马尔可夫链课件讲义-课件PPT(演示稿)

合集下载

马尔可夫链理论及其应用现状 ppt课件

马尔可夫链理论及其应用现状 ppt课件
参数和状态都离散的马尔可夫过程称为“马尔可夫链”。 近年来,马尔可夫链预测理论在教育学、经济学、金融投资、 生物学、农作物栽培、地质灾变, ,特别是水资源科学中 都得到了极为广泛地应用。
1 马尔可夫链理论在教育领域的应用
1.1可将马氏链理论应用于教学效果评估
只要依据教师教学前后学生的成绩的动态变化情况,而 不是教师教学后学生的成绩本身,即可使评估结果更符合实际, 更能体现出教师教学活动的质量。传统的教学评估方法之一的 主要依据是学生的考试成绩,这种教学评估方法只考虑了学生 的即时成绩而忽略了其基础差异,造成了评估失真;传统的教 学评估方法之二的依据是根据专家,学生,同行对教师的教学 态度,教学方法和教学效果的综合打分,这种评估是定性评估, 受主观影响太大,也容易造成评估的失真。而利用马氏链理论 对公共课教师教学效果进行评估则可克服ቤተ መጻሕፍቲ ባይዱ两种教学评估方法 的不足。
1.2 可利用马氏链理论对文献资源采购进行预测
利用马尔可夫链建立模型, 对高校文献的采购做出定量 预测, 结果可为高校图书资料管理部门, 根据不同读者需求 和借阅量采购图书资料提供决策的依据, 对于高校文献资源 的合理配置, 有一定的指导意义和应用价值。其理论依据可 以这样描述:一个图书系统内部各种图书资料多种多样,随 着时间的推移,系统的发展,系统内的各类资料将有规律的 发生转移,我们可以利用马氏链的基本原理,通过对各类图 书的购入量,外借量和内借量的统计分析,掌握各种图书的 借阅规律,用马氏链来预测图书资料应如何定购并进一步确 定采购量。
马尔可夫链理论及其应用现状
马尔可夫链预测方法 及其应用(一般用于非线性的)
马尔可夫链理论及其应用现状
在随机过程理论中,马尔可夫过程是一类占有重要地位 、具有普遍意义的随机过程,它广泛地应用于近代物理、生 物学、公用事业、地质学、水资源科学、大气科学各个领域 。

理学随机过程马尔可夫链82页PPT

理学随机过程马尔可夫链82页PPT

61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利Βιβλιοθήκη 喜悦 。——杰纳勒 尔·乔治·S·巴顿
理学随机过程马尔可夫链
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
谢谢!

马尔可夫链

马尔可夫链
2020年5月21日星期四
例7 设马氏链{Xn}的状态空间为 I={1, 2, 3, 4, 5}, 转移概率矩阵为
1 2
1
2
0 0
0
1 2
1 2
0
0
0
P 0 0 1 0 0
3 / 16 . 1/ 4
于是: (1) P{X0 0, X2 1}
P{ X0 0}P{ X2 1 | X0 0} 1 5 5 ;
3 16 48
2020年5月21日星期四
(2)P{X2 1}
P{X0 0}P{X2 1 | X0 0} P{X0 1}P{X2 1 | X0 1}
显然有
p(n) 11
p(n) 21
P(n)
p(n j1
)
L
p(n) 12
p(n) 22
p(n) 1j
L
p(n) 2j
L
p(n) j2
p(n) jj
L
LL
L
(1)
0
p(n) ij
1
(2)
p(n) ij
1,
i
1,
2,L
j
2020年5月21日星期四
切普曼-柯尔莫哥洛夫方程(C-K方程): 对任意的m,n≥0,有
的矩阵
p11 p21
P
L
pj1 L
p12 L p22 L LL pj2 L LL
p1 j L
p2 j L
L
L
p jj L
L L
称为一步转移概率矩阵. 显然有
(1) 0 pij 1
(2)
pij 1, i 1, 2,L
j
2020年5月21日星期四
3、马尔可夫链举例

马尔可夫链课件

马尔可夫链课件

PPXX00 ii00,X1PXi1,1L,i1 |XXk01 ii0k1L PXk 马ik |氏Xk性1 ik1 P X k ik |X 0 i0,X1 i1,L ,X k 1 ik 1
P即X马0尔 i可0,夫X链1 {i1,XLn,,Xn k10}i的k1有 限维分布完全由初始
分布PPX{kX0 ik|Xi}k1 和 ik条1件概率 P{Xn j | Xn1 i} 确定.
PX 0 i0,X1 i1,L ,X k 2 ik 2
马氏性
P X k 1 ik 1 | X 0 i0,L ,X k 2 ik 2
P X k ik |X k 1 ik 1
• 第一节 基本概念 • 第二节 状态的分类及性质 • 第三节 极限性态及平稳分布 • 第四节 Markov链的应用
第一节 基本概念
一、Markov链的定义 二、转移概率 三、Markov链的例子 四、n步转移概率,C-K方 程
第一节 基本概念
一、Markov链的定义
马尔可夫性(无后效性)
过程(或系统)在时刻t0所处的状态为已知的条件下,过程在时 刻t>t0所处状态的条件分布与过程在时刻t0之前所处的状态无关。
则称 {Xn,n 0}为齐次马尔可夫链,称 pij 为从状态 i 转移到状态 j 的一步转移概率.
若马尔科夫链 {Xn,n 0}的状态空间是有限集,则 称 {Xn,n 0}为有限状态的马尔科夫链;
若马尔科夫链 {Xn,n 0}的状态空间是可列集,则 称 {Xn,n 0}为可列状态的马尔科夫链.
是状态有限的马尔科夫链. 1.求其一步转移概率矩阵; 2.若 0.7, 0.4 ,且今天有雨,求第四天有雨的
概率.
四、n步转移概率、C-K方程

