变压器涌流抑制
220kV变压器励磁涌流及抑制措施分析

220kV变压器励磁涌流及抑制措施分析励磁涌流是变压器合闸电源时的一种暂态状况,所有三个相以及接地中性点都有可能出现涌流。
对变压器差动保护来讲,励磁涌流可视为一种差动电流。
暂态涌流并不属于故障条件,保护仍需制动,这是变压器差动保护设计时需考虑的重要因素。
随着电力变压器制造中新型硅钢性能的改进以及采用速度很快的差动继电器,励磁涌流现象变得更为突出。
一、励磁涌流的产生原因及其影响变压器铁芯的非线性饱和特性会导致其空载合闸时产生励磁涌流。
涌流的波形、大小和持续时间取决于许多特性因素,如变压器容量、绕组接法、合闸时电压的相位角、合闸绕组所在部位、铁芯的剩磁及磁化特性等。
励磁涌流仅流进变压器一侧的保护区(即实际电源侧),由于在差动保护看起来为真实的差动电流而使继电器动作。
励磁涌流主要分为:合闸涌流、合应涌流和恢复涌流。
其中,合闸涌流的本质是合闸的时候,变压器磁通不能突变。
由于合闸角、主变剩磁等原因,会导致主变磁通饱和,产生很大的励磁电流。
变压器纵差(分相差动)保护用来保护主变三侧,但是励磁涌流始终是纵差(分相差动)保护无法完全解决的问题,其原因在于用电量保护来保护磁联系的元件,必然存在缺陷。
变压器在正常运行时,励磁电流的值最大仅为额定电流的2%~5%。
而在发生外部故障时,电压降低,励磁电流也将随之减小。
因此变压器正常运行或发生外部故障时,都不会出现励磁涌流。
但当变压器空载投入或将外部故障切除后变压器重新投入运行时,由于电压的突然变化,磁场急剧增大,导致变压器内部的铁心饱和。
饱和磁通的大小取决于铁心材料的磁导率、磁路长度及截面等因素,铁心磁通饱和导致励磁电感减小,励磁电流激增为励磁涌流。
设变压器的高压侧电压为U,Um为变压器正常运行时的电压最大值。
变压器稳态运行情况下设绕组端电压为忽略变压器漏抗和绕组电阻,则用标幺值表示的电压U与磁通Φ之间的关系为式中:N为变压器匝数;Φ为铁心磁通。
设N =1,当变压器空载合闸时,由电压U与磁通Φ之间的微分方程求解可得式中:θ为变压器投入时刻的初相角;ω为角速度;C为积分常数;Φm是变压器稳态工作时的磁通幅值。
变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施变压器是电力系统中不可或缺的电气设备,用于提高或降低交流电压。
然而,在变压器的日常运行中,会产生一种特殊的电流——励磁涌流。
励磁涌流的产生原因、影响及抑制措施,一直是电气领域研究的焦点问题之一。
一、变压器励磁涌流的产生机理变压器励磁涌流是由于变压器在没有负载的情况下,一侧电源给定电压后,产生的瞬时电流波动引起的。
其产生的原因主要有两个方面。
1. 变压器自身磁化特性变压器是由铁芯、线圈等部件组成的,当交流电源施加在一侧线圈上时,铁芯上会产生一个磁通量,使得另一侧线圈中也会产生一定的电势。
在低频条件下,变压器的铁芯上的磁场在每个电源周期内都会发生磁化与去磁化过程,即由于铁芯饱和,磁通量无法瞬间变化,从而在每个周期内形成一个磁滞回线。
当电源供给的电压陡然由0V变化到正常值时,铁芯中的磁场并不会即刻达到稳态,从而导致瞬间电流的波动,造成产生励磁涌流。
2. 电源特性影响电源的内阻、电源的输出电压质量均会影响励磁涌流的产生。
电源内阻较大时,输出电压下降幅度较大,对于变压器来说,电流的波动幅度会更大。
同时,电源产生电压的质量也会影响励磁涌流,例如,电源输出电压存在10%、20%的谐波成分时,变压器励磁涌流的幅值会更大。
二、励磁涌流的影响变压器励磁涌流产生后,将会对变压器和电力系统的安全及稳定性产生影响。
1. 变压器内部温度升高励磁涌流的产生将会引起变压器内部电阻损耗增加,从而导致变压器温度升高。
严重情况下,会导致变压器绝缘材料老化、泄漏及烧毁等事故发生。
