水煤浆流变性描述公式跟解释
一种确定水煤浆流变模型中临界剪切速率的新方法

一种确定水煤浆流变模型中临界剪切速率的新方法赵国华,段钰锋(东南大学 江苏 南京)摘 要:水煤浆是一种高粘性、不透明的液固分散悬浮液,表现出非牛顿特性,其流变特性十分复杂。
在低剪切速率下,对水煤浆粘度测量发现剪切速率与剪切应力关系曲线的变化趋势突变。
根据 Herschel-Bulkley 模型,运用一种新方法确定水煤浆的临界剪切速率,结合旋转粘度计法和管流法在广范围剪切速率下得出水煤浆的真实流变方程。
关键词:水煤浆;流变模型;临界剪切速率;粘度水煤浆技术是20世纪70年代世界范围内的石油危机中产生的一种以煤代油的煤炭利用新方法,广泛应用于细煤粉的长距离管道输送、直接燃烧和加压气化等领域。
水煤浆燃料是一种新型低污染燃料,它是由不同粒径的煤粉颗粒与水、化学添加剂按一定比例混合而成的煤与水的非均相液固悬浮液,目前作为火力发电的一种新型燃料,越来越受到重视。
通常情况下,水煤浆表现为非牛顿型流体,其粘度随剪切速率的变化而改变。
本文首次通过水煤浆流变特性测量的管流法和旋转粘度计两种方法结合,得出水煤浆的流变方程,提出一种求解流变方程中临界剪切速率的新方法。
1 水煤浆的流变模型水煤浆的流变特性非常复杂,低浓度下的水煤浆基本为牛顿流体性质,但是达到一定浓度的水煤浆又表现为非牛顿流体性质。
根据流体在层流时对所施加的剪切应力变化情况,可将流体分为牛顿流体和非牛顿流体两大类。
当剪切应力和剪切速率成正比即符合牛顿定律时为牛顿流体,不符合牛顿定律的流体为非牛顿流体。
非牛顿流体又可分为与时间有关和与时间无关的两种。
目前,处于稳定状态下的水煤浆,其流变模型几乎包括所有与时间无关的非牛顿流体模型,通用形式是:n k γττ+=0 (1)式中:τ为剪切应力,Pa ;0τ为屈服应力,Pa ;k 为稠度系数,Pa.s ;n 为流动性系数。
当1,00==n τ为牛顿流体模型:γτk =。
当1,00≠=n τ为幂律体模型:n k γτ=,n <1为伪塑性体;n >1为膨胀体。
洁净煤技术——第4章 水煤浆

煤的成浆性
❖ 超声波强化
在制浆过程中,利用超声波辐照的分散作用,可以使煤浆中的煤粒团聚状态 由大粒子簇向小粒子簇转变;利用超声波辐照的空化作用能够破碎煤浆中的 煤粒, 使其由大粒子向小粒子转变;利用超声波辐照的扩孔作用,可以使煤的 真密度的减小。因此,通过超声波处理,煤炭的成浆性能得到很大程系统工程
第一节 煤的成浆性
煤的成浆性
一、成浆性的评定
煤的成浆性是指将煤制备成水煤浆的难易程度。煤的成浆性一般 可以用所制煤浆在常温下,剪切速率为l00s-1表观黏度达l000mPa•s时 煤浆浓度来衡量,即在此条件下,煤浆的浓度越高,该煤成浆性越好。
影响煤炭成浆性的因素有:空气干燥基水分Mad,干燥基灰分Ad, 干燥无灰基挥发分Vdaf,哈氏可磨性指数HGI,空气干燥基C、H、O、N 等。张荣增教授采用逐步回归分析方法,对煤炭成浆性的影响因素进 行了研究,剔除了其中不显著因素,建立了制浆浓度C%与煤的Mad、 HGI、O(有氧数据时)的最优回归方程,以及制浆浓度C%与煤的Mad、 HGI的最优回归方程,提出了评定烟煤成浆性难易指标D(D值越大,成 浆性越差)和可制浆浓度C,并建立了成浆性难易指标D和可制浆浓度C 的经验模型。
