2012数值分析试题及答案
上海海事大学1213数值分析试A卷答案

上海海事大学2012---2013学年第 2 学期 研究生 数值分析 课程考试试卷A (答案)学生姓名: 学号: 专业:1. 利用Seidel 迭代法求解Ax=b 时,其迭代矩阵是))-1s U L D B -=(; 当系数矩阵A 满足 严格对角占优 时,Seidel 迭代法收敛 。
7. 反幂法是求可逆矩阵按模最小 特征值和特征向量的计算方法. 6. QR 法是计算 非奇异矩阵的 所有 特征值和特征向量的计算方法 1. 利用Jacobi 迭代法求解Ax=b 时,其迭代矩阵是)(1U L D B J +=-;当系数矩阵A 满足 严格对角占优 时,Jacobi 迭代法收敛 。
2. 对于求解Ax=b ,如果右端有b δ的扰动存在而引起解的误差为x δ,则相对误差≤xxδ bbA Cond δ)(3. 幂法是求矩阵 按模最大 特征值和特征向量的计算方法.Jacobi 法是计算 实对称矩阵的所有 特征值和特征向量的计算方法 六.设方程组Ax=b 有唯一解*x ,其等价变形构造的迭代格式为f Bx x k k +=+)()1(,如矩阵谱半径1)(>B ρ,但B 有一个特征值满足1<λ,求证:存在初始向量)0(x ,使得迭代产生的序列{})(x x 收敛于*x 。
(7分)证明: 由f Bx x k k +=+)()1(,f Bx x +=**()()*)0(1k *)(*)1(---x x B x x B x xk k ++== 对于B 的一个特征值满足1<λ,特征向量设为y ,,,11y y B y By k k ++==λλ故取初始向量y x x +=*)0(,有()y y B x x B x x k k 11k *)0(1k *)1(--++++===λ∞→→==+++k yy x xk k k ,0-11*)1(λλ,所以{})(x x 收敛于*x八.给定函数函数)(x f ,对于一切x ,存在)(x f ',且M x f m ≤'≤<)(0, 证明对于范围M20<<λ内的任意定数λ,迭代过程)(-1k k k x f x x λ=+均收敛于0)(=x f 的根。
数值分析 考试

江苏科技大学 数值分析复习
Page 3
2012-11-13
S ′(0.25) = 1.000, S ′(0.53) = 0.6868
提示:
h0 = x1 − x0 = 0.05, h1 = x2 − x1 = 0.09, h2 = 0.06, h3 = 0.08 5 3 3 计算: μ1 = , μ 2 = , μ3 = , μ 4 = 1 14 5 7 9 2 4 计算: λ1 = , λ2 = , λ3 = , λ0 = 1 14 5 7 f ( x1 ) − f ( x0 ) 计算: f [ x0 , x1 ] = = 0.9540, x1 − x0 f [ x1 , x2 ] = 0.8533, f [ x2 , x3 ] = 0.7717, f [ x3 , x4 ] = 0.7150
江苏科技大学 数值分析复习
Page 2
2012-11-13
一等价公式。 ln( x −
x 2 − 1) = − ln( x + x 2 − 1) 计算,求对数时误差有多大?