2. 电力系统不稳定励磁涌流的存在会造成系统电压波动,电力系统的稳定性得不到保障,从而会降低其工作效率,甚至带来负面的经济损失。
三、励磁涌流的抑制措施为了避免励磁涌流带来的安全隐患及电力系统的不稳定性,有一些抑制措施可以采取。
1. 增加阻抗变压器防励磁涌流的一种常用方法是在变压器的一侧或两侧增加阻抗,这样可以限制励磁涌流的幅值并且控制其衰减时间。
变压器励磁涌流抑制原理及现场应用优化

专版研究园地变压器励磁涌流抑制原理及现场应用优化文/王洪猛在长期调试过程中,因主变压器反送电未躲开励磁涌流而导致主变压器差动保护误动作以及投运机组在相邻主变空载合闸时,受和应涌流影响导致发电机差动保护误动跳机的事件时有发生,现有保护装置励磁涌流闭锁主要采用二次谐波制动闭锁原理和波形识别原理,但在实际运用中仍存在局限性。
为提高发电机组的运行可靠性,保障电网安全,避免同类不正确动作事件的再次发生,广东省电力调度中心曾发文要求为防止变压器合闸时励磁涌流过大导致误跳机,600MW及以上容量的发电机组应在合闸前进行消磁处理并增设励磁涌流抑制装置,否则将影响机组正常并网。
1 变压器空载合闸产生励磁涌流的原因设变压器高压侧电压:,由得(如图1),在合闸瞬间变压器铁芯中产生的磁通:,其中。
t=0,时合闸:立即进入稳态运行,无励磁涌流。
t=0,α=0时合闸:,从t=0经半个周期,达最大值,,可达稳态量2倍,此时再考虑变压器存在剩磁的情况,励磁涌流约可达到变压器额定电流的6倍(如图2)。
当变压器空投时励磁涌流只会在变压器高压侧产生,主变压器高压侧励磁涌流经电流互感器变换后输入变压器保护装置,极有可能引起差动保护误动。
1I U1Фe1图1 励磁涌流原理图2 变压器励磁涌流的产生机理2 变压器励磁涌流的特点励磁涌流有以下特点:(1)励磁涌流含有数值很大的高次谐波分量,以二次谐波和三次谐波为主。
(2)包含有很大成分的非周期分量,往往使涌流偏于时间轴的一侧。
(3)励磁涌流波形出现间断,有明显的间断角,一般在60°左右。
(4)励磁涌流在开始瞬间衰减很快,以后逐渐减慢。
3 防止励磁涌流影响的方法传统防止励磁涌流影响的方法主要有两种。
3.1 采用保护识别方法(1)根据波形识别原理,在变压器内部故障时,各侧电流经互感器变换后,差流基本上是工频正弦波,而励磁涌流波形是间断不对称的。
(2)利用二次谐波与基波的比值作为励磁涌流判据,一般推荐谐波制动比整定为15%,防止保护拒动。
变压器励磁涌流产生机理及抑制措施

变压器励磁涌流产生机理及抑制措施1、变压器励磁涌流及特点变压器是一种依据电磁感应原理制造而成的静止元件,是交流输电系统中用于电压变换的重要电气设备。
当合上断路器给变压器充电时,有时候,能够观察到变压器电流表的指针有很大摆动,随后,很快又返回到正常的空载电流值,这个冲击电流通常就被称为励磁涌流。
总的来说,变压器励磁涌流有以下几个特点:第一,波形呈现尖顶形状,表明其中含有相当成分的非周期分量和高次谐波分量,其中高次谐波以二次和三次为主,并且,随着时间推移,某一相二次谐波含量可能超过基波分量的一半以上。
第二,励磁涌流幅值与变压器空载投入的电压初相角直接相关。
对于单相变压器来说,当电压过零点投入时,励磁涌流幅值最大。
由于三相变压器各相间有120度相位差,所以涌流也不尽相同。
第三,在最初几个波形中,涌流将出现间断角。
第四,涌流衰减的时间常数与变压器阻抗、容量和铁心材料等都相关。
2、励磁涌流产生机理变压器励磁涌流是由变压器铁心饱和引起的。
在铁心不饱和时,铁心磁化曲线的斜率很大,励磁电流近似为零;一旦铁心出现饱和,磁化曲线斜率变小,电流随着磁通线性增长,最终演变为励磁涌流。
下面以单相变压器空载合闸为例分析励磁涌流产生机理。
