活性污泥微生物学实际经验总结绝对实用

活性污泥微生物学实际经验总结绝对实用
活性污泥微生物学实际经验总结绝对实用

活性污泥微生物学(实际经验总结-绝对实用)

————————————————————————————————作者: ————————————————————————————————日期:

生物膜法与活性污泥法的异同点

给排水专业 (1)生物膜法和活性污泥法有哪些异同之处? 生物膜法和活性污泥法是以生化处理的不同反应器形式,从外观上看主要区别在于前者的微生物不需要填料载体,生物污泥是悬浮的,而后者的微生物是固定在填料上的,然而它们处理废水、净化水质的机理是一样的。另外,二者的生物污泥都是好氧活性污泥,而且污泥的组成也具有一定的相似性。此外,生物膜法中的微生物,由于是固定在填料上的,可以形成比较稳定的生态系统,其生活能量和消耗能量不象活性污泥法中的微生物那样大,因此生物膜法的剩余污泥比活性污泥法要少。上海信谊百路达药业有限公司的接触氧化池采用生物膜法,而SBR生化池采用活性污泥法。 (2)生物膜法和活性污泥法有哪些异同之处? 异同点活性污泥法生物膜法 组成 曝气池,沉淀池,污泥回流及剩 余污泥排除系统。 主体曝气池:搅拌混合液使泥、水充 分接触和向微生物供氧。 活性污泥:由细菌、真菌、原生 动物和后生动物等各种生物和金 属氢氧化物等无机物所形成的污 生物膜:以附着在惰性在体 表面生长的,以微生物为主, 包含微生物及其产生的胞外 多聚物和吸附在微生物表面 无机及有机物等组成,具有

泥状的絮凝物。有良好的吸附、絮凝、生物氧化和生物合成性能。较强的吸附和生物降解性 能。 有机物去除过程吸附和稳定:第一阶段,污水中 的有机污染物被活性污泥颗粒吸 附在菌胶团的表面上,这是由于 其巨大的比表面积和多糖类黏 性物质。同时一些大分子有机物 在细菌胞外酶作用下分解为小分 子有机物。第二阶段,微生物在 氧气充足的条件下,吸收这些有 机物,并氧化分解,形成二氧化 碳和水,一部分供给自身的增殖 繁衍。活性污泥反应进行的结果, 污水中有机污染物得到降解而去 除,活性污泥本身得以繁衍增 长,污水则得以净化处理。经过 活性污泥净化作用后的混合液进 入二次沉淀池,混合液中悬浮的 活性污泥和其他固体物质在这里 沉淀下来与水分离,澄清后的污 水作为处理水排出系统。经过沉 在充氧的条件下,微生物在 填料表面聚附着形成生物 膜,经过充氧(充氧装置由水 处理曝气风机及曝气器组 成)的污水以一定的流速流 过填料时,生物膜中的微生 物吸收分解水中的有机物, 使污水得到净化,同时微生 物也得到增殖,生物膜随之 增厚。当生物膜增长到一定 厚度时,向生物膜内部扩散 的氧受到限制,其表面仍是 好氧状态,而内层则会呈缺 氧甚至厌氧状态,并最终导 致生物膜的脱落。随后,填 料表面还会继续生长新的生 物膜,周而复始,使污水得 到净化。