解 ∵ f ( x) = ln( x −
x 2 − 1) , ∴ f (30) = ln(30 − 899) 。设 u = 899, y = f (30) ,则有 y = ln(30 − u ) * * 根据题意有 u = 29.9833 ,精度为 ε( u ) = ... 。 1 1 * 故 ε( y ) ≈ − ε( u* ) = iε( u* ) ≈ ... * 0.0167 30 − u
基函数: l1 ( x ) = 误差:自己做一下。 作业 2: 16. 求次数不高于 4 次的多项式 P(x),使它满足 P (0) = P′(0) = 0, P (1) = P′(1) = 1, P (2) = 2 。 提示:方法有 1、方程组法,最简单。假设 P ( x ) = a0 + a1 x + a2 x + a3 x + a4 x ;代入条件得 5 个方程,求解
数值分析试题及答案..(优选)

一、单项选择题(每小题3分,共15分)1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字.A .4和3B .3和2C .3和4D .4和42. 已知求积公式()()211211()(2)636f x dx f Af f ≈++⎰,则A =( )A . 16B .13C .12D .233. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( )A .()00l x =0,()110l x = B .()00l x =0,()111l x =C .()00l x =1,()111l x = D .()00l x =1,()111l x =4. 设求方程()0f x =的根的牛顿法收敛,则它具有( )敛速。
A .超线性B .平方C .线性D .三次5. 用列主元消元法解线性方程组1231231220223332x x x x x x x x ++=⎧⎪++=⎨⎪--=⎩ 作第一次消元后得到的第3个方程( ).A .232x x -+= B .232 1.5 3.5x x -+=C .2323x x -+= D .230.5 1.5x x -=-单项选择题答案1.A2.D3.D4.C5.B二、填空题(每小题3分,共15分)1. 设TX )4,3,2(-=, 则=1||||X ,2||||X = .2. 一阶均差()01,f x x =3. 已知3n =时,科茨系数()()()33301213,88C C C ===,那么()33C = 4. 因为方程()420x f x x =-+=在区间[]1,2上满足 ,所以()0f x =在区间内有根。
5. 取步长0.1h =,用欧拉法解初值问题()211yy yx y ⎧'=+⎪⎨⎪=⎩的计算公式 .填空题答案1. 9和292.()()0101f x f x x x --3. 18 4. ()()120f f < 5. ()1200.11.1,0,1,210.11k k y y k k y +⎧⎛⎫⎪ ⎪=+⎪ ⎪=+⎨⎝⎭⎪=⎪⎩得 分 评卷人三、计算题(每题15分,共60分)1. 已知函数211y x =+的一组数据:求分段线性插值函数,并计算()1.5f 的近似值.计算题1.答案1. 解[]0,1x ∈,()1010.510.50110x x L x x --=⨯+⨯=---()12x L x -=-所以分段线性插值函数为()10.50.80.3x x L x x x ⎧-∈⎪=⎨-⎪⎩()1.50.8L =2. 已知线性方程组1231231231027.21028.35 4.2x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩(1) 写出雅可比迭代公式、高斯-塞德尔迭代公式;(2) 对于初始值()()00,0,0X =,应用雅可比迭代公式、高斯-塞德尔迭代公式分别计算()1X(保留小数点后五位数字).计算题2.答案1.解 原方程组同解变形为 1232133120.10.20.720.10.20.830.20.20.84x x x x x x x x x =++⎧⎪=-+⎨⎪=++⎩雅可比迭代公式为()()()()()()()()()1123121313120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x +++⎧=++⎪⎪=-+⎨⎪=++⎪⎩(0,1...)m = 高斯-塞德尔迭代法公式()()()()()()()()()1123112131113120.10.20.720.10.20.830.20.20.84m m m m m m m m m x x x x x x x x x ++++++⎧=++⎪⎪=-+⎨⎪=++⎪⎩ (0,1...)m =用雅可比迭代公式得()()10.72000,0.83000,0.84000X =用高斯-塞德尔迭代公式得()()10.72000,0.90200,1.16440X =3. 