❖ 广泛性 水煤浆适用于各种工业锅炉,电站锅炉,采暖锅炉及冶金 行业的加热炉、均热炉、炼铁高炉,建材行业的隧道窑、干燥窑、 烧结窑,化学行业的回转炉、玻璃窑等。
概论
三、国内外水煤浆技术发展简况
我国水煤浆的研究晚于发达国家。 自1981年起我国水煤浆技术的开发,连续被列为国家“六五”、 “七五”重大科技攻关项目。在“六五”实验室阶段开发研究的基础 上,“七五”、“八五”水煤浆技术开发的重点转 移 到建立相当规模 的水煤浆制备、燃烧、气化等工业应用示范工程体系上,已开始步入 工业化 实用阶段,可以大面积推广应用。 我国的水煤浆制备技术已达到国际水平,产品具有良好的稳定性 和流动性,能满足燃烧雾化的需求,到目前为止,建立了多个具有相 当规模的制浆厂,如衮州厂(中日合资)、北京厂(中瑞合作建设)、枣庄 八一厂,年生产能力均为250000t,还建立了质优价廉的添加剂厂。
石油焦的成浆性及水焦浆的流变性和稳定性

石油焦的成浆性及水焦浆的流变性和稳定性高夫燕;刘建忠;王传成;虞育杰;程军;张彦威;周俊虎;岑可法【摘要】对某石油焦在加入不同添加剂后的成浆特性以及水焦浆的温升特性、流变特性和稳定性进行了实验研究.加入不同添加剂后各浆样的定黏浓度均在70%左右,石油焦成浆性良好;水焦浆的表观黏度随温度的升高而降低,随浓度的升高而增大;水焦浆的流变特性和稳定性在不同的添加剂下呈现出较大的差别,当使用亚甲基萘磺酸钠-苯乙烯磺酸钠-马来酸钠(NSM)和亚甲基萘磺酸盐甲醛缩合物(NC)添加剂时,水焦浆呈胀流性,且稳定性差.当使用木质素磺酸盐(LS)和石油磺酸盐(PS)时,水焦浆在较高浓度下呈假塑性,且稳定性较好.浆体浓度越大,稳定性越好.【期刊名称】《化工学报》【年(卷),期】2010(061)011【总页数】7页(P2912-2918)【关键词】石油焦;水焦浆;成浆特性;流变特性;稳定性【作者】高夫燕;刘建忠;王传成;虞育杰;程军;张彦威;周俊虎;岑可法【作者单位】浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学宁波理工学院,浙江,宁波,315100;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027;浙江大学能源清洁利用国家重点实验室,浙江,杭州,310027【正文语种】中文【中图分类】TQ517.4石油焦是原油经蒸馏将轻、重质油分离后,重质油再经热裂的过程转化而成的产品。
从外观上看,石油焦为形状不规则的黑色块状 (或颗粒),具多孔隙结构,有金属光泽。
石油焦含碳量约在90%左右,具有热值高的特点,可用作燃料[1-4]。
关于水煤浆添加剂及水煤浆稳定性研究

关于水煤浆添加剂及水煤浆稳定性研究发布时间:2021-12-24T05:29:39.974Z 来源:《中国科技人才》2021年第26期作者:井增宝[导读] 水煤浆是德士古气化工艺的原料,也属于一种新的燃料,能够良好代替油燃料,给我国资源运用带来很大帮助。
因此本文就着重对水煤浆添加剂及水煤浆稳定性展开了深入研究,以找到适当的主添加剂,并研究添加量对水煤浆的影响,希望给水煤浆的未来发展以及稳定程度带来积极地作用。