设变压器在时间t=0时合闸,则施加于变压器上的电压为:(1)又,变压器电压与磁通间的关系为:(2)故:(3)式(3)中第一式为稳态磁通,后两式为暂态磁通,为铁心剩磁,与合闸时刻的电压相关。
计及成本和工艺,现代常用的电力变压器饱和磁通一般设为1.15~1.4,而变压器运行电压一般不应超过额定电压的10%。
因此,变压器稳态正常运行时,磁通不会超过饱和磁通,铁心也不会饱和。
但在暂态过程中,如变压器空载合闸时,由于剩磁的作用,运行磁通就有可能大于饱和磁通,从而造成变压器饱和。
例如,最严重的是电压过零时刻,合闸,假若此时铁心的剩磁,非周期磁通为经过半个周期后,磁通达到,将远大于饱和磁通,造成变压器严重饱和。
抑制变压器励磁涌流

怎样抑制变压器励磁涌流变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。
在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。
励磁涌流不仅峰值大,且含有极多的谐波及直流分量。
由此对电网及电器设备造成极为不利的影响。
1、励磁涌流的危害性1.1引发变压器的继电保护装置误动,使变压器的投运频频失败;1.2变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电;1.3A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他B电站、C电站等正在运行的变压器产生和应涌流而误跳闸,造成大面积停电;1.4数值很大的励磁涌流会导致变压器及断路器因电动力过大受损;1.5诱发操作过电压,损坏电气设备;1.6励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率;1.7励磁涌流中的大量谐波对电网电能质量造成严重的污染。
1.8造成电网电压骤升或骤降,影响其他电气设备正常工作。
数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。
2、励磁涌流的成因抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。
理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。
由于偏磁的极性及数值是可以通过选择外施电压合闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电压相位角,实现让偏磁与剩磁极性相反,从而消除产生励磁涌流的土壤——磁路饱和,实现对励磁涌流的抑制。
变压器励磁涌流抑制原理及现场应用优化

变压器励磁涌流抑制原理及现场应用优化引言:变压器是电力系统中重要的电能传输设备,其负责将高压电能转换为低压电能,并通过电能传输网络将电力供应到终端用户。
然而,在变压器投入运行时,励磁涌流可能会导致设备的电流波动和损耗,甚至造成电网的不稳定。
因此,为了保证系统的稳定运行,需要合理地抑制变压器励磁涌流并优化其现场应用。
一、励磁涌流抑制原理1.1励磁涌流的产生励磁涌流通常是由于变压器的磁路突然产生磁通时引起的。
在变压器的磁路中,磁通的变化速度往往比较快,导致励磁电流呈现出一个瞬时的增大过程,即励磁涌流。
1.2励磁涌流的影响励磁涌流对变压器和电网产生了不利影响,主要表现为:(1)变压器附加损耗:励磁涌流会导致变压器的额定电流上升,从而导致额外的电阻损耗。
(2)变压器振荡:励磁涌流在变压器铁芯和线圈之间产生电磁力,会引起变压器的震荡。
(3)电网不稳定:当变压器接入电网时,励磁涌流会产生电网的瞬时波动,影响电网的稳定性。
1.3励磁涌流抑制原理为了抑制励磁涌流,可以采用以下方法:(1)在变压器的电源供电系统中增加限流电抗器。
通过限制电源的短路能力,减少励磁涌流的电流峰值。