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

活性污泥法和生物膜法的优缺点及其他

1.试比较活性污泥法和生物膜法的优缺点。 答:活性污泥法和生物膜法一样,同属好氧生物处理方法。但活性污泥法是依靠曝气池中悬浮流动着的活性污泥来分解有机物的,而生物膜法则上要依靠固着于载体表面的微生物膜来净化有机物。下面以活性污泥法为参照,比较它们之间的优缺点: (1)生物膜法优点: ①固着于固体表面上的生物膜对废水水质、水量的变化有较强的适应性,操作稳定性 好。②不会发生污泥膨胀,运转管理较方便。而活性污泥法则容易发生污泥膨胀。 ③由于微生物固着于固体表面,即使增殖速度慢的微生物也能生长繁殖。而在活性污泥法中,世代期比停留时间长的微生物被排出曝气池,因此,生物膜中的生物相更为丰富,且沿水流方向膜中生物种群具有一定分布。 ④同高营养级的微生物存在,有机物代谢对较多的转移为能量,合成新细胞即剩余污泥量较少。 ⑤采用自然通风供氧。 (2)生物膜法缺点: ①活性生物难以人为控制,因而在运行方面灵活性较差。而活性污泥法运行比较方便灵活。 ②由于载体材料的比表面积小,故设备容积负荷有限,空间效率较低。而且需要较多的载体填料和支撑结构,通常基建投资超过活性污泥法。 ③处理出水往往含有较大的脱落的生物膜片,使得出水澄清度降低。而活性污泥法在正常情况下获得比较好的澄清水。 2.好氧与厌氧优缺点,使用条件。 答:(1)厌氧生物处理与好氧生物处理相比,优点如下: ①无须充氧,运行能耗大大降低,而且能将有机污染物转化成沼气加以利用。 ②污泥产生量很少,剩余污泥处理费用低,产酸菌污泥产率为 0.15-0.34kg(VSS)/[kg(COD)],产甲烷菌污泥产率为0.03kg(VSS)/[kg(COD)]左右,而好氧微生物污泥产率可达0.25 -0.6kg(VSS)/[kg(COD)]。 ③适于处理难降解的有机废水,或者作为高难降解有机废水的预处理工艺,以提高其

活性污泥法的反应动力学原理及其应用

活性污泥法的反应动力学原理及其应用 活性污泥法反应动力学可以定量或半定量地揭示系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 它主要包括:① 基质降解的动力学,涉及基质降解与基质浓度、生物量等因素的关系;② 微生物增长动力学,涉及微生物增长与基质浓度、生物量、增长常数等因素的关系;③ 还研究底物降解与生物量增长、底物降解与需氧、营养要求等的关系。 在建立活性污泥法反应动力学模型时,有以下假设:① 除特别说明外,都认为反应器内物料是完全混合的,对于推流式曝气池系统,则是在此基础上加以修正;② 活性污泥系统的运行条件绝对稳定;③ 二次沉淀池内无微生物活动,也无污泥累积并且水与固体分离良好;④ 进水基质均为溶解性的,并且浓度不变,也不含微生物;⑤ 系统中不含有毒物质和抑制物质。 一、活性污泥反应动力学的基础——米—门公式与莫诺德模式 1、米—门公式 Michaelis—Menton 提出酶的“中间产物”学说,通过理论推导和实验验证,提出了含单一基质单一反应的酶促反应动力学公式,即米—门公式: S K S v m += m ax ν 式中:v ——酶促反应中产物生成的反应速率; m ax v ——产物生成的最高速率; m K ——米氏常数(又称饱和常数,半速常数); S ——基质浓度。

中间产物学说:P E ES S E +??+ 米门公式的图示: 2、莫诺德模式 ① 莫诺德模式的基本形式: Monod 于1942年和1950年曾两次进行了单一基质的纯菌种培养实验,也发现了与上述酶促反应类似的规律,进而提出了与米门公式想类似的表达微生物比增殖速率与基质浓度之间的动力学公式,即莫诺德模式: S K S s +?= m ax μ μ 式中: ( )x dt dx /=μ——微生物的比增殖速率,d kgVSS kgVSS ?/; m ax μ——基质达到饱和浓度时,微生物的最大比增殖速率, S ——反应器内的基质浓度,mg/l ; s K ——饱和常数,也是半速常数。 随后发现,用由混合微生物群体组成的活性污泥对多种基质进行微生物增殖实验,也取得了符合这种关系的结果。 可以假定:在微生物比增殖速率与底物的比降解速率之间存在下列比例关系: v max v=v max O K m

活性污泥法和生物膜法的优缺点及其他

活性污泥法和生物膜法的 优缺点及其他 This model paper was revised by the Standardization Office on December 10, 2020

