排列与组合的定义和公式

合集下载

组合与组合数公式

组合与组合数公式

4������ -2
100×99 + 200 2
= 5 150.
9×8×7×6
5 6 4 7 【变式训练 2】 (1)计算: C9 + C9 + C10 + C11 ; 2 2 2 2 2 (2)计算: C2 + C3 + C4 + C5 + C6 ; ������ (3)求证: C������ = ������ ������ ������ -1 ������ -2 (4)求证: C������ +2 = C������ + 2C������ + C������ . 5 6 5 6 6 4 7 7 7 (1)解: C9 + C9 + C10 + C11 = C10 + C10 + C11 = C11 + C11 = 5 7 C12 = C12 = 792. 3 2 3 2 2 2 2 2 2 2 (2)解: 由C2 = C3 , 得C2 + C3 + C4 + C5 + C6 = C3 + C3 + C4 + 2 2 C5 + C6 . 3 3 3 2 2 2 2 2 ∵ C3 + C3 = C4 , ∴ C3 + C3 + C4 + C5 + C6 3 2 2 2 2 2 2 = C4 + C4 + C5 + C6 , 依次类推可得C2 + C3 + C4 2 3 2 + C5 + C6 = C7 = 35.
分别有多少种?用式子表示。
【做一做1】 给出下列问题: 2 2 2 A 或 C ①有10个车站,共需准备多少种车票? 10 10 A2 ②有10个车站,共有多少种不同的票价? C 2 10 2 2 2 ③平面内有16个点,共可作出多少条不同的有向线段? A16 或C16 A2 ④有16位同学,假期中约定每两人之间通电话一次,共需通电话 2 多少次? C16 ⑤从20名学生中任选4名分别参加数学、物理、化学、生物竞 4 4 赛,有多少种选派方法? 4 或C A

排列、组合的概念和公式

排列、组合的概念和公式

排列、组合的概念和公式
一、排列的概念、公式
1. 概念
- 从n个不同元素中取出m(m≤ n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为A_{n}^m。

排列是指从给定的元素集合中按照一定的顺序选取若干个元素进行排列,元素的顺序是重要的。

例如从1、2、3这三个数字中选两个数字进行排列,12和21是不同的排列。

2. 公式
- A_{n}^m=(n!)/((n - m)!),其中n!=n×(n - 1)×(n - 2)×·s×2×1。

例如,计算A_{5}^3,n = 5,m=3,则A_{5}^3=(5!)/((5 - 3)!)=(5×4×3×2×1)/(2×1)=5×4×3 = 60。

二、组合的概念、公式
1. 概念
- 从n个不同元素中取出m(m≤ n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记为C_{n}^m。

组合是指从给定的元素集合中选取若干个元素,不考虑元素的顺序。

例如从1、2、3这三个数字中选两个数字组成组合,{1,2}和{2,1}是相同的组合。

2. 公式
- C_{n}^m=(n!)/(m!(n - m)!)。

例如,计算C_{5}^3,n = 5,m = 3,则C_{5}^3=(5!)/(3!(5 - 3)!)=(5×4×3×2×1)/(3×2×1×2×1)=10。

排列组合公式总结大全(3篇)

排列组合公式总结大全(3篇)

第1篇在数学中,排列组合是研究有限集合中元素的不同排列和组合方式的一种数学分支。

它广泛应用于统计学、概率论、计算机科学、组合数学等领域。

以下是对排列组合中常用公式的总结,以供参考。

一、排列1. 排列的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,按照一定的顺序排成一列,称为从n个不同元素中取出m个元素的一个排列。

2. 排列数公式:A(n, m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

3. 排列的运算性质:(1)交换律:A(n, m) = A(n-m, n-m)(2)结合律:A(n, m) × A(m, k) = A(n, k)(3)逆运算:A(n, m) × A(m, n-m) = n!二、组合1. 组合的定义:从n个不同的元素中,任取m(m≤n)个不同的元素,不考虑它们的顺序,这样的取法称为从n个不同元素中取出m个元素的一个组合。

2. 组合数公式:C(n, m) = n! / [m! × (n-m)!]3. 组合的运算性质:(1)交换律:C(n, m) = C(n-m, n-m)(2)结合律:C(n, m) × C(m, k) = C(n, k)(3)逆运算:C(n, m) × C(m, n-m) = C(n, n)三、排列与组合的关系1. 排列与组合的关系:A(n, m) = C(n, m) × m!2. 排列与组合的区别:(1)排列考虑元素的顺序,组合不考虑元素的顺序。

