1, 2 x 3 1 4
i 0 i 0
4
4
于是得到如下方程: 8a0 22a1 47 22a0 74a1 145.5 解得 a0 2.77, a1 1.13 于是所求的最小二乘法拟合曲线为
* y s1 x 2.77 1.13x
均方误差为
2
=0.9424
12/1/2011 12:23:43 PM
数值分析测试题参考答案
1. 写出有效数字的概念,并计算 2.718 近似 e 有几位有效数字。(e = 2.71828182…) 解:(1)设 x*是 x 的一个近似数,表示为

福州大学2010-2011年数值分析考题及答案1

福州大学2010-2011年数值分析考题及答案1
得分 评卷人
1、若向量 x (4, 2,3) ,则
T
x 2 =___ 29 _________
=____ 6 ____,A 的
2、
1 1 A , 则 A 的谱半径 -5 1
=____6____
3、 确定求积公式 尽量高,则 A0=_

1
1
f ( x)dx A0 f (1) A1 f (0) A2 f '(1) 中的待定参数,使其代数精度
0 2 0 5、设 B 2 1 2 ,试用平面旋转矩阵对矩阵 A 进行 QR 分解,其中 Q 为正交 0 2 1
矩阵,R 为上三角阵(8 分)
4
记A1 A, 先将A的第一列变得与e1平行 cos = 0 2 0,sin = 1 04 04 0 1 0 0 1 0 0 P A 2 P A1 1 12 12 0 0 0 1
3、
h 用二步法 yn1 yn [ f ( xn , yn ) f ( xn1 , yn1 )] 求解一阶常微分方程初值问题 2
y f ( x, y ) 问:如何选择参数 , 的值,才使该方法的阶数尽可能地高?写出 y ( x0 ) y0
此时的局部截断误差主项,并说明该方法是几阶的。 证明:局部截断误差为:
( x x )l ( x) 等于
i 0 i i
4
( a ) 1 (c) 2 (d) 4
(a)
0
(b)
3、设 f ( x) 3x5 4 x 4 x 2 1 和节点 xk k / 2, k 0,1 则差商 f [ x0 , x1 x5 ] (a) 4 (b) 2 (c) 3 (d) 1 ( ( c ) c )

数值分析试卷及答案

数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。

答:牛顿-科特斯公式2. 数值微分的基本公式是_________。

答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。

答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。

答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B

2011年秋季工学硕士研究生学位课程(数值分析)真题试卷B(总分:28.00,做题时间:90分钟)一、填空题(总题数:6,分数:12.00)1.填空题请完成下列各题,在各题的空处填入恰当的答案。