1.试比较活性污泥法和生物膜法的优缺点。 答:活性污泥法和生物膜法一样,同属好氧生物处理方法。但活性污泥法是依靠曝气池中悬浮流动着的活性污泥来分解有机物的,而生物膜法则上要依靠固着于载体表面的微生物膜来净化有机物。下面以活性污泥法为参照,比较它们之间的优缺点: (1)生物膜法优点: ①固着于固体表面上的生物膜对废水水质、水量的变化有较强的适应性,操作稳 定性好。②不会发生污泥膨胀,运转管理较方便。而活性污泥法则容易发生污泥膨胀。 ③由于微生物固着于固体表面,即使增殖速度慢的微生物也能生长繁殖。而在活性污泥法中,世代期比停留时间长的微生物被排出曝气池,因此,生物膜中的生物相更为丰富,且沿水流方向膜中生物种群具有一定分布。 ④同高营养级的微生物存在,有机物代谢对较多的转移为能量,合成新细胞即剩余污泥量较少。 ⑤采用自然通风供氧。 (2)生物膜法缺点: ①活性生物难以人为控制,因而在运行方面灵活性较差。而活性污泥法运行比较方便灵活。 ②由于载体材料的比表面积小,故设备容积负荷有限,空间效率较低。而且需要较多的载体填料和支撑结构,通常基建投资超过活性污泥法。 ③处理出水往往含有较大的脱落的生物膜片,使得出水澄清度降低。而活性污泥法在正常情况下获得比较好的澄清水。 2.好氧与厌氧优缺点,使用条件。 答:(1)厌氧生物处理与好氧生物处理相比,优点如下: ①无须充氧,运行能耗大大降低,而且能将有机污染物转化成沼气加以利用。 ②污泥产生量很少,剩余污泥处理费用低,产酸菌污泥产率为产甲烷菌污泥产率为(VSS)/[kg(COD)]左右,而好氧微生物污泥产率可达 (VSS)/[kg(COD)]。 ③适于处理难降解的有机废水,或者作为高难降解有机废水的预处理工艺,以提高其可生化性和后续好氧处理工艺的处理效果。 ④厌氧过程和好氧过程的串联配合使用,可以起到脱氮除磷的作用。

活性污泥反应动力学

13.3 活性污泥反应动力学及应用 13.3.1 概述 活性污泥反应动力学能够通过数学式定量地或半定量地揭示活性污泥系统内有机物降解、污泥增长、耗氧等作用与各项设计参数、运行参数以及环境因素之间的关系。 在活性污泥法系统中主要考虑有机物降解速度、微生物增长速度和溶解氧利用速度。 目前,动力学研究主要内容包括: (1)有机底物降解速度与有机物浓度、活性污泥微生物量之间的关系。 (2)活性污泥微生物的增殖速度与有机底物浓度、微生物量之间的关系。 (3)微生物的耗氧速率与有机物降解、微生物量之间的关系。 13.3.2 反应动力学的理论基础 (1)有机物降解与活性污泥微生物增殖 曝气池是一个完整的反应体系,池内微生物增殖是微生物合成反应和内援代谢两项胜利活动的综合结果,即: 微生物增殖速率= 降解有机物合成的生物量速率—内源代谢速率 式中,Y——产率系数,即微生物降解1kgBOD所合成的MLSS量,kgMLSS/kgBOD; K d——自身氧化率,即微生物内源代谢的自身减少率; 对于完全混合式活性污泥系统,曝气池中的微生物量物料平衡关系式如下: 每日池内微生物污泥增殖量=每日生成的微生物量—每日自身氧化掉的量 ∴ 式中,S0——原水BOD浓度; S e——处理出水BOD浓度; Q——日处理水量,m3/d; V——曝气池容积,m3; X——曝气池中污泥平均浓度,mg/L。 两边除以VX ,式子变为 而 q称为BOD比降解速率,其量纲与污泥负荷相同,单位一般用kgBOD/(kgMLSS?d)表示。 即, θc为泥龄。可见高去除负荷下,污泥增长很快,导致排泥加快,污泥龄就短,生物向不够丰富,因此原 水的可生化性要好。