(2)排列的运算性质与组合的运算性质不同。

四、排列组合的应用1. 排列组合在概率论中的应用:计算随机事件发生的概率。

2. 排列组合在计算机科学中的应用:设计算法、密码学、数据结构等。

3. 排列组合在统计学中的应用:抽样调查、数据分析等。

排列与组合定理和公式

排列与组合定理和公式

排列与组合定理和公式定义: 1、从S中有序选取的r个元素称作S的⼀个r排列。

S的不同r排列总数记作P(n,r),r=n时,称为S的全排列。

2、从S中⽆序选取的r个元素称作S的⼀个r组合。

S的不同r组合总数记作C(n,r)。

推论 1、元素⼀次排成⼀个圆圈的排列称为环排列。

S的环排列数等于 P(n,r)/r,其实就是线性排列数的1/r。

推论 2、C(n,r)= C(n-1,r-1)+C(n-1,r)。

该公式就是杨辉三⾓形,也称作Pascal公式。

定义:设S={n1*a1,n2*a2,n3*a3,....,nk*ak}为多重集,n=n1+n2+...+nk表⽰S中的元素总数。

(1)从S中有序选取的r个元素称为S的⼀个r排列。

r=n的排列称为S的全排列。

(2)从S中⽆序选取的r个元素称为S的⼀个r组合。

定理:设S={n1*a1,n2*a2,n3*a3,....,nk*ak}为多重集(1)S的全排列数是n!/(n1! n2! n3!...nk!).(2)若r<=ni, i=1,2,3,...,k,那么S的 r 排列数是k^r。

(3)若r<=ni, i=1,2,3,..k,那么S的 r 组合数是C(k+r-1 , r).即T={R*1, (K-1)**},等于(k+r-1)!/(r! *(k-1)!).格路径数:定理:从(r,s)到(p,q)的矩形格路径的条数等于⼆项式系数C(p-r+q-s, p-r)=C(p-1+q-s, q-s).定理:令n为⾮负整数,则从(0,0)到(n,n)的下对⾓线矩形格路径的条数等于第n个Catalan数Cn=1/(n+1) *C(2n,n).定理:从(0,0)到(p,q)的下对⾓线矩形格路径的条数等于(q-p+1)/(q+1)*C(p+q。

q)。

前100个Catalan数:“1”“1”"2","5","14","42","132","429","1430","4862","16796","58786","208012","742900","2674440","9694845","35357670","129644790","477638700","1767263190","6564120420","24466267020","91482563640","343059613650","1289904147324","4861946401452","18367353072152","69533550916004","263747951750360","1002242216651368","3814986502092304","14544636039226909","55534064877048198","212336130412243110","812944042149730764","3116285494907301262","11959798385860453492","45950804324621742364","176733862787006701400","680425371729975800390","2622127042276492108820","10113918591637898134020", "39044429911904443959240", "150853479205085351660700", "583300119592996693088040", "2257117854077248073253720", "8740328711533173390046320", "33868773757191046886429490", "131327898242169365477991900", "509552245179617138054608572", "1978261657756160653623774456", "7684785670514316385230816156", "29869166945772625950142417512", "116157871455782434250553845880", "451959718027953471447609509424", "1759414616608818870992479875972", "6852456927844873497549658464312", "26700952856774851904245220912664", "104088460289122304033498318812080", "405944995127576985730643443367112", "1583850964596120042686772779038896", "6182127958584855650487080847216336", "24139737743045626825711458546273312", "94295850558771979787935384946380125", "368479169875816659479009042713546950", "1440418573150919668872489894243865350", "5632681584560312734993915705849145100", "22033725021956517463358552614056949950", "86218923998960285726185640663701108500", "337485502510215975556783793455058624700", "1321422108420282270489942177190229544600", "5175569924646105559418940193995065716350", "20276890389709399862928998568254641025700", "79463489365077377841208237632349268884500", "311496878311103321137536291518809134027240", "1221395654430378811828760722007962130791020", "4790408930363303911328386208394864461024520", "18793142726809884575211361279087545193250040", "73745243611532458459690151854647329239335600", "289450081175264899454283846029490767264392230", "1136359577947336271931632877004667456667613940", "4462290049988320482463241297506133183499654740", "17526585015616776834735140517915655636396234280", "68854441132780194707888052034668647142985206100", "270557451039395118028642463289168566420671280440", "1063353702922273835973036658043476458723103404520", "4180080073556524734514695828170907458428751314320", "16435314834665426797069144960762886143367590394940", "64633260585762914370496637486146181462681535261000", "254224158304000796523953440778841647086547372026600", "1000134600800354781929399250536541864362461089950800", "3935312233584004685417853572763349509774031680023800", "15487357822491889407128326963778343232013931127835600", "60960876535340415751462563580829648891969728907438000", "239993345518077005168915776623476723006280827488229600", "944973797977428207852605870454939596837230758234904050", "3721443204405954385563870541379246659709506697378694300", "14657929356129575437016877846657032761712954950899755100", "57743358069601357782187700608042856334020731624756611000", "227508830794229349661819540395688853956041682601541047340", "896519947090131496687170070074100632420837521538745909320"。