(分数:2.00)__________________________________________________________________________________________ 解析:2.设|x|>>1______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:3.求积分∫ a b f(x)dx的两点Gauss公式为______(分数:2.00)__________________________________________________________________________________________正确答案:()解析:4.设∞ =______,‖A‖ 2 =______.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:5.给定f(x)=x 4,以0为三重节点,2为二重节点的f(x)的Hermite插值多项式为______.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:x 4)解析:6.己知差分格式r≤______时,该差分格式在L ∞范数下是稳定的.(分数:2.00)__________________________________________________________________________________________正确答案:()解析:二、计算题(总题数:2,分数:4.00)7.给定方程lnx-x 2+4=0,分析该方程存在几个根,并用迭代法求此方程的最大根,精确至3位有效数字.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:令f(x)=lnx-x 2 +4,则f"(x)= -2x,当x= 时,f"(x)=0. 注意到f(0.01)=-0.6053<0,f(1)=3>0,f(3)=-3.9014<0,而当时,f"(x)>0,当时,f"(x)<0,所以方程f(x)=0有两个实根,分别在(0.01,1)和(1,3)内.方程的最大根必在(1,3)内,用Newton迭代格式取x 0 =2,计算得x 1 =2.1980,x 2 =2.1)解析:8.用列主元Gauss(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:求得x 1 =3,x 2 =1,x 3 =5.)解析:三、综合题(总题数:6,分数:12.00)9.设α,β表示求解方程组.Ax=b的Jacobi迭代法与Gauss-Seidel迭代法收敛的充分必要条件.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:Jacobi迭代格式的迭代矩阵特征方程为展开得500λ3—15αβλ=0或者λ(500λ2—15αβ)=0,解得λ=0或λ2 = 则Jacobi格式收敛的充要条件为|αβ|<Gauss-Seidel格式迭代矩阵的特征方程为展开得500λ3—15αβλ2 =0或者λ2(500λ-15αβ)=0,解得λ=0或λ则Gauss-Seidel格式收敛的充)解析:10.设x 0,x 1,x 2为互异节点,a,b,m为已知实数.试确定x 0,x 1,x 2的关系,使满足如下三个条件p(x 0 )=a, p"(x 1 )=m,p(x 2 )=b的二次多项式p(x)存在且唯一,并求出这个插值多项式p(x).(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:由条件p(x 0 )=a,p(x 2 )=b确定一次多项式p 1 (x),有所以p(x)-P 1(x)=A(x—x 0 )(x—x 2 ),p"(x)=p" 1 (x)+A(x—x 0 +x—x 2 ),p"(x 1+A(2x 1 -x 0 -x 2) 解析:11.求y=|x|在[-1,1]上形如c 0 +c 1 x 2的最佳平方逼近多项式.(分数:2.00)__________________________________________________________________________________________ 正确答案:(正确答案:取φ0 (x)=1,φ1 (x)=x 2,则(φ0,φ0)=∫ -11 =2,(φ0,φ1)=∫ -11 x 2)1 x 2,(φ1,φ1)=∫ -1解析:12.已知函数f(x)∈C 3 [0,3],试确定参数A,B,C,使下面的求积公式数精度尽可能高,并给出此时求积公式的截断误差表达式.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:当f(x)=1时左=∫ 03 1dx=3,右=A+B+C,当f(x)=x时左=∫ 03 xdx= ,右=B+2C 当f(x)=x 2时左=∫ 03 x 2 dx=9,右=B+4C.要使公式具有尽可能高的代数精度,则而当f(x)=x 3时,左=∫ 03 x 3)解析:13.给定常微分方程初值问题取正整数n,并记h=a/n,x i =a+ih,0≤i≤n.证明:用梯形公式求解该初值问题所得的数值解为且当h→0时,y n收敛于y(a).(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:梯形公式应用于方程有y i+1=y i+ (-y i—y i+1),即有所以i=1,2,….当h→0时,n→∞我们有而由方程知解析解y=e -x则y(a)=e -a,所以)解析:14.Ω={0<x<3,0<y<3).试用五点差分格式求u(1,1),u(1,2),u(2,1),u(2,2)的近似值.(分数:2.00)__________________________________________________________________________________________正确答案:(正确答案:五点差分格式为根据要求,可取h= ,将(1,1),(2,1),(1,2),(2,2)处的差分格式列成方程组有或者解得u 11=15.8750,u 21=22.6250,u 12=15.8750,u 22 =22.6250.)解析:。

中国石油大学《数值分析》2011年考试试题A卷及答案

中国石油大学《数值分析》2011年考试试题A卷及答案

f (4)(x)
1 2880
1 n
4
6
1 2
104
,
仅要 n 4 1 101 2.54 ,取 n 3 即对将[1,2] 作 6 等分,则有 240
(8 分)
2
1 ln xdx
1 [0 4(ln 7 ln 3 ln 11) 2(ln 4 ln 5) ln 2] 0.38628716327880 .
0.000040074
( 4 分)
七、(10 分)(1)牛顿迭代格式
x(k 1)
x(k)
f f
(x(k ) ) '(x(k) )
x(k)
x(k) 1 (2
(x(k) )2 )(x(k) )1
1
(1 (2
)(
x( )(
)k ) 2 x(k ) )1
(2)
x(k 1)
lim
k
x(k)
1 1
fgdx
,取( x) ax bx3 , f ( x) sin x ,则法方程为
(0 ,0 )
(1
,
0
)
(0 ,1) (1 , 1 )
a b
( (
f f
,0 ,1
) )
( 4 分)
其中 0,0
1
x xdx
1
2, 3
0 ,1
(1 )(x(k) )2
lim
k
1
(2
)(x(k ) )1
c0
2
c 1
(5 分) (5 分)
1
x(k) 2
x(k) 3
1
x(k) 1
x(k) 3
/2
x3( k
1)