陕西神木化学工业有限公司陕西省榆林市 719319摘要:水煤浆是德士古气化工艺的原料,也属于一种新的燃料,能够良好代替油燃料,给我国资源运用带来很大帮助。
因此本文就着重对水煤浆添加剂及水煤浆稳定性展开了深入研究,以找到适当的主添加剂,并研究添加量对水煤浆的影响,希望给水煤浆的未来发展以及稳定程度带来积极地作用。
关键词:水煤浆;添加剂;稳定性资源是我们生存必不可少的物质,同时资源也是促进社会发展、经济增长的关键条件,但随时间推移,全球人口的不断上升以及科技的不断进步,使得资源越来越少。
我国资源最多的就是煤炭,约为75%,其次就是原油,约为16.7%,可见他们相差很大,为长远打算应较多使用煤炭资源。
为此,便研究出了水煤浆,以用煤炭资源代替原油资源,水煤浆其实就是将煤磨成细煤粉,然后把煤粉与水以一定比例混合成煤浆。
一、实验流程(一)实验试剂在此选取的添加剂有:木质素磺酸盐、多环芳香磺酸甲醛缩合物、聚氧乙烯醚类,添加剂分子结构特征如表1所示。
选取的原煤为:神木锦界产的洗精煤,其粒度为75μm的占80% ,粒度占5μm的占20%。
(二)水煤浆的制作流程通常制作水煤浆的方法有两个,即干法与湿法,在此主要采用的是干法,先把原煤磨成煤粉,然后加入水和添加剂,并搅拌30min,整个制作流程如下:首先,制得煤粉。
先称3kg的原煤,并放在规格为40cm×40cm×60cm的球磨机中,磨30min,以得到煤粉。
水煤浆流变性和表面张力对其微观破裂的影响

文章编号:1006-3080(2022)06-0715-08DOI: 10.14135/ki.1006-3080.20210920001水煤浆流变性和表面张力对其微观破裂的影响赵 曼, 许治嘉, 赵 辉, 许建良, 李伟锋, 刘海峰(华东理工大学上海煤气化工程技术研究中心, 国家能源煤气化技术研发中心, 上海 200237)摘要:以神华煤和华电煤为原料制备了质量分数为58%~62%的水煤浆,使用旋转流变仪、静/动态表面张力仪、高速摄像机和图像处理软件等研究了水煤浆理化参数对其微观破裂过程的影响。
水煤浆属于剪切变稀的非牛顿流体,采用Herschel-Bulkley 模型建立了水煤浆流变关系式;与静态表面张力不同,水煤浆的动态表面张力随着特征气泡时间的增加先减小后增加,表面张力最小值出现在200 ms 附近;获得了基于水煤浆流变性和动态表面张力函数的水煤浆微观破裂特征直径与时间的关系式。
关键词:水煤浆;微观破裂;表面张力;黏度;流变性中图分类号:O359+.1文献标志码:A液体通过喷嘴产生的射流可以将连续相的大范围液体雾化成大量分散的小液滴,使气液接触面积快速增加,从而有效强化传质传热和化学反应,所以液体射流破裂在能源化工、航空航天、医疗卫生及交通运输等领域应用广泛[1-10]。
自Rayleigh [11]和Weber 等[12]采用不稳定理论研究液体射流破裂以来,液体射流破裂受到广泛关注。
Reitz [13]发现射流不稳定波最大增长率为表面张力相关函数。
Eggers [14]汇总了液滴自由表面流动随时间变化形态的研究,包括低黏度流体破裂中不同时间尺度的变化规律。
Anna 等[15]研究了液体黏弹性对液滴形成过程中喉部直径的变化以及对液桥断裂时间的影响,并通过多模式模型预测瞬时直径形态的发展变化。