用牛顿法求方程3310x x --=在[]1,2之间的近似根 (1)请指出为什么初值应取2?(2)请用牛顿法求出近似根,精确到0.0001.计算题3.答案4. 写出梯形公式和辛卜生公式,并用来分别计算积分1011dx x +⎰.计算题4.答案确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度()()()()1010hhf x dx A f h A f A f h --=-++⎰证明题答案一、 填空(共20分,每题2分)1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =3. 设(2,3,1)TX =--, 则2||||X = ,=∞||||X 。
2012研究生数值分析课期末考试复习题及答案

一、填空1. 设2.3149541...x *=,取5位有效数字,则所得的近似值x= 2.3150 .2.设一阶差商()()()21122114,321f x f x f x x x x --===---,()()()322332615,422f x f x f x x x x --===--则二阶差商()123,,______f x x x =11/63. 设(2,3,1)TX =--, 则2||||X = 14 ,=∞||||X 3 。
p494. 4.求方程 21.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值01x =, 那么1______x =。
1.55.解初始值问题 00'(,)()y f x y y x y =⎧⎨=⎩近似解的梯形公式是1______k y +≈。
()()[]11,,2++++k k k k k y x f y x f h y6、1151A ⎛⎫= ⎪-⎝⎭,则A 的谱半径 = 6 。
7、设2()35, , 0,1,2,... ,k f x x x kh k =+== ,则[]12,,n n n f x x x ++=——————————3 和[]123,,,n n n n f x x x x +++=_______________0_____ 。
8、 若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 收敛 。
9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为_______O(h )___。
10、为了使计算23123101(1)(1)y x x x =++----的乘除法运算次数尽量的少,应将表达式改写成____________⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛---+-+=1321111110x x x y _____________。
二、计算题 1、已知的满足 ,试问如何利用 构造一个收敛的简单迭代函数,使0,1…收敛?由 ()x x ϕ=,可得 3()3x x x x ϕ-=-,1(()3)()2x x x x ϕψ=--= 1 ()(()3) 2x x ψψ=--’’因,故11()122x x ψϕ=<<’’()-3[]11()()3 , k=0,1,.... 2k k k k x x x x ψϕ+==--故收敛。
数值分析(研)试题答案

沈阳航空航天大学研究生试卷(A )2011-2012学年第一学期课程名称:数值分析出题人: 王吉波审核人:一、填空题(本题40分每空4分)1.设),,1,0()(n jx l j 为节点n x x x ,,,10的n 次基函数,则)(i j x l ji j i ,0,1。
2.已知函数1)(2xxx f ,则三阶差商]4,3,2,1[f = 0。
3.当n=3时,牛顿-柯特斯系数83,81)3(2)3(1)3(0CCC ,则)3(3C 81。
4.用迭代法解线性方程组Ax=b 时,迭代格式,2,1,0,)()1(kf Bxxk k 收敛的充分必要条件是1)(B 或 B 的谱半径小于 1 。
5.设矩阵1221A,则A 的条件数2)(A Cond = 3 。
6.正方形的边长约为100cm ,则正方形的边长误差限不超过0.005cm 才能使其面积误差不超过12cm。
7.要使求积公式)()0(41)(111x f A f dxx f 具有2次代数精确度,则1x 2/3 ,1A 3/4。
8. 用杜利特尔(Doolittle )分解法分解LU A,135945-2791260945-0451827-9189A其中,则13213012-100120001L,9548100918-9027-9189U二、(10分)已知由数据(0,0),(0.5,y ),(1,3)和(2,2)构造出的三次插值多项式)(3x P 的3x 的系数是6,试确定数据y 。