2011年哈工大(数值分析)试题

2011年哈工大(数值分析)试题

y0 , y1 , (h为步长) 。
(1)确定方法中的局部误差主项,并指出方法的阶数; (2)讨论该方法的收敛性和绝对稳定性。 ( 在 线 性 多 步 法 的 局 部 截 断
Cr
p 1 p p 1 (i ) r 1 bi , r 2,3, ) i a r i r ! i 0 i 1
1 2
a 2 1 x1 1 3、已知方程组 2 a 2 x2 2 , 1 2 a x3 1
(1)写出求解此方程组的 Jacobi 迭代格式; (2)用已知结论说明,当 a 4 时,该迭代格式收敛;
0 2
T
(1)求 A , x0 , x1 使求积公式具有尽可能高的代数精度,并指出此求积公式的 代数精度是多少?(2)并用此公式计算积分 x 4 dx 。 (计算结果保留四位小数)
0 2
ρ 。 6、试用共轭梯度法(cg 法)求解线性方程组。 (初始值取 x (0) (0, 0, 0)T )
a x 2 x3 , 0 x 1 ,具有连续二 2、 (1)求 a 及不超过二次多项式 P( x) 使 S ( x) P( x) , 1 x 2
阶导数且满足 P (2) 0 ; (2) 当 f ( x) 用满足条件 f (1) P(1), f (2) P(2), f ' (1) P ' (1) 的插值多项式近似时, 求 f ( x)dx 。
2011 年哈工大《数值分析》考试
1、 设 f ( x) x3 5 。 (1)应用 Newton 迭代法于方程 f ( x) 0 ,导出 3 5 的迭
2
代公式; 并讨论迭代公式的收敛速度; (2) 尝试把导出的迭代公式加以改进, 提高迭代公式的收敛速度, 并用改进后的迭代公式计算 3 5(取初值 x0 1.0 , 计算三步,结果保留四位小数) 。

西安石油大学研究生数值分析10 11年试题

西安石油大学研究生数值分析10 11年试题
2010/2011学年第I学期数值分析考试题(卷)
一、填空题(每题2分,共20分) 1.近似数 x =0.231关于真值x=0.229有

位有效数字。 。
n
2.求方程 f ( x) 0 的根时,对应的牛顿切线法迭代公式为 3.设 l i ( x) (i=0,1,2,…,n)是n次拉格朗日插值基函数,则
4 0 x1 5 2 3 1 1 x 2 9 2 2 0 x 3 3
四、(12分)写出解线性方程组
4 x1 2 x3 4 x1 4 x 2 2 x3 1 的高斯—赛德尔迭代法的迭代格式,并判断其收敛性。 3 x 5 x x 2 2 3 1
l ( x) =
i 1 i