生物膜—活性污泥法联合工艺

生物膜—活性污泥法联合处理工艺的研究 摘要:目前,生物膜法和活性污泥法在污水处理中运用的很普遍,在我国乃至全世界都 运用的很广泛,但单独采用这两种工艺存在着很多不足,所以目前越来越多的研究者开始尝试研究将两种污水处理法结合起来处理污水,以此克服这两种工艺的不足。 本文主要介绍生物膜法与活性污泥法各自在污水处理中的原理及特点,通过对比生物膜法和活性污泥法处理污水的优缺点,到达研究生物膜法与活性污泥联合处理工艺在污水处理中的效果,进而了解生物膜—活性污泥法联合处理工艺的工艺特点。 关键词:生物膜法、活性污泥法、联合处理工艺 一、活性污泥法 1、概念及特点 废水生物处理中微生物悬浮在水中的各种方法的统称。因悬浮的微 生物群体呈泥花状态,故名。一般指需氧活性污泥过程。 活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。 2、流程与原理【1】 典型的活性污泥法是由曝气池、沉淀池、污泥回流系统和剩余污泥排除系统组成。污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,呈悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。 污水处理按处理程度一般分为初级处理、二级处理、三级处理(深度处理)三个等级。初级处理是去除可沉降的悬浮物质、悬浮油类和酸碱等物质;二级处理是去除可降解的溶解性和初级处理没有去除的悬浮、胶体有机物质;三级处理是去除不可降解的有机物质和溶解性的无机物质。活性污泥法和其他生物处理法都属于二级处理。活性污泥法是二级处理中处理效果最高又比较成熟的方法,尤其对大量的污水处理。 3、实践中经常出现的一些异常现象和解决办法加以总结 (1)活性污泥呈灰黑色,污泥发生厌氧反应,污泥中出现硫细菌,出水水质恶化。原因:一是负荷量增高;二是曝气不足;三是工业废水的流入等。措施:一是控制负荷量;二是增大曝气量;三是切断或控制工业废水的流人。 (2)污泥上浮的原因【2】,一是由于污泥颗粒挟带气体或油滴,密度减小而上浮。另一种情况是由于污泥被破碎,沉速减小而不能下沉,例如,表面曝气机转速过大,打碎污泥絮体,导致污泥上浮。发生污泥上浮后,应暂停进水,清除污泥,判断原因,调整操作。对予反硝化作用可采取的对策是降低二沉池中的停留时间,减少曝气量和沉淀池进水量,以减少池中污泥量。溶污泥沉降性能差,可适当授加混凝剂或惰性物质以改善沉淀性能,并降低曝气机转速。 二、生物膜法 1、概念及特点

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨 摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。 关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算 活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d)

可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。 污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法

数学模型在污水处理厂中的应用

数学模型在污水处理厂中的应用 发帖人: bluesnail 点击率: 487 郝二成,常江,周军,甘一萍 (北京城市排水集团有限责任公司,北京 100063) 摘要:综述了数学模型的发展历史,以及它在国内外污水处理厂中的应用情况,并对模型应用的问题和前景进行了分析。 关键词:数学模型;模拟;污水处理厂 模拟是污水处理设计和运行控制的本质部分,数学模型的核心是从反应机理出发,在一定条件下,在时间和空间范围内模拟、预测污水处理的实际过程。数学模型的应用可以大大减少我们的实验工作量,不仅提高了工作效率,而且节省了大量人 力、物力和财力。 在发达国家,应用数学模型从事污水处理工艺开发、设计及实现污水处理厂运行管理的精确控制,已相当普遍,而我国 在这一方面尚处于起步阶段,扩展的空间很大。 1 数学模型的发展 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已 成为国际废水生物处理领域的研究热点。 传统静态模型以20世纪50 ~ 70年代推出的Eckenfelder、Mckinney、Lawrence-McCarty模型为代表,这些模型所采用的是生长-衰减机理。传统静态模型因为具有形式简单、变量可直接测定、动力学参数测定和方程求解较方便,得出的稳态结果基本满足工艺设计要求等优点,曾得到广泛应用。然而,长期实际应用也表明,这种基于平衡态的模型丢失了大量不同平衡生长状态间的瞬变过程信息,忽视了一些重要的动态现象,应用到具有典型时变特性的活性污泥工艺系统时,存在许多问题:无法解释有机物的“快速去除”现象;不能很好的预测基质浓度增大时微生物增长速度变化的滞后,要突破这些局限,必须建 立动态模型。 污水生物处理的动态模型主要包括Andrews模型、WRC模型、BioWin模型、UCT(University of Cape Town)模型、活性污泥数学模型、生物膜模型和厌氧消化模型等,其中以活性污泥数学模型研究进展最快,应用也最广。1983年,IAWQ(国际水质协会)成立了一个任务小组,以加快污水生物处理系统的设计和管理实用模型的发展和应用。首要任务是测评现有的模型,