数学排列组合常用方法与技巧精讲

数学排列组合常用方法与技巧精讲

比赛分组
在大型体育赛事中,如何将参赛选手或队伍分成若干小 组进行预赛是一个重要的排列组合问题。例如,在篮球 比赛中,将参赛队伍分成若干小组进行循环赛,需要考 虑队伍之间的实力对比和小组内比赛的公平性。
彩票中的排列组合问题
彩票选号
彩票选号是一个典型的排列组合问题。彩票号码由一 组数字组成,每个数字都有特定的范围和出现概率。 彩民需要从指定范围内选择一定数量的数字,并按照 一定的顺序排列,以获得中奖的机会。
不同元素问题
总结词
解决不同元素问题时,需要全面考虑 所有元素的排列或组合情况。
详细描述
在排列组合问题中,如果所有元素都 是不同的,需要全面考虑所有元素的 排列或组合情况。可以采用全排列或 全组合的方法进行计算。
插空法
总结词
插空法是一种解决排列组合问题的常用方法,通过在已排好的元素之间插入新元素来满足题目的要求 。
详细描述
特殊元素优先法是指在解决排列组合问题时,优先考虑特殊元素或特定位置的选取和排 列。这种方法的关键在于识别出问题中的特殊元素或特定位置,然后优先处理它们,从
而简化问题并提高解题效率。
分组法
总结词
将问题中的元素按照一定的规则进行分 组,然后对分组后的元素进行排列组合 ,可以解决一些复杂的问题。
答案
$A_{5}^{2} - 1 = 24$
解析
先从5个元素中取出2个元素进行排 列,再减去特定元素不在首位的排 列方式。
题目
在7个不同元素中取出4个元素进行 组合,其中某个特定元素必须包含在 内,有多少种不同的组合方式?
答案
$C_{6}^{2} = 15$
解析
先从7个元素中取出2个元素进行组 合,再减去特定元素不在首位的组 合方式。

排列与组合的区别技巧

排列与组合的区别技巧

排列与组合的区别技巧排列和组合是数学中常见的概念,用于计算一定范围内的排列或组合的个数。

尽管这两个概念听起来很相似,但实际上它们有着本质的区别。

在本文中,我们将探讨排列和组合的区别以及如何应用它们。

1. 排列和组合的定义排列是指从n个不同元素中取出m个元素进行排列,其排列数用P(n,m)表示,公式为:P(n,m) = n!/(n-m)!其中n!表示n的阶乘,即n × (n-1) × (n-2) × ... × 1。

P(5,3)就表示从5个元素中取3个元素的排列数,它的计算式为5!/(5-3)! = 5 × 4 × 3 = 60。

C(5,3)表示从5个元素中选出3个元素组成的集合数,它的计算式为5!/(3! × 2!) = 10。

AB AC BA BC CA CB这是因为“AB”和“BA”被视为两种不同的排列方式,因为它们的元素顺序不同。

排列相对于元素的顺序是敏感的。

应用排列与组合的场景非常广泛,例如在密码学、计算机科学、统计学、经济学等多个领域都有着重要的应用。

在密码学中,排列和组合被用于计算密码中可能的排列组合,以及在密码破解时破译密码。

在计算机科学中,排列和组合被用于计算算法的时间复杂度和空间复杂度,以及进行搜索和排序算法等操作。

在经济学中,排列和组合被用于计算市场需求和供应的排列组合,以及进行产业分析和商业决策等操作。

4. 总结与结论排列和组合是数学中常用的概念。

其最大的区别在于元素的顺序是否重要。

排列相对于元素的顺序是敏感的,而组合相对于元素的顺序是不敏感的。

我们可以应用排列和组合计算密码、算法复杂度、统计概率以及进行商业决策等多个领域。

在应用排列和组合时,我们需要根据不同情况选择适当的计算方式。

在实际应用中,我们需要了解排列和组合的特性,并选择适当的计算方式。

下面我们将深入探讨排列和组合的特性及其应用。

1. 排列的特性(1)重复元素:在排列的情况中,如果有重复的元素,其排列数可以用重复因子的方法进行计算。

高中数学排列组合相关公式

排列组合公式排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合与古典概率论关系密切。

定义及公式排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。

用符号 C(n,m) 表示。

C(n,m)=A(n,m)∧2/m!=A(n,m)/m!;C(n,m)=C(m-n,m)。

(其中m≥n) 其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。

符号 C-Combination 组合数 A-Arrangement 排列数(在旧教材为P-Permutation) N-元素的总个数 M-参与选择的元素个数!-阶乘基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