(2)使用励磁变压器。
励磁变压器是由辅励变压器和电抗器组成,通过控制辅助变压器的绕组电压来控制励磁涌流。
(3)通过安装软起动装置来逐步增加变压器的励磁电流,避免励磁涌流的冲击。
2.1选择适当的变压器为了减少励磁涌流对电网的影响,可以选择具有低励磁电流的变压器。
通常情况下,具有较低额定电压的变压器具有较低的励磁电流。
2.2控制变压器的励磁电流为了减少励磁涌流的影响,可以通过控制变压器的励磁电流来实现。
通过调节励磁变压器的绕组电压,可以减小励磁涌流的电流峰值,从而减少对电网的影响。
2.3优化励磁变压器的参数为了确保励磁变压器的效果,可以优化其参数。
包括选择合适的励磁变压器容量、安装位置和接线方式等。
同时,还需要合理地进行维护和检修,确保其正常运行。
基于MATLAB的变压器励磁涌流抑制控制研究

基于MATLAB的变压器励磁涌流抑制控制研究随着电力系统的发展,变压器作为电能转换和输送的核心设备,其在电力系统的运行中发挥着重要的作用。
然而,变压器在开关过程中会产生励磁涌流,给电力系统的稳定性和安全性带来了一定的困扰。
因此,研究变压器励磁涌流抑制控制策略显得十分重要。
变压器励磁涌流主要由变压器的励磁电感模式引起,当变压器在连接或断开电源的过程中,变压器绕组上的电流瞬间发生变化,导致变压器励磁电感模式的变化,从而引起励磁涌流。
励磁涌流会引起系统电压的波动,可能导致其他设备的故障甚至损坏。
因此,如何有效地抑制励磁涌流成为了研究的重点。
目前,针对变压器励磁涌流的抑制控制策略主要包括两种:被动式控制和主动式控制。
被动式控制主要是通过在变压器绕组上串联无源电阻或反嵌抗来抵消涌流。
然而,被动式控制注定只能满足固定进制的条件下抑制涌流,对于变压器的励磁涌流应对能力较弱。
相比之下,主动式控制则更具有灵活性和适应性,可以针对不同的工况条件进行精细控制。
首先,需要建立变压器励磁涌流的模型。
根据变压器等效电路模型,可以建立变压器在开关过程中的动态方程,考虑变压器的磁滞特性和饱和特性对励磁电感的影响。
通过对模型的建立,可以研究励磁涌流的起源和变化规律。
其次,需要设计励磁涌流抑制控制策略。
针对变压器励磁涌流问题,可以采用多种控制策略。
例如,可以设计改进的PID控制策略,利用MATLAB的控制系统工具箱进行系统建模和控制器参数调整,以实现对励磁涌流的抑制。
同时,还可以借助模糊控制、神经网络控制等新型控制模式,提高抑制效果并降低系统响应时间。
另外,可以通过MATLAB进行仿真实验,验证所设计的抑制控制策略的有效性和鲁棒性。
使用MATLAB的Simulink工具箱,可以搭建变压器励磁涌流的仿真模型,模拟实际工况条件下的励磁涌流抑制效果。
通过仿真实验,可以评估控制策略的性能,并进行参数优化和调整。
最后,可以通过实际测试验证所提出的变压器励磁涌流抑制控制策略的有效性。
变压器剩磁变化规律及励磁涌流抑制研究

变压器剩磁变化规律及励磁涌流抑制研究变压器是电力系统中常用的电力变换设备,其工作原理是利用电磁感应现象将输入电压转换为输出电压。
在变压器工作过程中,磁场的变化是十分重要的,而剩磁变化规律及励磁涌流抑制是变压器中的两个重要研究方向。
我们来了解一下剩磁变化规律。
剩磁是指在变压器工作过程中,磁场中的磁通量在磁场切断后仍然存在的部分。
剩磁的存在会影响变压器的工作性能,产生一些不良影响,如励磁涌流、励磁过程中的能量损耗等。
因此,研究剩磁的变化规律对于改善变压器的性能至关重要。
剩磁的变化规律与变压器的工作状态密切相关。
当变压器处于空载状态时,剩磁的变化规律主要受到电源电压的影响。
在电源电压的作用下,变压器的铁芯中会产生磁通量,当电源电压突然消失时,由于铁芯的磁导率不等于零,磁通量不会立即消失,而是以指数衰减的方式逐渐减小。