Tirtaatmadja 等[16]发现在黏弹性流体破裂过程中,即使在低浓度条件下弹性的作用也远大于黏性,并提出了基于魏森伯格数的黏弹性流体破裂特征方程。
基于神府煤的油水煤浆流变特性试验研究

基于神府煤的油水煤浆流变特性试验研究李弯弯;梁耀东;巨鹏;王俊哲【摘要】为提高基于神府煤的油水煤浆流变特性,探索了分散剂种类及其添加量、水煤比、温度对油水煤浆粘度的影响,并在试验温度范围内,对其流变曲线进行了回归分析.研究结果表明:在试验范围内,随着分散剂种类和添加量的变化,油水煤浆的表观粘度发生了相应变化;油水煤浆体系中煤含量高时,不利于体系分散降粘,温度高时浆体的表观粘度降低;该油水煤浆的流变特性符合Herschel-Bulkley模型,可根据流动特性指数直接判定其流变特性.【期刊名称】《选煤技术》【年(卷),期】2015(000)005【总页数】5页(P16-20)【关键词】油水煤浆;流变特性;粘度;流变模型【作者】李弯弯;梁耀东;巨鹏;王俊哲【作者单位】西安科技大学化学与化工学院,陕西西安710054;陕西煤业化工新型能源有限公司神木分公司,陕西榆林719300;西安科技大学化学与化工学院,陕西西安710054;陕西煤业化工新型能源有限公司神木分公司,陕西榆林719300;陕西煤业化工新型能源有限公司神木分公司,陕西榆林719300【正文语种】中文【中图分类】TQ534.4从1993年起,我国成为石油净进口国家[1]。
根据中国石油经济技术研究院发布的《2014年国内外油气行业发展报告》,2014年我国石油对外依存度达到59.50%,预计2020年达到69%[2]。
按照国际惯例,通常能源进口量超过国内需求量一半时,就意味着这个国家将面临能源危机或存在潜在的能源战略风险。
因此,开发适合我国国情的煤基液态洁净燃料已成为大势所趋。
油煤浆和水煤浆作为代油燃料具有一定可行性,但油煤浆粘度高、价格昂贵,且只能部分代油;水煤浆能完全代油,但其对制浆原煤要求较高,热值较低,且需要对燃油锅炉及其喷嘴进行较大改造[3-4]。
油水煤浆是在油煤浆、水煤浆的基础上发展起来的代油燃料,具有燃点低、热值高的特点,在燃料灰分较低时可以直接用于燃油锅炉,且对锅炉和喷嘴改造的幅度较小[4]。
水煤浆

更小的颗粒充填,以保证煤粒间应能产生较高的堆
积效率(一般>70%),以形成空隙最少的堆积。
(4)水煤浆的水分
直接影响水煤浆的发热量和流变特性;
包括制浆用煤本身的内在水分和制浆时添加 的水分; 同样浓度的水煤浆,内在水分越大,可以充 当分散介质的自由水越少,水煤浆黏度就越 大。
(5)水煤浆的稳定性
评价稳定性的方法:沉降法、粘度法和综
合法三大类,
我国主要应用探测法。探测法是沉降法的
一种。
探测法因其简便、适用,在实验室及生产
中均可采用。
简单的做法:将煤浆存放不同时间后,利
用棒或棍人工探测煤浆的状况,据此将稳 定性分为 A、B、C、D 四级。
经存放不发生硬沉淀的煤浆,其稳定性就
添加剂的分子作用于煤粒与水的界面,可
减少水煤浆流动时的内摩擦,降低粘度, 改善煤粒在水中的分散,提高水煤浆的稳 定性。
添加剂的用量通常为煤量的1%左右。
常用的添加剂有两种:分散剂和稳定剂。
水煤浆添加剂
分散剂 稳定剂
消泡剂
调整剂