4.求解微分方程初值问题
y ' f ( x, y ) 时,设x节点步长为h,则欧拉预估— y ( x0 ) y 0
迭代法和
校正方法的局部截断误差为 。 5.若线性方程组AX=b的系数矩阵A为严格对角占优矩阵,则 迭代法收敛。 6.差商与向前差分满足关系: 差商与向后差分满足关系: 7.用数值方法求积分 。 。
五、(12分)已知一组观察数据为 i 0 1 2 2 3 3 4
xi
1
yi
0
-5
-6
3
试用此组数据构造3次牛顿插值多项式 N 3 ( x) ,并计算 N 3 (1.5) 的值。 六、(12分)试确定经验公式 y ae 中的参数a和b(a为正数),使该函数曲线与下列数
bx
据按最小二乘原则相拟合(至少保留ห้องสมุดไป่ตู้位小数)。 1 2
xi
3 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由 x( k 1) Mx( k ) g 和 x* Mx* g 可得:
x( k 1) x* M ( x( k ) x* ) , k 0,1,2,...
递推的: x( k ) x* M k ( x(0) x* ) 设 y 是矩阵 M 属于特征值 的特征向量,取 x(0) y x* ,则有:
3 5x f ( xk ) xk a a , xk 1 k 2 , k 0,1,2,... xk xk 2 6 f ( xk ) 6 xk 6 xk
一、解答下列各题: (每题 5 分,共 30 分) 1.设近似值 x 具有 5 位有效数字,则 x 的相对误差限为多少? 解:记 x 0.a1a2 ...10 ,则 x 的相对误差为:
1 1
1 0 0 0 0.3 0.2 0 0.3 0.2 0 0. 4 G ( D L) U 0 1 0 0 0 0.4 0 1 0 1 0 0 0 0 0. 3 0. 2
h2 h3 y ( xn ) ( y ( xn ) O(h 4 ) 2 6
y( xn1 ) y ( xn ) hy ( xn )
yn f n h
h 2 f n f n h3 ( fn ) y ( xn ) O(h 4 ) 2 x y 6
2
… … … … ○ … … … … 密 … … … … ○ … … … … 封 … … … … ○ … … … 线 … … … … … … … …
1 三、 (9 分)说明方程 2 x sin x 2 0 在区间 [ , ] 内有唯一根,并建立一个 2 2 1 收敛的迭代格式,使对任意初值 x0 [ , ] 都收敛,说明收敛理由和收敛阶。 2 2 1 1 解:记 f ( x) 2 x sin x 2 ,则 f ( x) C[ , ] ,且 f ( ) 0, f ( ) 0 ,而且, 2 2 2 2 1 ] 内有唯一根。 f ( x) 2 cos x 0 ,所以,方程 2 x sin x 2 0 在区间 [ , 2 2 1 建立迭代格式: xk 1 sin xk 1, k 0,1,2,... 2 1 1 由于,迭代函数 (x) sin x 1 在区间 [ , ] 上满足条件: 2 2 2 1 3 1 1 1 ( x) , | ( x) || cos x | 1 2 2 2 2 2 1 所以,此迭代格式对任意初值 x0 [ , ] 都收敛。 2 2 1 又由于, ( ) cos 0 ,所以,此迭代格式 1 阶收敛。 2
五、 (4 分)设矩阵 M 是 n 阶方阵, M 有一个绝对值小于 1 的特征值 ,且方程 组 x Mx g 有 唯 一 解 x * , 证 明 : 存 在 初 始 向 量 x ( 0 ) 使 迭 代 格 式 :
x ( k 1) Mx ( k ) g , k 0,1,2,...产生的序列 {x ( k ) } 收敛到 x * .
么? 解:由于 | sin(x 2 y) sin(x 2 y ) | | 2cos( x 2 )( y y ) | 2 | y y | 即,函数 f ( x, y) sin(x 2 y) 连续,且关于变量 y 满足 Lipschitz 条件,所以,改 进 Euler 方法收敛。
* m
0.5 105 x* x 0.5 10m5 0.5 104 m 0.1 x* 0.a1 a 2 ... 10
xk 1
即,相对误差限为: 0.5 10 .
4 2 0 2.问 a , b 满足什么条件时, 矩阵 A 2 5 a 有分解式 A GGT , 并求 a b 2 时 0 b 5
x1 0.3 x 2 0.2 x3 1 1.用 Gauss-Saidel 迭代法求解方程组 x 2 0.4 x3 2 ,如果取初值 x x 1 3 1
1 1 所以, H 3 ( x) ( x 2)( x 2 2 x 1) ( x 3 3x 2) 。 2 2 1 1 4. 确定求积公式 f ( x)dx f (1) A1 f (0) A2 f (1) 中的待定系数, 使其代数精 1 2
(k ) (k ) x1( k 1) 0.3x 2 0.2 x3 1 ( k 1) (k ) 0.4 x3 2 由于 Gauss-Saidel 迭代格式为: x 2 ,所以, x ( k 1) x ( k 1) 1 1 3源自解: I S 2