这种衰减的速度与铁芯的特性有关,可以通过剩磁衰减曲线来描述。
另一方面,当变压器从空载状态切换到负载状态时,剩磁的变化规律也会发生变化。
在负载状态下,变压器的磁通量会随着负载电流的变化而变化。
当负载电流突然减小或消失时,变压器的磁通量也会随之减小,但其变化规律与空载状态下有所不同。
除了剩磁的变化规律外,励磁涌流抑制也是变压器研究的重要方向之一。
励磁涌流是指在变压器刚刚通电时,由于剩磁的存在导致的瞬时大电流现象。
这种涌流不仅会对变压器本身造成损害,还会对电力系统的稳定性产生不良影响。
为了抑制励磁涌流,研究人员提出了各种方法和措施。
其中最常见的是使用励磁抗补偿装置,通过改变变压器的励磁电流波形来抑制励磁涌流的产生。
此外,还有一些其他的方法,如使用变压器辅助绕组、改变变压器的设计参数等,都可以在一定程度上减小励磁涌流。
剩磁变化规律及励磁涌流抑制是变压器研究中的两个重要方向。
研究剩磁的变化规律可以帮助我们更好地理解变压器的工作原理,优化变压器的设计和运行;而抑制励磁涌流可以提高变压器的稳定性和可靠性,保证电力系统的正常运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抑制变压器励磁涌流的新方法北极星电力网技术频道作者:佚名2009/5/21 10:02:00所属频道: 电网关键词: 励磁涌流涌流抑制器变压器[摘要]变压器励磁涌流不仅导致继电保护误动,由其衍生的电网电压骤降、谐波污染、和应涌流、铁磁谐振过电压等都给电力系统运行带来不可低估的负面影响。
数十年来人们通过识别励磁涌流特征的方法来减少继电保护的误动率,但并未获得良好的回报,误动率仍居高不下。
至于对电压骤降、谐波污染、和应涌流等的消除更一筹莫展。
究其原因是人们认为励磁涌流的出现不可抗拒,只能采用“识别”的对策,即“躲”的对策。
其实,换个思路——“抑制”,是完全可以实现的,而且已经实现了。
[关键词]励磁涌流磁路饱和涌流抑制器0、引言变压器励磁涌流与电容器的充电涌流抑制原理完全相似,电感及电容都是储能元件,前者不容许电流突变,后者不容许电压突变,空投电源时都将诱发一个暂态过程。
在电力变压器空载接入电源时及变压器出线发生故障被继电保护装置切除时,因变压器某侧绕组感受到外施电压的骤增而产生有时数值极大的励磁涌流。
励磁涌流不仅峰值大,且含有极多的谐波及直流分量。
由此对电网及电器设备造成极为不利的影响。
1、励磁涌流的危害性1.1 引发变压器的继电保护装置误动,使变压器的投运频频失败;1.2 变压器出线短路故障切除时所产生的电压突增,诱发变压器保护误动,使变压器各侧负荷全部停电;1.3 A电站一台变压器空载接入电源产生的励磁涌流,诱发邻近其他B电站、C电站等正在运行的变压器产生“和应涌流”(sympathetic inrush)而误跳闸,造成大面积停电;1.4 数值很大的励磁涌流会导致变压器及断路器因电动力过大受损;1.5 诱发操作过电压,损坏电气设备;1.6 励磁涌流中的直流分量导致电流互感器磁路被过度磁化而大幅降低测量精度和继电保护装置的正确动作率;1.7 励磁涌流中的大量谐波对电网电能质量造成严重的污染。
1.8 造成电网电压骤升或骤降,影响其他电气设备正常工作。
数十年来人们对励磁涌流采取的对策是“躲”,但由于励磁涌流形态及特征的多样性,通过数学或物理方法对其特征识别的准确性难以提高,以致在这一领域里励磁涌流已成为历史性难题。
2、励磁涌流的成因抑制器的重要特点是对励磁涌流采取的策略不是“躲避”,而是“抑制”。
理论及实践证明励磁涌流是可以抑制乃至消灭的,因产生励磁涌流的根源是在变压器任一侧绕组感受到外施电压骤增时,基于磁链守恒定理,该绕组在磁路中将产生单极性的偏磁,如偏磁极性恰好和变压器原来的剩磁极性相同时,就可能因偏磁与剩磁和稳态磁通叠加而导致磁路饱和,从而大幅度降低变压器绕组的励磁电抗,进而诱发数值可观的励磁涌流。