人教版A版高中数学选修4-9:马尔可夫性与马尔可夫链_课件1

人教版A版高中数学选修4-9:马尔可夫性与马尔可夫链_课件1

pN ,1 p,
p1,N q,
我们可以用通俗的语言来描述马尔可夫性:
我们把“n”看成“现在”,则“n+1”则是“未 来”,小于n的整数看成是“过去”。那么,在 已知现在状态的情况下,将来的随机变化规律和 过去的状态无关。
在现实生活中,有很多随机变量序列都具有马尔 可夫性。一般地,我们将这种具有马尔可夫性的 随机变量序列为马尔可夫链,并把序列中的随机 变量的所有可能取值的集合称该马尔可夫链的状 态空间。
N
j 0, j 1的唯一解.
j1
在现实生活中,我们所探讨的问题的状态可能会 随时改变。一台旧摆钟,它时而准时,时而不准 时。随着时间的变化,它会从“不准时”变成 “准时”状态,经过人为调整后,摆钟又可以从 “不准时”变成“准时”状态。像这种状态随时 间的推移而改变的决策问题就会变得复杂。
马尔可夫性与 马尔可夫链
重点与难点
1.重点
马氏链n步转移概率的确定
2.难点
有限维分布律的计算方法 遍历性问题
马尔可夫过程
具有马尔可夫性的随机过程称为马尔可夫过程。
马尔可夫性(无后效性) 过程或(系统)在时刻t0所处的状态为已知的
条件下,过程在时刻t t0所处状态的条件分布与 与过程在时刻t0之前所处的状态无关的特性称为 马尔可夫性或无后效性。
当状态随着时间的推移而转化时,我们采用马尔 可夫链处理这一类问题。
典型例题
例1 艾伦非斯特(Ehrenfest )模型
设一个坛子装有c个球,它们或是红色的,或 是黑色的.从坛中随机地摸出一个球,并装入一个 另一种颜色的的球, 经过n次摸换, 研究坛中的黑 球数. 解 以Xn,n 1表示第n次摸球后坛中的黑球数.
3 16 2 16 24

马尔可夫链模型课件

马尔可夫链模型课件
M/G/1排队系统中字母M代表顾客来到时间间隔服从 指数分布, G代表服务时间的分布, 数字1代表只有一个 服务员。
若以X(t)记在t时刻系统中的顾客数,{X(t),t≥0}则不 具马尔可夫性。因为,若我们知道在t时刻系统中的顾客 数,那么为了预测将来的状态,我们不用关心从最近的一 位顾客来到后已过去了多长时间(因为来到过程是无记忆 的),但和服务中的顾客服务了多长时间有关(因为服务 时间分布不具无记忆性)。
销,2代表滞销。以X n 表示第n个季度的味精销售状态,
则 X n 可取1或2的值。若未来的味精市场状态只与现在的 市场状态有关,与以前的市场状态无关,则味精的市场销
售状态 {X n , n 1} 构成一个马尔可夫链。

P( X n1 j X n i) pij
p11 0.5 p12 0.5
马氏链模型
描述一类重要的随机动态系统(过程)的模型
• 系统在每个时期所处的状态是随机的 • 从一时期到下时期的状态按一定概率转移 • 下时期状态只取决于本时期状态和转移概率
已知现在,将来与过去无关(无后效性)
马氏链 (Markov Chain) ——时间、状态均为离散的随机转移过程
例如:在某数字通信系统中传递0,1两种信
解:一步转移概率为:
Pi,i1 Pi,i1
p q
1
p
Pi,
j
0
(j i-1,i+1)
........................
...q
0
p
0
0...
P ...0 q 0 p 0...
...0
0
q
0
p...
........................

马尔科夫链蒙特卡37页PPT

马尔科夫链蒙特卡37页PPT
Thank you
马尔科夫链蒙特卡
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿

第1章随机过程与马尔可夫链优秀PPT

第1章随机过程与马尔可夫链优秀PPT
X(e,t), e S, t T, 简写为: { X(t), t T} 通常情况下,t表示时间。
第2节 一维随机过程的定义及物理意义
4、随机过程的物理意义:
1)、对于一个特定的试验结果(样本)eiS, X(ei,t)表示对应于ei的样本函数,也是随机过程的 一次实现。(样本函数族) 2)、对于每一个固定的参数 tjT, X(e,tj)是一 个定义在S上的随机变量。(随机变量族) 随机过程是依赖于参量 tT的一族随机变量。
例4:连续抛掷一枚骰子的实验,第n次实验的结果 记为X(n) (n=1,2, … )
参量(次数)离散,状态(点数)离散
第2节 一维随机过程的定义及物理意义
3、随机过程的定义
设E是随机试验,S={e}是其样本空间。如果对于每一个 样本e S ,总可以有一个确定的参数为t的实值函数X(e, t),t T与之对应,我们称之为随机过程,记作:
出H 现 出T 现
P (H )P ( 1 )P (T)P (2)1 2
X (1)
2
1
P
1
1
2
2
1 F(x;1)P[X(1)x] 1 20
x2 2x- 1
- 1x
第3节 一维随机过程的统计特性
3)、
X ( 1 ) X (1)
0
2
1
1
1 2
0
2
0
1 2
1 F ( x1, x2 ; 2
,1)
P[ X
7、随机过程的分类
1)、按随机过程任一时刻的状态,可分为连续型 随机过程和离散型随机过程。 2)、按参量t(通常表示时间)时离散还是连续可 分为连续参量随机过程和离散参量随机过程 3)、说明:可列(离散)与非可列(连续)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档