活性污泥法和生物膜法的优缺点及其他

活性污泥法和生物膜法的优缺点及其他 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

活性污泥法实验

活性污泥实验 一、 实验目的 1、观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响; 2、加深对活性污泥生化反应动力学基本概念的理解; 3、掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。 二、 实验原理 活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括: (1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系; (2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系; (3)有机底物降解与氧需。 1、底物降解动力学方程 Monod 方程: S Ks S V dt dS +=- max (1) Vmax-------有机底物最大比降解速度, Ks-----------饱和常数, 在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡: 0)(=++-+dt dS V Se Q R Q Se Q R Q So (2) 整理后,得

dt dS V Se So Q - =-)( (3) 于是有 S Ks S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F Xt Se So XV Se So Q /)(=-=-,F/M 为污泥负荷。 完全混合曝气池中S=Se ,所以(4)式整理后可得 max 11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se 1 为横坐标,Xt Se So -(污泥负荷)为纵坐标,直 线的斜率为 max V Ks ,截距为max 1 V ,可分别求得max V 、Ks 。 又因为在低底物浓度条件下,Se<

活性污泥法动力学模型的研究进展

活性污泥法动力学模型的研究进展 [摘要]从模型的机理、功能等方面对活性污泥法动力学的微生物模型、传统静态模型和动态模型进行简要的介绍,并分析比较了各自的优缺点。 [关键词]活性污泥法模型ASM 活性污泥法是废水生物处理中应用最广泛的方法之一。起初对于活性污泥过程的设计和运行管理主要依靠经验数据,自20世纪50年代后期,Eckenfelder 等人基于反应器理论和生物化学理论提出活性污泥法静态模型以来,动态模型研究不断发展,已成为国际废水生物处理领域的研究热点。但我国在该领域的研究尚处于起步阶段,与国际先进水平还存在很大差距。 1微生物模型 1942年,Monod发现均衡生长的细菌的生长曲线与活性酶催化的生化反应曲线类似,1949年发表了在静态反应器中经过系统研究得出的Monod模型[1]:Monod模型实质上是一个经验式,是在单一微生物对单一基质、微生物处 于平衡生长状态且无毒性存在的条件下得出的结论。Monod模型的提出使废水生物处理的设计和运行更加理论化和系统化,提高了人们对废水生物处理机理的认识,进一步促进了生物处理设计理论的发展。由于微生物模型描述的是微生物生长和限制微生物生长的基质浓度之间的关系,它是活性污泥法数学模型的理论基础。微生物模型的不断发展和计算机技术的普及同时也推动了活性污泥数学模型研究的日趋深入。 2传统静态模型 传统静态模型主要有20世纪50-70年代推出的Eckenfelder、Mckinney和Lawrence-McCarty模型,这些模型所采用的是生长-衰减机理[2]。 2.1Eckenfelder模型 该模型提出当微生物处于生长率上升阶段时,基质浓度高,微生物生长速度与基质浓度无关,呈零级反应;当微生物处于生长率下降阶段时,微生物生长主要受食料不足的限制,微生物的增长与基质的降解遵循一级反应关系;当微生物处于内源代谢阶段时,微生物进行自身氧化。 2.2McKinney模型 该模型忽略了微生物浓度对基质去除速度的影响,认为在活性污泥反应器内,微生物浓度与底物浓度相比,属低基质浓度,微生物处于生长率下降阶段,代谢过程为基质浓度所控制,遵循一级反应动力学。并首次提出活性物质的概念,