由于偏磁的极性及数值是可以通过选择外施电压合闸相位角进行控制的,因此,如果能掌握变压器上次断电时磁路中的剩磁极性,就完全可以通过控制变压器空投时的电源电压相位角,实现让偏磁与剩磁极性相反,从而消除产生励磁涌流的土壤——磁路饱和,实现对励磁涌流的抑制。
长期以来,人们认为无法测量变压器的剩磁极性及数值,因而不得不放弃利用偏磁抵消剩磁的想法。
从而在应对励磁涌流的策略上出现了两条并不畅通的道路,一条路是通过控制变压器空投电源时的电压合闸相位角,使其不产生偏磁,从而避免空投电源时磁路出现饱和。
另一条路是利用物理的或数学的方法针对励磁涌流的特征进行识别,以期在变压器空投电源时闭锁继电保护装置,即前述“躲避”的策略。
这两条路都有其致命的问题,捕捉不产生偏磁的电源电压合闸角只有两个,即正弦电压的两个峰值点(90°或270°),如果偏离了这两点,偏磁就会出现,这就要求控制合闸环节的所有机构(包括断路器)要有精确、稳定的动作时间,因为如动作时间漂移1毫秒,合闸相位角就将产生18°的误差。
此外,由于三相电压的峰值并不是同时到来,而是相互相差120°,为了完全消除三相励磁涌流,必须断路器三相分时分相合闸才能实现,而当前的电力操作规程禁止这种会导致非全相运行的分时分相操作,何况有些断路器在结构上根本无法分相操作。
用物理和数学方法识别励磁涌流的难度相当大,因为励磁涌流的特征和很多因素有关,例如合闸相位角、变压器的电磁参数等。
大量学者和工程技术人员通过几十年的不懈努力仍不能找到有效的方法,因其具有很高的难度,也就是说“躲避”的策略困难重重,这一策略的另一致命弱点是容忍励磁涌流出现,它对电网的污染及电器设备的破坏性依旧存在。
图2-1为一单相变压器结构图,可写出空载时初级绕组的电压方程式中N1、R1分别为初级绕组的匝数及电阻(2.1)可改写为式中α为 t=0时U1的初相角如忽略电阻R1,即设R1=0,则得求解(2.3)式微分方程得磁通Φ的表达式为依据磁链守恒定理,合闸瞬间磁路中磁链不能突变,即可求出积分常数C。
式中可写出磁通Φ表达式式中为总磁通的幅值从式(2.6)中不难看出变压器外施电压u1在不同初相角α合闸时所产生的磁通Φ都不相同,将式(2.6)改写为式(2.7)中为暂态磁通,即偏磁,在合闸瞬间Φp的值与α有关,在90°或270°空投时Φp=0,在0°或180°空投时Φp可达峰值Φm。
式(2.7)中为稳态磁通,为一周期函数。
图2-2为空投合闸角α=0时的磁通变化曲线,图中Φs为稳态磁通,Φ为Φs和Φp合成的总磁通(未计及剩磁Φres),Φsat为变压器饱和磁通。
对于无损变压器(R1=0)偏磁Φp不会衰减,如实线所示,对于有损变压器(R1>0)Φp按时间常数衰减,如虚线所示。
从图2-2中可看出在电压相位角在θ1至θ2区间总磁通Φ大于饱和磁通Φsat,磁路饱和,因而产生励磁涌流iy,iy具有间断性。
对于无损变压器Φ和iy是关于的偶对称波形,而在iy=0的间断角区间Φ则是关于的偶对称波形。
对于有损变压器则Φ与iy将不再有对称关系。
当计及剩磁时,总磁通将由剩磁、偏磁(暂态磁通)及稳态磁通三者组成。
不难看出在图2-2偏磁的情况下,如剩磁为正,则总磁通曲线向上平移,即磁路更易饱和,励磁涌流幅值会更大。
如剩磁为负,则励磁涌流将被抑制。
图2-3是铁磁材料的磁滞回线,它描述在磁路的励磁线圈上施加交流电压时,磁势H也相应的从-Hc到Hc之间变化,由H产生的磁通Φ(或磁通密度B=Φ/S)将在磁滞回线上作相应的变化。
如果H在回线上的某点突然减到零,则B将随即落到对应B轴的某点上,该点所对应的B值即为剩磁Br。
可以看出剩磁的数值和极性与切除励磁电压的相位角有关,如果在第Ⅰ、Ⅱ象限切断励磁电源(即H=0)则剩磁为正或零,在Ⅲ、Ⅳ象限切断励磁电源,则剩磁为负。