(1)分散剂及其作用机理
分散剂是最重要的添加剂,其主要用途是使 CWM 具有良好的流变特性:
超细超低灰煤浆
煤粒<10μm,
灰分<10%,浓度 50%
代油做内燃机燃料
高、中灰水煤浆
超纯煤浆 原煤煤浆 脱硫型水煤浆
灰分20%~50%,
浓度50%~65% 煤浆灰分 0.1%~0.5% 原煤就地,炉前制 加脱硫剂
供燃煤锅炉
供燃油或燃气锅炉 燃煤锅炉或工业窑炉 供燃煤锅炉
水煤浆技术
——水煤浆使用性能和评价方法
(冶金行业)水煤浆流变性描述公式和解释

(冶金行业)水煤浆流变性描述公式和解释水煤浆流变性描述公式和解释水煤浆是固液俩相的非牛顿流体.其流变性十分复杂,影响因素也较多,对水煤浆输送和燃烧起决定性作用.水煤浆是由煤粉,水和少量添加剂混合加工制成的稳定流体.影响水煤浆成浆和流变特性的因素很多。
在壹定范围内程度不同地改变这些属性,能够提高输送以及使用的效率和安全性。
描述水煤浆流变特性——流变学属性水煤浆属于复杂的多相悬浮体系,施加剪切应力产生的速率梯度受到其内部物理结构变化的影响,反过来内部的物理结构又会因剪切作用而引起变化,因此水煤浆的流变特性呈现复杂多样性。
从目前的研究见,水煤浆涵盖了牛顿流体和几乎各种类型的非牛顿流体。
由于具有较高的固相含量、相对较小的煤粉颗粒以及添加剂的加入使煤粉颗粒和水紧密结合形成网状结构,多数水煤浆表现出显著的非牛顿流体特性。
水煤浆的非牛顿流体特性通常具有如下特点:非单相性,即流变特性要用多个参数来表示;非单值性,粘度随剪切应力发生变化;非可逆性,粘度和剪切作用的持续时间有关,即表现出壹定的触变性。
多数工业用水煤浆存在屈服应力,在低剪切速率和高剪切速率下均呈现牛顿流体特性,在中等剪切速率下呈现剪切稀化特性,只有极少呈现胀流性流体特性。
常用描述水煤浆流变特性常用的经验模型公式有:牛顿流体:τ=μγ宾汉塑性模型:τ=τy+hpγ幂率模型:τ=Kγn屈服-幂率模型:τ=τy+KγnCasson模型:τ0.5=τy0.5+(hpγ)0.5Sisko模型τ=h∞g+KγnEL模型-τy=γ/(A+Bτα-1)式中:τ、τy———分别为剪切应力和屈服应力,Pa;μ———粘度,Pa·s;hp———刚度系数,Pa·s;h∞———高剪切速率对应的极限剪切粘度,Pa·s;K———稠度系数;n———流变特性指数。
之上流变模型也称作本构方程,模型中的各参数是需要通过试验确定的流变参数,是水煤浆固有的物性参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水煤浆流变性描述公式和解释水煤浆是固液两相的非牛顿流体.其流变性十分复杂,影响因素也较多,对水煤浆输送和燃烧起决定性作用. 水煤浆是由煤粉,水和少量添加剂混合加工制成的稳定流体.影响水煤浆成浆和流变特性的因素很多。
在一定范围内程度不同地改变这些属性,可以提高输送以及使用的效率和安全性。
描述水煤浆流变特性——流变学属性水煤浆属于复杂的多相悬浮体系,施加剪切应力产生的速率梯度受到其内部物理结构变化的影响,反过来内部的物理结构又会因剪切作用而引起变化,因此水煤浆的流变特性呈现复杂多样性。
从目前的研究看,水煤浆涵盖了牛顿流体和几乎各种类型的非牛顿流体。