活性污泥法与生物膜法的区别

排水工程课后资料参考 1.曝气生物滤池与生物接触氧化池的区别? ①生物接触氧化xx曝气生物滤池简单。 ②生物接触氧化没有反冲洗,但是一般都设置从沉淀池回流污泥的设备。 ③曝气生物滤池截留污泥的效果要好,时间长了可能会堵塞填料缝隙;而生物接触氧化池一般采用尼龙填料缝隙比较大,在调试初期截留污泥的能力不强,后期生物膜成熟,进行新老更替。 ④曝气生物滤池所需要的气水比一般10-6:1;而生物接触氧化池所需气水比在20-30:1以上。 ⑤曝气生物滤池一般用在生活污水或者工业废水深度处理上,生物滤池可以COD降到30-50以下;生物接触氧化的填料是固定的,经常用于二级生化系统,出水COD能降到80-100左右水平。 2.污水好氧处理和厌氧处理的优缺点比较? 1)好氧的优点: ①好氧生物处理的反应速度较快,所需的反应时间较短。 ②处理构筑物容积较小。 ③处理过程中散发的臭气较少。 好氧的缺点: 即为以下厌氧的优点的对立面。 2)厌氧的优点: ①应用范围广;②能源需求少故运行费用低,且能产生大量能源 (CH4);③剩余污泥量少,易处理;④对营养物的需求量小;⑤厌氧菌种便于二次启动;⑥耐冲击负荷能力强;⑦规模灵活。

厌氧的缺点: ①处理效果不彻底②反应条件较为苛刻,难以控制③启动时间长④N、P 去除率低⑤管理较为复杂 3.活性污泥法与生物膜法的比较? 活性污泥法优点。①效率高,效果好;②适用范围广;③方法成熟活性污泥法缺点: ①采用传统的活性污泥法,往往基建费、运行费高,能耗大,管理较复杂,易出现污泥膨胀现象;②污水进行脱氮除磷处理工艺需要将多个厌氧和好氧反应池串联,形成多级反应池,这势必要增加基建投资的费用及能耗,并且使运行管理较为复杂。③活性污泥法产生大量的剩余污泥,需要进行污泥无害化处理,增加了投资。 生物膜法优点: ①生物膜对污水水质、水量的变化有较强的适应性,管理方便,不会发生污泥膨胀。②微生物世代时间较长,且生物相对更为丰富、稳定,产生的剩余污泥少。③能够处理低浓度的污水。 生物膜法缺点: ①生物膜载体增加了系统的投资;②在处理城市污水时处理效率比活性污泥法低;③附着于固体表面的微生物量较难控制,操作伸缩性差。 4.两级厌氧消化与两相厌氧消化的比较? 两级厌氧消化: 是根据消化过程沼气产生的规律进行设计,目的是节省污泥加温与搅拌所需的能量。 两相厌氧消化: 是根据消化机理进行设计,目的是使各相消化池具有更适合于消化过程三个阶段各自的菌种群生长繁殖的环境。1.造纸废水处理流程?