排列组合典型题常见解法


n! (nm)!
4.组合数公式:
Cnm
Anm Amm
n(n1)(n2)(nm1) m!
n!
m!(nm)!
排列与组合的区别与联系:与顺序有关的
为排列问题,与顺序无关的为组合问题.
一.定序问题倍缩法,空位插入法
例4.7人排队,其中甲乙丙3人顺序一定共有多
少种不同的排法
解(: 空位法)设想有7把椅子让除甲乙丙以外
参加,则不同的选法有__1__9_2___ 种
四.相同元素隔板法
例7.有10个运动员名额,分给7个班,每
班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成
一排。相邻名额之间形成9个空隙。
在9个空档中选6个位置插隔板,
可把名额分成7份,对应地分给7个
班级,每一种插板方法对应一种分法
3,4,5的五个盒子,现将5个球投入这五
个盒子内,要求每个盒子放一个球,并且
(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)
(EF,CD,AB),(EF,AB,CD)共有 A
3
3 种取法
,而
平均这分些成分的法组仅,是不(管A它B,C们D的,E顺F)序一如种何分,都法是,故一共
种情有况C,62所C24以C22分A组33 后种要分一法定。要除以 A
n n
(n为均
种,只会唱的5人中只有1人选上唱歌人
员__C_15C__13C__24 _种,只会唱的5人中只有2人
选上唱歌人员有_C_52_C_52 种,由分类计数
原理共有___C__32 C_32_+__C__15C__13C__24 +__C_52_C_52__种。
本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果

2.2 排列与组合的概念与计算公式

排列与组合的概念与计算公式1.排列 (在乎顺序)全排列:n 个人全部来排队,队长为n 。

第一个位置可以选n 个,第二位置可以选n-1个,以此类推得: P(n,n)=n(n-1)(n-2)……3*2*1= n! (规定0!=1).部分排列:n 个人选m 个来排队(m<=n)。

第一个位置可以选n 个,第二位置可以选n-1个,以此类推,第m 个(最后一个)可以选(n-m+1)个,得:P(n,m)=n(n-1)(n-2)……(n-m+1)= n! / (n-m)! (规定0!=1).2.组合( 不在乎顺序)n 个人m(m<=n)个出来,不排队,不在乎顺序C(n,m)。

如果在乎排列那么就是P(n,m),如果不在乎那么就要除掉重复,那么重复了多少?同样选出的来的m 个人,他们还要“全排”得到P(n,m),所以得: C(n,m) * m! = P(n,m)C(n,m)= P(n,m) / m!=n! / ( (n-m)! * m! )组合数的性质1:)(,n m C C m n n m n ≤=-组合数的性质2:)(,111n m C C C m n m n m n ≤+=--- 如果编程实现,以上两个公式有没有帮助?练习:311P 、811P 、311C 、811C 、9991001C3.其他排列与组合(1)圆排列:n 个人全部来围成一圈为Q(n,n),其中已经排好的一圈,从不同位置断开,又变成不同的队列。

所以:Q(n,n)*n=P(n,n) >>> Q(n)=P(n,n)/n=(n-1)!由此可知,部分圆排Q(n,r)=P(n,r)/r=n!/(r*(n-r)!).(2)重复排列 (有限):k 种不一样的球,每种球的个数分别是a1,a2,...ak,设n=a1+a2+…+ak ,这n 个球的全排列数,为 n!/(a1!*a2!*...*ak!).(3)重复组合 (无限):n 种不一样的球,每种球的个数是无限的,从中选k 个出来,不用排列,是组合,为C(n+k-1,k).证明:假设选出来的数(排好序)1<=b1<=b2<=b3…….<=bk<=n这题的难点就是=号,现在去掉=号,所以有:1<= b1 < b2+1 < b3+2 < b4+3 …….< bk+k-1 <=n+k-1 中间还是k 个数!不过已经不是b 系列,而是c 系列 假设c[i]:=b[i]+i-1,所以1<= c1 < c2 < c3 < c4 …….< ck <=n+k-1所以问题就开始转换为无重复组合问题,即在n+k-1个元素中选中k个的组合数C(n+k-1,k)。