G
10
1 G
x
(1)
x
0.510 1 1 2 8 0.00390625 0.5 256 2
5M 4
2880 2 4
=0.006641
2.给定离散数据 xi yi -1 2 0 -1 1 1 2 3
y sin(x 2 y) , 0 x 2 6.求解初值问题 的改进 Euler 方法是否收敛?为什 y(0) 1
0
0
二、解答下列各题: (每题 8 分,共 48 分)
2c 1 , a b c 2 , a c 0 ,解得:
a c 1 / 2, b 1,
… … … … ○ … … … … 密 … … … … ○ … … … … 封 … … … … ○ … … … 线 … … … … … … … …
f [1,2,3,4] 4 , f [1,2,3,4,5] 0
6. 设 p2 ( x) 是 区 间 [0, 1] 上 权 函 数 为 x 的 二 次 正 交 多 项 式 , 计 算 积 分
x 2 x2 2 3.解线性方程组 1 的 Jacobi 迭代法是否收敛,为什么? 2 x1 9 x2 3
试求形如 y a bx2 的拟合曲线。 解:由于 0 ( x) 1,1 ( x) x 2 ,所以 0 (1,1,1,1)T ,1 (1,0,1,4)T ,
4a 6b 5 , f (2,1,1,3)T ,所以,正则方程组为: 6a 18b 15






… … … … ○ … … … … 密 … … … … ○ … … … … 封 … … … … ○ … … … 线 … … … … … … … …
东 北 大 学 研 究 生 院 考 试 试 卷 2011 —2012 学年第 数值分析 一 学期
总分





课程名称:
(共 3 页)
4.对方程 f ( x) ( x 3 a) 2 0 建立 Newton 迭代格式,并说明此迭代格式是否收 敛?若收敛,收敛阶是多少? 解:Newton 迭代格式为:
f( 1 ) f( 0 ) 2 (5) 7 1 0
所以,当 2 5 a b 2 5 时有分解式 A GGT , a b 2 时有:
4 2 0 2 0 0 2 1 0 A 2 5 2 1 2 0 0 2 1 0 2 5 0 1 2 0 0 2
x( k ) x* M k y k y ,于是有: x ( k ) x*
k
k
y
所以, lim x ( k ) x* 0 ,即序列 {x ( k ) } 收敛到 x * .
y f ( x, y) , x [a, b] 四、 (9 分) 已知求解常微分方程初值问题: 的差分公式: y ( a)
1
1 1 f (1) f (0) f (1) 代数精度最高. 2 2
又由于公式对 f ( x) x 2 不能精确成立,所以,代数精度为 1,不是插值型求 积公式。 5.利用复化 Simpson 公式 S 2 计算定积分 I sinxdx 的近似值,并估计误差。
0
所以, G

0.5 ,
h h y n 1 y n hf ( x n , y n f ( x n , y n )) 2 2 y 0
求此差分公式的阶。 解:由于
y n1
h 2 f n f n h3 2 f n 2 f 2 f yn f n h ( fn ) ( 2 2 f n 2 f n2 ) O(h 4 ) 2 x y 8 x xy y

12
[sin 0 sin 2 sin

2
4 sin

4
4 sin
3 ] (1 2 2 ) 2.00456 4 6
x (1) (1,2,2)T , x (1) x ( 0)
x10 x
*

2 ,于是
( 0)
由于 f ( x) sin x 的 4 阶导数在 [0, ] 上的最大值为: M 4 1,所以 误差为: | I S 2 |
4
由于迭代函数为: ( x)
5x a 2 ,方程根为: 3 a ,所以, 6 6x
( )
1 5 a 1 3 1 ,且 ( ) 0 2 6 3 2
所以,此迭代格式收敛,收敛阶是 1.
的分解式(其中 G 是对角线元素大于零的下三角形矩阵).
x0 (0,0,0)T ,试估计迭代 10 步的误差 x10 x *
解:由于 Gauss-Saidel 迭代矩阵为:
1

.
度尽可能高,并问此公式是不是插值型求积公式. 解:令公式对 f ( x) 1, x 都精确成立,得: A1 A2 3 / 2, A2 1 / 2 , 所以, A1 1, A2 1 / 2 时,公式 f ( x)dx
相关文档
最新文档