废水处理生物模型概述

安徽建筑大学 废水处理生物模型论文 专业:xx级市政工程 学生姓名:xxxx 学号:xxxxx 课题:废水处理生物模型概述 指导教师:xxx xx年xx月xx日

废水处理生物模型概述 xx (安徽建筑大学环境与能源工程学院,合肥,230022) 摘要:废水处理生物模型在污水处理厂的设计、运行控制和工艺优化等方面发挥着日益重要的作用,目前已成为了污水处理领域的研究焦点。本文综述了废水处理生物模型的研究和发展过程,并重点介绍IWA模型和神经网络法的特点及其在国内外的研究现状,阐述了国际水协会(IWA)推出的活性污泥1号、2号、2D 号、3号模型(ASM1、ASM2、ASM2D、ASM3)各自的特点和使用限制条件;介绍了几种基于ASM系列的新模型。最后对模型的研究和应用进行了展望,有待从完善模型机理,模型模块化,混合模型等方面进一步的研究生物模型。 关键字:生物模型;ASM;神经网络;活性污泥 1 引言 如何提高污水处理效率和过程优化控制策略是国内外污水处理研究领域普遍关注的问题。污水处理过程具有时变性、非线性和复杂性等鲜明特征,这使得污水处理系统的运行和控制极为复杂。此类困扰可以通过数学模型方法进行解决,特别是在当今计算技术发展迅猛的前提下,通过模拟计算以实现不同工况条件下、不同设计方案的对照比较,或模拟预测未来短时内的运行状况以便及时调整运行策略。在我国当前水环境形势下,开展污水处理过程数学模型方法研究,即具有重要的理论价值,也有紧迫的现实需要。 2 数学模型概述 2.1废水处理生物模型的发展 20世纪50年代以来,国外一些学者把反映生化过程机理的微生物生长动力学引入污水处理领域[1]。20世纪80年代末,国际水协会(IWA)提出的活性污泥1号模型(ASM1),取得了很大的成功,是早期较为,完善的污水处理数学模型研究之一。通过模拟计算,使污水处理的设计和运行更加理论化和系统化,提高了人们对污水生物处理过程的认识,不仅节省了大量的经济成本,而且提高了污水处理相关工作的质量和效率。随着时间推移,各式各样的污水处理数学模型不断出现,并且被应用于满足不同的研究和工程目的。与国外发达国家相比,我国的污水处理数学模型研究和应用稍显落后,但近年来发展十分迅速。我国较早的污水处理模型研究可以追溯到20世纪50年代采用美国大学Clemson开发的简化ASM1模拟软件SSSP对北京北小河污水处理厂运行进行了稳态模拟[2]。进入世纪以来,随着我国经济的迅速发展,水环境问题日显突出,环境法规对污水排放标准也逐渐严格,如何最低成本地提高污水处理效率、实现达标排放成为亟待解决的问题。 2.2 ASM系列的三套模型 国际水质协会(IWA)总结了以前的研究成果,对组分的划分和测定、过程的定义以及模型的表达方式等方面作了进一步的改进,于1987、1995、1999年先后推出了ASM系列的三套模型[3]。 1)ASM 1活性污泥1号模型 (ASM 1)采用了死亡-再生机理,体现了对代谢残余物的再利用。模型综合了活性污泥系统中碳氧化、硝化、反硝化的三个过程,全面体现了活性污泥系统的主要功能,成为活性污泥过程模型研究和相关模拟软件开发的基础。模型对反应组分和过程进行了细致的划分,包括13种组分, 8个反应过程, 14个动力学参数和5个化学计量系数,在表述上采用矩阵的形式[4],可以表达更多的信息,使模型更加直观,易于理解,便于计算机模拟计算。

第六章生化反应动力学剖析

第六章 生物反应动力学基础(张婷婷) 请对发现的文字错误及格式等进行修订,同时对我蓝色标出的要求进行补充完善。。注意此章节中公式编辑器所编辑的公式均可正常显示并编辑,所以不用更改为word 格式。辛苦了,谢谢!孔秀琴 一、底物降解速率 底物降解速率即每天每公斤活性污泥能降解多少公斤的BOD 5,其单位为: d kgVSS kgBOD ?/5,是反映生物反应器处理能力的重要参数。生物反应系统中,反应器 容积等重要参数是根据系统的底物降解速率(污泥负荷)来确定的。底物降解速率的函数关系式如下: S k S v Xdt dS s +=max (6-1) 式中: Xdt dS —比降解速率,单位 d -1 m a x v —最大比底物降解速率,即单位微生物量利用底物的最大速率 K S —饱和常数 X —微生物浓度 S —底物浓度 环境工程中,一般S 较小,当S K S ≤≤时,分母略去S ,并令 2max k k s =υ,,即可得下式: S k Xdt dS 2= (6-2) 上式积分可得:错误!未找到引用源。 t X t S S ??-=2k 0e (6-3) 那么已降解的底物含量为: )(t X k t S S S S ??-?=-=2e -100 (6-4) 式中:?S —降解的有机底物浓度