由于具有较高的固相含量、相对较小的煤粉颗粒以及添加剂的加入使煤粉颗粒与水紧密结合形成网状结构,多数水煤浆表现出显著的非牛顿流体特性。
水煤浆的非牛顿流体特性通常具有如下特点:非单相性,即流变特性要用多个参数来表示;非单值性,粘度随剪切应力发生变化;非可逆性,粘度与剪切作用的持续时间有关,即表现出一定的触变性。
多数工业用水煤浆存在屈服应力,在低剪切速率和高剪切速率下均呈现牛顿流体特性,在中等剪切速率下呈现剪切稀化特性,只有极少呈现胀流性流体特性。
常用描述水煤浆流变特性常用的经验模型公式有:牛顿流体:τ=μγ宾汉塑性模型:τ=τy+hpγ幂率模型:τ=Kγn屈服-幂率模型:τ=τy+KγnCasson模型:τ0.5=τy0.5+(hpγ)0.5Sisko模型τ=h∞g+KγnEL模型-τy=γ/(A+Bτα-1)式中:τ、τy———分别为剪切应力和屈服应力,Pa;μ———粘度,Pa·s;hp———刚度系数,Pa·s;h∞———高剪切速率对应的极限剪切粘度,Pa·s;K———稠度系数;n———流变特性指数。
以上流变模型也称作本构方程,模型中的各参数是需要通过试验确定的流变参数,是水煤浆固有的物性参数。
在流变特性研究中,可根据研究目的、对象和剪切速率范围等选择不同的模型。
由于水煤浆流变特性复杂,以上经验模型很难全面反映速率与响应之间特性,应用这类本构方程描述水煤浆的流动特性时都会出现一定偏差。
在流变特性研究中,往往借用牛顿流体粘度的概念,即表观粘度或剪切粘度来表征水煤浆的流动性。
对非牛顿流体,表观粘度是剪切速率的函数,它能够清晰地表明受到剪切作用时浆体抵抗变形的能力。
因此,考察剪切粘度的影响因素和变化规律对水煤浆流动特征的认识和工程应用具有十分重要的价值。
试验还表明,水煤浆的表观粘度及剪切应力与剪切速率有关。
水煤浆浓度在35%左右时,它们之间的关系仍呈线性。
当水煤浆浓度进一步提高,就会出现剪切速率增加,其表观粘度的降低及剪切应力的增加趋势将愈益显著,并开始偏离线性关系。
直至水煤浆浓度》50%时,其相互关系已明显地偏离线性,同时,随剪切速率的上、下行变化其剪切应力或表观粘度出现上、下行的差异,并呈现一定的屈服应力,只是煤种不同其变化程度有所不同。
随着水煤浆浓度的再提高,其剪切应力或表观粘度的上、下行差异增大,且表观粘度随剪切速率增加而降低的趋势愈趋明显。
试验结果如图2、4所示。
试验表明,一般水煤浆浓度达到50%时,已明显地偏离牛顿流体。
随着水煤浆浓度的进一步提高,煤粒之间的液体减少,从而增强了粒子间相互作用的力,形成更多的粘滞性大的凝聚结构团,致使水煤浆的结构粘度增大,触变特性增强,同时还出现了屈服应力。
可见,浓度超过50%的水煤浆已属具有触变特性及一定屈服应力的非牛顿型流体。
非牛顿型拟塑性流体的剪切应力关联式中较有代表性的方程式应是指数律方程:T=K(dw/dr)^a式中:k为均匀系数,k值愈大表明流体的粘度愈高;n为流变特性系数,表示偏离牛顿型流体的程度。
对不同水煤浆的实验数据进行回归处理,可求得上述被研究的各种水煤浆流变特性的重要参数n和k,而且它的相关系数达0.99以上,说明实验结果能与指数律方程很好地吻合,所得n值均小于1。
n<1是拟塑性流体的特征,更进一步证昵水煤浆浓度》50%时,确属非牛顿型和拟塑性流体。