组合数与排列数的计算技巧

组合数与排列数的计算技巧在数学中,组合数和排列数是常见的基本概念。

组合数指的是从$n$个元素中取$r$个元素的组合方式数,而排列数则是把$n$个元素进行全排列的方式数。

在实际问题中,我们常常需要计算这些数值。

本文将简要介绍组合数与排列数的概念及其计算技巧。

一、组合数组合数是指从$n$个不同元素中,任取$r$ $(r≤n)$个不同元素的组合数。

通常情况下,组合数表示为$\binom{n}{r}$。

1、计算公式组合数的计算公式如下:$$\binom{n}{r}=\frac{n!}{r!(n-r)!}$$其中,$n!=n(n-1)(n-2)\cdots2\times1$表示$n$的阶乘,$r!=(r(\mathrm{r}-1)(r-2)\cdots2\times1)$,$(n-r)!=(n-r)(n-r-1)(n-r-2)\cdots2\times1$。

由组合数的计算公式可知,当$n$和$r$较大时,直接计算可能会产生数值溢出。

为了解决这个问题,我们可以考虑使用对数等技巧对公式进行转化。

2、对数等技巧利用对数等技巧可以将组合数的计算公式转化为以下形式:$$\ln\binom{n}{r}=\ln n!-\ln r!-\ln(n-r)!$$使用对数等式可以大大缩小计算量,避免数值溢出的问题。

另外,我们还可以通过运用组合恒等式进一步简化计算。

3、组合恒等式组合恒等式包括加法公式和乘法公式两种。

这里简单介绍一下乘法公式:$$\binom{n}{r}=\binom{n-1}{r}+\binom{n-1}{r-1}$$乘法公式的证明可以通过重新排列组合方式进行推导。

4、实例对于有些问题,我们可以根据实际情况将组合数的计算简化。

例如,假设有5位候选人参加竞选,选出2位当选,那么选举的方式有多少种?根据组合数的定义,选举方式数为$\binom{5}{2}=\frac{5!}{2!(5-2)!}=10$种。

二、排列数排列数是指由$n$个不同元素进行的全排列方式数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列与组合的定义和公式
排列和组合是数学中重要的概念,它们可以用来解决计数问题。

排列是指从一组元素中选择若干个元素,按照一定的顺序进行排列。

组合则是从一组元素中选择若干个元素,不考虑其顺序。

下面分别给出排
列和组合的定义和公式。

排列是指在一组元素中,按照一定顺序进行选择的方式。

设有n个元素,要从中选择m个元素进行排列,那么排列的种数表示
为P(n,m)。

排列的计算公式为:P(n,m)=n!/(n-m)!
其中,n!表示n的阶乘,表示从1乘到n的乘积,即n!=n*(n-
1)*(n-2)*...*2*1
举个例子,如果有3个元素A、B、C,要从中选择2个元素进行排列,那么排列的种数为P(3,2)。

根据公式,P(3,2)=3!/(3-2)!=3!/1!=3*2=6、所以,从A、B、C三个元素中选择2个元素进行排列的结果有6种,分别
是AB、AC、BA、BC、CA、CB。

组合是指从一组元素中,选择若干个元素,不考虑其顺序的方式。

设有n个元素,要从中选择m个元素进行组合,那么组合的种数表示
为C(n,m)。

组合的计算公式为:C(n,m)=n!/(m!*(n-m)!)
举个例子,如果有3个元素A、B、C,要从中选择2个元素进行组合,那么组合的种数为C(3,2)。

根据公式,C(3,2)=3!/(2!*(3-
2)!)=3!/(2!*1!)=3*2/2=3、所以,从A、B、C三个元素中选择2个元素进行组合的结果有3种,分别是AB、AC、BC。

总结:
排列和组合是解决计数问题的重要概念,根据选择的元素是否考虑顺序,可以确定使用排列公式还是组合公式。

排列公式为:P(n,m)=n!/(n-m)!
组合公式为:C(n,m)=n!/(m!*(n-m)!)
其中,n为元素总数,m为选择的元素个数。

排列和组合的计算公式可以帮助我们快速计算出排列和组合的种数,从而解决实际问题。

在实际应用中,排列和组合经常用于计算概率、统计等领域,也常常在组合数学和离散数学等学科中使用。

需要注意的是,在计算排列和组合时,要遵循乘法原理和加法原理,正确应用公式进行计算。

此外,在实际应用中,还要注意问题的具体条件和约束,以确定使用排列还是组合计算。

相关文档
最新文档