答案:利用Lagrange 插值多项式,)()()()()()()()()()(3322110033x l x f x l x f x l x f x l x f x L x P 及基函数的表达式可知3x 的系数为))()(()(3020100x x x x x x x f +))()(()(3121011x x x x x x x f +))()(()(3212022x x x x x x x f +))()(()(2313033x x x x x x x f (5分)代入有关数据得15.122)1(5.013)5.1()5.0(5.006y解得y=4.25.(5分)三、(15分)试导出计算)0(1a a的Newton 迭代格式,使公式中(对n x )既无开方,又无除法运算,并讨论其收敛性。
数值分析试卷及答案

数值分析试卷及答案数值分析试卷一、选择题(共10题,每题2分,共计20分)1. 数值分析的研究内容主要包括以下哪几个方面?A. 数值计算方法B. 数值误差C. 数值软件D. 数学分析答:A、B、C2. 下列哪种方法不属于数值积分的基本方法?A. 插值法B. 微积分基本公式C. 数值微积分D. 数值积分公式答:A3. 数值积分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:D4. 数值微分的目的是求解什么?A. 函数的导数B. 函数的原函数C. 函数的极值D. 函数的积分答:A5. 数值微分的基本方法有哪几种?A. 前向差分B. 后向差分C. 中心差分D. 插值法答:A、B、C6. 用数值方法求解方程的基本方法有哪几种?A. 迭代法B. 曲线拟合法C. 插值法D. 数值积分法答:A、B、C7. 用迭代法求方程的根时,当迭代结果满足何条件时可停止迭代?A. 当迭代结果开始发散B. 当迭代结果接近真实解C. 当迭代次数超过一定阈值D. 当迭代结果在一定范围内波动答:B8. 下列哪种插值方法能够确保经过所有给定数据点?A. 拉格朗日插值B. 牛顿插值C. 三次样条插值D. 二次插值答:A、B、C9. 数值解线性方程组的基本方法有哪几种?A. 直接法B. 迭代法C. 插值法D. 拟合法答:A、B10. 下列哪种方程求解方法适用于非线性方程?A. 直接法B. 迭代法C. 插值法D. 曲线拟合法答:B二、填空题(共5题,每题4分,共计20分)1. 数值积分的基本公式是_________。
答:牛顿-科特斯公式2. 数值微分的基本公式是_________。
答:中心差分公式3. 数值积分的误差分为_________误差和_________误差。
答:截断、舍入4. 用插值法求解函数值时,通常采用_________插值。
答:拉格朗日5. 数值解线性方程组的常用迭代法有_________方法和_________方法。
2012研究生试题数值分析数值分析

七、(本题满分 10 分)试推导下列求积公式
∫b f (x)dx ≈ (b − a) f ( a + b)
a
2
的截断误差的表达式,并判断其代数精度。
第 6页 共 6 页
2 3 3、设 A = 1 1 ,则 Cond∞ ( A) = ______. 4、已知 3 阶矩阵 A 的特征值分别为 2,-5,6,则矩阵 A 的谱半径是___________. 5、已知 f (x) = x − sin x −1 ,则牛顿法的迭代公式是_______________
第 2页 共 6 页
四 、( 本 题 满 分 10 分 ) 求 函 数 f (x) = sin π x 在 区 间 [0 , 1] 上 的 最 佳 平 方 逼 近 多 项 式 ϕ(x) = a + bx2 。
第 3)试用数值积分法建立常微分方程初值问题:
dy dx
x3 +
=1 x3 =
3
取初始向量 x(0) = [0,0,0]T 迭代求解,求到 x(2) 。
第 1页 共 6 页
三、(本题满分 10 分)已知数据表:
x -1 0 1 2 3 y2 1 3 4 5
通过构造点集 {−1, 0,1, 2,3} 上的正交多项式求一个二次多项式以最小二乘法拟
合上述数据。
10、将向量 s = (−2,1, 0)T 变为与 e1 = (1, 0, 0)T 同向的变换 u = Hs 中的 Householder 矩阵
H = ______。
二、(本题满分 10 分)用 Gauss-Seidel 迭代法求解方程组
x1
+
2x2
−
2x3
数值分析期末考试题带答案

湖北民族学院2012年秋季期末试卷A或BA卷课程数值分析使用班级0210403、4、5、6 制卷份数86 考生姓名命题人刘波课程负责人单位审核人答题纸数班级题号一二三四五六七八九十合计学号评分分数阅卷人注意:所有答案必须填写在答题纸上! 一、填空题(4分⨯10=40分)1、向量T x )3,2,1(-=的范数1x = ,∞x = ,2x 。