关于水煤浆对流变特性的要求:水煤浆从制浆到燃烧或气化要经过储存、管道输送和雾化过程,要求浆体具有良好的稳定性、输送特性和雾化特性。
以上3种特性分别由低剪切速率、中等剪切速率和极高剪切速率下的流变特性决定,这就要求水煤浆在粘度、流动性和沉降性能方面达到良好的平衡。
工业用水煤浆理想的流变特性应为:具有较高的浓度,静止状态下能够保持良好的稳定性,即具有一定的屈服应力;在与管道输送过程和雾化过程相对应的中等剪切速率(10 s-1~200 s-1)和高剪切速率(5 000 s-1~30 000 s-1)下都应保持较低的粘度。
当煤粉含量较高时,水煤浆粘度会随浓度的增加而急剧地增大;当浓度较低时,浆体的流动性增加,但稳定性变差,燃烧效率或气化过程中碳转化率相应地降低。
因此,改善水煤浆流变特性的重点应在保证合理粘度的前提下尽量提高水煤浆的浓度。
水煤浆流变特性的影响因素影响水煤浆流变特性的主要因素有:(1)煤种及煤的理化特性;(2)固相含量;(3)颗粒大小及分布;(4)添加剂的种类和用量;(5)浆液的pH值;(6)温度等。
固相含量对水煤浆的流变特性具有最直接的影响:有试验表明,在较低浓度下水煤浆呈现牛顿流体特性;质量分数>50%时,随浓度的增加,拟塑性特征迅速增加。
Tsai发现[4],由幂率流体特性的溶剂和煤粉制成的浆体在低剪切速率下的拟塑性却随浓度升高而减小。
Fedir对高水分褐煤的成浆特性研究发现[5],随浓度的增加或煤粉粒径的减小,浆体的非牛顿流体特性增加;屈服应力与煤粉含量、煤粉的颗粒大小分布、内孔面积等因素间存在密切的相关性。
固相含量对流变特性的影响与最大填充份额密切相关,多种水煤浆的屈服应力~浓度关系研究显示:固相体积份额与最大填充份额之比(φ/φm)在0.85~0.90范围内,屈服应力急剧增加,并在φ/φm=0.90~0.95时趋向无穷大;另外,对具有牛顿流体特性的水煤浆粘度测量表明,相对粘度与(1?φ/φm)呈反比关系。
一般地,水煤浆的粘度随浓度增加而增加,并在固相体积份额达到40%以上时开始表现出非牛顿流体特性。
工业用水煤浆的煤粉含量非常接近可达到的浓度上限,即使是浓度的微小增加也会对流变特性产生显著影响。
因此,对给定的煤粉-水两相系统,煤粉含量应控制在粘度急剧增加的浓度范围以下。
一般地,升高温度有利于提高水煤浆的流动性:试验表明,升高温度在降低粘度的同时也使浆体的非牛顿流体特性弱化。
温度的影响还与温度所在范围有关。
温度低100℃时,水煤浆粘度随温度升高而降低,在温度高于100℃时则呈相反趋势。
2种试验浆体的转折温度发生在50℃和70℃左右,在转折温度以上拟塑性特性随温度升高而增加。
温度的影响与剪切速率有关,低剪切速率下升高温度会增加颗粒间的碰撞机率,从而使颗粒聚并趋势增加,最终导致浆体的粘度升高。
在高温条件下(如高于373 K)测量了水煤浆的流变特性,由于煤粉颗粒发生分解和化学反应引起了浆体内部物质结构的显著变化,导致浆体的流变特性随温度的变化规律比常规条件下更加复杂。
颗粒大小对液-固浆体流动性能的影响有2种根本途径:(1)浆体流动过程中,一定颗粒粒径差异对颗粒层间的相对运动产生影响;(2)颗粒粒径变化时引起最大填充份额变化。
其中,后者的影响更为显著,要获得低粘度的水煤浆,煤粉必须具有较大的最大填充份额。