0S —初始的有机底物浓度 t S —t 时刻剩余的有机底物浓度 上式中,因一般生物系统活性污泥浓度x 为定值,所以可令12k X k =,同时把已降解的底物浓度用BOD t 浓度代替,初始底物浓度用BOD U 代替,,即得下式: )1(1t k u t e BOD BOD ?-= (6-5) 即得5日生化需氧量和总需氧量之间的换算关系式: (6-6) 因C o 20时,23.01 =k ,则可得到: u BOD BOD 68.05= 环境工程中,用污泥负荷来表示有机物(底物)的降解速率,是特定工艺处理能力的度量参数。在工程设计中,在确定生物反应器的容积及排泥量等关键数据时,污泥负荷是重要的设计参数,其值的选取直接关系到整个工程的造价。根据工程参数所确定的污泥负荷定义式如下: Xt S S XV S S Q N e e ) ()(00-=-= (6-7) 式中:N —污泥负荷,单位kg/kgVSS ﹒d V —反应器的有效容积,单位m 3 污泥负荷即底物比降解速率,其函数关系式也可写作 S k S k S N s 2max =+=υ (6-8) 二、微生物增殖 有机底物经过微生物降解作用后,其中一部分经氧化产能代谢为H 20和CO 2、小分子的有机物等,一部分则通过微生物合成作用转变为新的细胞物质,表现为微生物的增殖,同时微生物还通过内源呼吸作用而不断衰亡,表现为污泥的衰减。所以底物降解和微生物增殖之间存在着必然联系。生物反应系统需要根据微生物的增殖速率来确定泥龄、进而确定剩余污泥排放量等重要数据,所以其相互之间的关系可用下式表示: d K Xdt dS Y Xdt dX -= (6-9)

活性污泥系统模拟软件

第九章污水处理好氧系统模拟软件 第一节污水处理系统模拟软件研究的必要性当前,活性污泥法在污水处理领域得到了广泛应用,形成了多种多样的的污水处理工艺,针对这样一个多变量、强耦合、高度非线性、时变时滞系统,国内外提出了多种数学模型,并以此加快工艺改进、优化决策、提高污水处理设计水平。其中,模拟有机物、氮和磷去除的活性污泥系统模型(activated sludge models,简称ASMs)系列模型是当今活性污泥系统模拟的主流模型。 随着有机物降解和微生物增值的数学模型的发展,采用计算机仿真技术模拟污水处理过程得到了广泛的应用,出现了越来越多的污水处理系统专业模拟仿真软件。国外污水处理专业仿真软件的发展相对成熟,包含的模型库比较丰富,可模拟的工艺过程覆盖面广,常用的包括ASIM、SSSP、EFOR、GPS-x、SIMBA、STOAT、WEST、BioWin等。这些仿真模拟软件可以通过连接单元模块模拟污水处理工艺过程,在实际污水处理的系统评估、运行管理及工艺优化中均发挥了作用。国内相关仿真软件的应用和开发都相对较少,一般采用通用型仿真软件如Matlab/Simulink、Mathematica等研究相关模型,相比专业仿真软件效率较低。 针对新业薄片公司和烟草薄片行业工业生产废水处理过程,国外污水处理专业模拟软件和通用型仿真软件都存在一些问题。对于国外污水处理专业软件:1.没有中文界面与语言支持:2.价格昂贵,一般包括单独使用费用和培训费用,如果进行二次开发和研究,需要另外购买版权或研究人员版本;3.新业薄片公司工业废水处理设施施工完成后,在较长时间内基本处理工艺流程不会改变,这意味着商业软件中全品类的处理模块、工艺单元、模型结构等只能选择其中某几项使用,其它功能或模块都得不到应用,软件无法获得理想性价比。对于通用型仿真软件来讲:1.仿真模型移植性差,与仿真软件本身绑定,难以封装到污水处理的监测、控制系统中;2.缺少可视化界面或人机交互功能,相较商业软件良好的人机接口而言,通用型仿真软件多采用命令行实现,参数修改比较繁琐。此外,由于废水种类、地域差异、暴雨径流和处理地地质条件等均会影响废水的水质组分,不同的废水及其特定的处理工艺,有其特有的化学计量系数和动力学参数,因此模型进水水质组分及部分模型参数的确定直接关系到模拟预测的准确程度,国外

相关文档
最新文档