2、已知,3)2(,1)1(==f f 那么)(x f y =以2,1=x 为节点的拉格朗日线性差值多项式为 。
3、设矩阵A 是对称正定矩阵,则用 迭代法接线性方程组,b AX =其迭代解数列一定收敛。
4、辛普森公式: 。
5、牛顿-柯特斯求积分公式的系数和=∑=nk n k C 0)( 。
6、,1)(2+=x x f 则=]3,2,1[f ,=]4,3,2,1[f 。
7、积分公式)42(32)21(31)41(32)(10f f f dx x f +-≈⎰具有 次代数精度。
二、计算题(10分⨯3=30分) 1、求01162=+-x x 的小正根。
2、给定形如)0()1()0()('01010f B f A f A dx x f ++≈⎰的求积公式,试确定系数,,,010B A A 使公式具有尽可能高的代数精确度。
3、求⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=242422221A 的特征值及普半径。
三、证明题(20分⨯1=20分) 1、用直接三角分解法解⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛201814513252321321x x x四、讨论题(10分⨯1=10分)1、用4点(n=3)的高斯——勒让德求积公式计算xdx x I cos 22⎰=π答案:一:1: 6,3,14 解: ∞x=||max 1i ni x ≤≤;1x =∑=n i i x 1||;2x =2112)(∑=ni ix ;向量的p 范数:p x =pni p ix 11)||(∑=2: 2x-1 3、高斯-赛德尔4、)]()2(4)([6)(b f b a f a f a b dx x f b a +++-≈⎰5、16、1,07、3二:1:解:6381+=x ,*2206.094.78638x x ==-≈-=,*2x 只有一位有效数字,若改用0627.094.15163816382≈≈+=-=x ,具有三位有效数字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
aii
(bi
n
aij
x
(k j
)
)
,
j 1
i 1,2,, n
(1) 求此迭代法的迭代矩阵 M ;
(2) 证明:当 A 是严格对角占优矩阵, 0.5 时,此迭代格式收敛.
解:迭代法的矩阵形式为:
x(k1) x(k) D 1 (b Ax (k) ) D 1 (D A)x(k) D 1b
x2 3/5
).
线 …
8.对离散数据 xi yi
1 0 1 2 的拟合曲线 y 5 x 2 的均方差为( 2.5 1.58 ).
2 1 1 3
6
…
…
…
9.设求积公式
2
f (x)dx
1
A0 f (1) A1 f (0) A2 f (1) 是插值型求积公式,则积分系
… 数 A0 3/ 4 , A1 0 , A2 9 / 4 .
2
2
2
2
2
2
R[ f ] 0 f (x)dx 0 p1 (x)dx 0 f (x)dx 0 H 3 (x)dx 0 H 3 (x)dx 0 p1(x)dx
2 f (4) ( x ) (x 1 )2 (x 1 )2 dx f (4) () 2 (x2 1)2 dx
…
四、(10 分)利用复化 Simpson 公式 S2 计算定积分 I
2
cos
xdx
的近似值,并估
0
… 计误差。
… …
解:
I
S2
1 [cos0 6
cos2
2 c os1
4cos 1 2
4cos 3] 2
0.909622804
○ 由于 f (x) cosx 的 4 阶导数在[0,2]上的最大值为: M 4 1,所以 …
迭代矩阵的谱半径
(B)
(
2/3
).
… 封
4.迭代格式 xk1 xk3 3xk2 3xk , k 0,1,2,... 求根 1是( 3 )阶收敛的.
… …
5.设 f (x) sin x ,用以 xi i, i 0,1,2 为节点的二次插值多项式近似 sin1.5 的值,
… 所以,此差分公式是 1 阶方法。 … …… …
…
2
…
○
六、(8 分)设 p1(x) 是 f (x) 以 x0 1
1 3 , x1 1
1 为节点的一次插值多项式, 3
试由 p1(x) 导出求积分 I
2 f (x)dx 的插值型求积公式,并导出公式的截断误差.
0
解
设由 p1(x) 导出求积分 I
h 2 , yn
h 2
f
(xn , yn ))]
…
y0
… 求此差分公式的阶。
… 封
解:由于
… …
h
y n 1
yn
[ 2
fn
fn
h 2
( f n x
f n y
f n ) O(h2 )]
…
… ○
yn
hf n
h2 4
( f n x
f n y
f n ) O(h3 )]
… …
误差为 R2 (1.5) 1/16 0.0625 .