均匀分布颗粒制成的浆体通常具有较高的粘度和较低的最大填充份额,除采用添加剂的方法外,采用合理的粒径分布或颗粒级配则是改善水煤浆流动性和稳定性的最有效和最常用的方法。
通过优化粒径分布获得了最佳的水煤浆流变特性。
特别是对成浆性能较差的高水分煤种,通过简单的粗细颗粒配比使浆体的稳定性显著改善,浆体的粘度降低达到5倍左右。
这主要是因为粗细颗粒配比形成了合理的排列结构,提高了颗粒的流动性能。
颗粒形状对流变特性也具有显著的影响,一般地,颗粒偏离球形的程度越大,水煤浆的粘度越大,非牛顿流体特性也越显著。
综上所述,欲制取高浓度水煤浆必须重视粒度分布问题。
考虑到水煤浆的流动性、稳定性以及制粉的动力消耗和煤浆的用途等因素,可见采用d粗/d 细=7~11,粗、细粒重量含量比在4/6~6/4范围内属双模粒度分布的煤粉,更有利于配制成高浓度的水煤浆。
分散系数的影响目前,表达粒度分布的方程式很多,其中较为广泛应用的是ROSIN粒度分布式式中:Rd是孔径为d(件m)筛网上残留量,d是筛网的孔径(件m);1/d。
是说明粉体细度的系数;m是表明粒度分布宽度的系数,通常称为分散系数,其值愈大表明粒度分布范围愈窄。
流变机理和公式的解释尽管对水煤浆的流变特性研究已有很多,但迄今为止,在流变机理方面尚缺乏深入的研究。
下面引用的是孟令杰.增压流化床煤水混合物输送特性研究。
孟令杰提出的煤水混合物流变机理可较好地解释流变特性与物质结构之间的关系,其主要内容如下:(1)无论在静止状态还是在剪切状态下,一部分水分用来浸润煤粉颗粒表面,并形成一层被颗粒表面吸附而不能参与流动的薄液体层;(2)在浆体受到剪切作用后,颗粒间原有的空间网状结构遭到破坏并在高剪切速率下形成沿剪切方向的层状颗粒排列,即煤粉颗粒排列由随机的排列结构状态向沿剪切方向的层状有序结构状态转变,其排列有序程度与施加的剪切应力相关;(3)在有序排列的煤粉层中,颗粒与颗粒间的水分不参与剪切流动;(4)在受到剪切作用并达到稳定状态时,剪切变形主要发生在有规律排列的煤粉颗粒层与层之间的水层中,而煤粉颗粒层上吸附的水分变形很小。
图1给出了受到剪切作用后煤水混合物流变结构的变化过程,φsp、φδ、φip、φef分别为颗粒相、颗粒表面吸附的液相、颗粒间隙中的液相以及自由水分的体积份额。
由以上假设,水煤浆的粘度主要取决于φef的大小:φe f=1-φδ-φs p-φi p可以看出,在一定的煤粉浓度下,要获得水煤浆的良好流动性能,就要设法降低φδ和φip。
应用该流变机理,孟令杰等等理论合理解释了浓度、粒径以及剪切速率等因素对煤水混合物流动特性的影响,而且得到了流动性能最佳的粗细颗粒配比。
该流变机理能够对水煤浆的粘度特性、剪切稀化特性以及高剪切速率下浆体的牛顿流体特性作出较好的解释。
图1煤水混合物的流变结构示意图对某些浓度较高的水煤浆,在高剪切速率下往往表现出剪切增稠特性。
目前,主要存在2种变机理对此作出了较好的解释。
另外一种理论其示意图如图2。
当浓度较高时,颗粒间达到较为密实的堆积,颗粒与颗粒之间的相对滑动将会增加颗粒层间距离,导致动量在垂直于剪切方向上进行传递,使浆体表现出胀流体特性。
还有一种机理就是:当高于一定剪切速率时,部分颗粒会从原有的颗粒层中分离出来,导致了原有的有序流动向无序流动转变,并以粘度增加的形式表现出来。