3、励磁涌流的抑制方法变压器在正常带电工作时,磁路中的主磁通波形与外施电源电压的波形基本相同,即是正弦波。
磁路中的磁通滞后电源电压90°,通过监测电源电压波形实现对磁通波形的监测,进而获取在电源电压断电时剩磁的极性。
变压器空投上电时产生的偏磁Φp也一样,因偏磁,电源电压上电时的初相角α在Ⅰ、Ⅳ象限区间内产生的偏磁极性为正,而初相角α在Ⅱ、Ⅲ象限区间内产生的偏磁极性为负。
显然,剩磁极性可知,偏磁极性可控,只要空投电源时使偏磁与剩磁极性相反,涌流即被抑制。
图3-3为变压器初级电压u、主磁通Φ、剩磁ΦRes及偏磁Φp与分闸角和合闸角的关系曲线图,以及电源电压u分闸初相角α’与剩磁ΦRes的关系曲线。
变压器处于稳态时主磁通Φ滞后电源电压u 90°,如图3-3中曲线①及曲线②所示。
变压器空载上电时所产生的偏磁一定与稳态时对应上电时电压u曲线上电点的稳态磁通大小相等,极性相反,如图3-3中的曲线③对应M点或N点的Φp1和Φp2。
其最大值可达稳态磁通Φ的峰值Φm,而剩磁ΦRes幅值与磁路材料的特性有关。
不难看出对应同一个合闸初相角α或分闸初相角α’所产生的偏磁和剩磁的极图3-3 变压器初级电压u、主磁通Φ、剩磁ΦRes及偏磁Φp与分闸角和合闸角的关系曲线图性正好相反,也就是说通过分闸时测量电源电压分闸角α’,并将α’保存下来,在下次空投变压器时选择在合闸角α等于α’时加上电源,偏磁就可与剩磁反向,它们的合成磁通将小于饱和磁通Φsat(曲线④),(因饱和磁通一般选择大于稳态磁通峰值),磁路不会饱和,从而实现对励磁涌流的抑制。
由于三相电源电压在断路器三相联动切除时所得到的三相分闸相角各相差 120°,剩磁极性也是三相各相差120°,而在三相联动合闸时三相的合闸初相角也是相差 120°,三相偏磁极性也各相差120°,这样就自然实现了变压器三相磁路中的偏磁和剩磁都是抵消的,从而避免了一定要断路器分相分时操作才能抑制励磁涌流的苛求,也就是说三相联动断路器支持对三相涌流的抑制。
由于抑制励磁涌流只要偏磁和剩磁极性相反即可,并不要求完全抵消,因而当合闸角相对前次分闸角有较大偏差时,只要偏磁不与剩磁相加,磁路就不会饱和,这就大大降低了对断路器操作机构动作时间的精度要求,为这一技术的实用化奠定了基础。
将这种抑制器与快切装置和备自投装置联动即可实现备用变压器按冷备用方式运行,这将大大节约变压器热备用方式的空载能耗。
图3-4选录了四条励磁涌流Iy与分闸角α’和合闸角α的关系曲线,可以看到,在合闸角α为90°或270°时,空投变压器的励磁涌流与变压器的前次分闸角无关,原因是在变压器初级电压过峰值时上电不产生偏磁,不论变压器原来是否有剩磁都不会使磁路饱和。
当然,如果使用三相联动断路器是不可能做到三相的偏磁都为零。
而当合闸角α为0°或 180°时则空投变压器的励磁涌流与前次分闸角α’密切相关,当α与α’相近(大约相差±60°)时励磁涌流被抑制,此后α与α’偏离越大,励磁涌流也越大。
由此可以看到如断路器的合闸时间漂移在±3ms时对涌流的抑制基本无影响。
当今的真空断路器和SF6断路器的分、合闸时间漂移都在1ms之内,完全可以精确实现对励磁涌流的抑制。
应该指出,变压器断电后留在三相磁路中的剩磁在正常情况下是不会衰减消失的,更不会改变极性。
只有在变压器铁心受到高于材料居里点的高温作用后剩磁才会衰减或消失,但一般的电站现场不会出现这种情况。
退一步讲,剩磁消失是件好事,只要没有剩磁,仅靠偏磁是不会引起磁路饱和的。
4、电容器充电涌流的抑制对电力电容器空投的充电涌流抑制同样不需要追求在电压过零时上电,而是选择合闸角与电容器前次的分闸角相近时上电,即用与原剩余电压极性相同、数值相近的充电电压加到电容器断电时残留的剩余电压上,从而不产生充电涌流。
按此原理电力电容器在断电后不需经放电设备放电,而是实现即切即投。