○ 6.设 f (x) 5x3+3,则差商 f [0,1]= 5 , f [1,2,3,4]= 5 , f [1,2,3,4,5]= 0 . …
… …
7.区间[1, 1]上权函数为 x 2 的二次正交多项式设 p2 (x) =(
2 f (x)dx 的插值型求积公式为:
0
I
2
f (x)dx f (1
1 ) f (1
1)
0
3
3
容易验证此公式具有 3 次代数精度,即对次数不大于 3 次的多项式精确成立,
记 H3 (x) 为 f (x) 在区间[x0 , x1 ] 的 3 次 Hermite 插值多项式,则有:
所以,迭代矩阵为 M D 1 (D A) .
当 A 是严格对角占优矩阵, 0.5 时,由于
n
| aij |
(M ) M max | j1 | 1,所以,迭代格式收敛.
1in
2aii
三、(12 分)说明方程 x cosx 0 有唯一根,并建立一个收敛的迭代格式,使
…
… …
y(xn1 )
y(xn ) hy(xn )
h2 2
y(xn ) O(h3 )
线
… …
yn
fnh
h2 2
( f n x
f n y
fn ) O(h3 )
…
… …
所以,
y(xn1 )
y n 1
h2 4
( f n x
f n y
fn ) O(h3 ) O(h2 )
42 ,则 A 的 Doolittle 分解式是( A 13
10 10
2 -2
),Crout
… …
○
分解式是(
A 13
-02
1 0
12
).
… … …
3.解线性方程组
xx11
4x2 9x2
2 1
的
Jacobi
班级 学号 姓名
… …
东北大学研究生院考试试卷
… …
2012 —2013 学年第 一 学期
○ …
课程名称: 数值分析 (共 2 页)
… …
一、填空题:(每题 5 分,共 50 分)
… 1.设近似值 x 的相对误差限为 10-5,则 x 至少具有( 5 )位有效数字.
密 …
…
2.设矩阵 A 13
…
… …
10..求解常微分方程初值问题的差分公式
y
n1
yn
hf
(xn
h, 2
yn
h 2
f
(xn , yn ))
y0
的绝对稳定区间是( (-2, 0) ).
1
总分 一
二
三
四
五
六
二、(10 分)已知求线性方程组 Ax b 的迭代格式:
x (k 1) i
x(k) i
… …
误差为:| I
S2
|
25 M 4 2880 24
0.000694444
…
密
…
… …
五、(10
分)设求解常微分方程初值问题:
y y(a)
f (x,
y)
,
x [a,b] 的差分公式:
…
○ …
y n 1
yn
h[ f 2
(xn , yn )
f
(xn
建立迭代格式: xk1 cos xk , k 0,1,2,... 由于,迭代函数(x) cos x 在区间[1,1] 上满足条件:
1 cos1 (x) 1,| (x) || sin x | sin1 1
所以,此迭代格式对任意 x1 [1,1] 都收敛。因此,对任意初值 x0 都收敛。 又由于,( ) sin 0 (0 1) ,所以,此迭代格式 1 阶收敛。
对任意初值 x0 都收敛,说明收敛理由和收敛阶。
解:记 f (x) x cosx ,则 f (x) 连续,且 f (0) 1 0, f (1) 1 cos1 0 ,而且,
f (x) 1 sin x 0 ,所以,方程 x cosx 0 有唯一根,且在区间[0, 1]内。
2 f (x)dx 的插值型求积公式为:
0
I
2
0 f (x)dx A0 f (1
1 3
)
A1
f
(1
1) 3
由插值余项知,公式至少具有 1 次代数精度,于是有:
A0 A1 2, A0 (1
1 3 ) A1(1
1 ) 2, 3
即: A0 A1 1 .
所以,由 p1(x) 导出求积分 I Biblioteka 0 4!33
24 0
3
f (4) () 2 (x 2 1)2 dx 109 f (4) ()
24 0
3
540
3