真空助力器原理及性能全参数计算

合集下载

制动真空助力器的工作原理

制动真空助力器的工作原理

制动真空助力器的工作原理
制动真空助力器是汽车制动系统中的一个重要组成部分,它的主要作用是在制动时提供额外的助力,使驾驶员能够更轻松地踩下制动踏板。

制动真空助力器的工作原理基于真空压力。

它通常由一个真空罐、一个控制阀和一个膜片组成。

当驾驶员踩下制动踏板时,控制阀会打开,使真空罐中的真空压力通过膜片传递到制动主缸。

这个真空压力会在膜片的一侧产生一个推力,从而减小了驾驶员需要施加在制动踏板上的力。

具体来说,当制动踏板未被踩下时,控制阀处于关闭状态,真空罐中的真空压力被保持在一个较高的水平。

当驾驶员踩下制动踏板时,控制阀会打开,使真空压力传递到膜片的一侧,推动膜片向另一侧移动。

这个移动会压缩制动主缸中的液压油,从而使制动钳或制动鼓产生制动力,实现车辆的制动。

在一些汽车中,为了提高制动真空助力器的性能,还会设置一个真空助力泵。

当发动机运转时,真空助力泵会抽取空气并将其压缩,从而在真空罐中产生真空压力。

这样可以确保在制动时始终有足够的真空压力可用,提供更好的制动效果。

总的来说,制动真空助力器通过利用真空压力来提供额外的助力,使驾驶员在制动时更加轻松。

它的工作原理简单而有效,对于提高汽车的制动性能和驾驶安全性起到了重要的作用。

汽车真空助力泵工作原理

汽车真空助力泵工作原理

汽车真空助力泵工作原理汽车真空助力泵是一种用于增加制动系统效能的装置。

它广泛应用于现代汽车制动系统中,通过增加制动时的负压来提供力量,以减轻驾驶员踩踏制动踏板所需的力量。

汽车真空助力泵的工作原理主要基于负压的原理。

当发动机正常运转时,活塞在气缸内上下运动,通过连杆与凸轮轴相连。

凸轮轴的旋转运动使活塞产生压缩空气,并将空气排出。

真空助力泵的工作取决于发动机进气歧管中的负压。

通过一个负压传感器,泵可以检测到进气歧管中的负压水平。

当发动机呈高负荷工况时,负压会达到最大值。

泵的工作是通过利用这个负压来生成真空。

泵的内部结构主要由两部分组成:主泵体和凸轮轴。

主泵体是泵的核心部分,主要由一个气缸和活塞组成。

凸轮轴安装在发动机的正时轮后方,与发动机一同旋转。

当凸轮轴旋转时,活塞也会跟随旋转并上下运动。

当凸轮轴旋转时,凸轮会推动活塞往下运动,由于活塞下面的空气无法快速流入,因此会形成负压状态。

随后,在凸轮轴旋转的下一个周期中,活塞上升并迅速充满空气,将形成负压的空气排出。

这种循环运动会不断形成真空,并将真空送入制动系统。

真空助力泵能够通过一个真空泵的开关来控制工作状态。

当发动机启动时,真空泵会自动工作以形成真空。

一旦真空水平达到一定数值,开关将关闭进一步的真空泵工作。

泵会维持现有的真空水平,并在需要时自动开启以保持真空。

在汽车制动系统中,真空助力泵的主要作用是通过产生真空来减轻驾驶员踩踏制动踏板所需的力量。

当驾驶员踩下制动踏板时,负压会传递给真空助力泵,泵会将真空传递到制动系统中的真空助力器。

真空助力器会将真空的力量转化为机械力以实现制动。

总结起来,汽车真空助力泵的工作原理主要基于发动机进气歧管中的负压。

通过凸轮轴的旋转运动,泵内的活塞会产生负压并不断形成真空。

真空助力泵能够通过一个真空泵的开关来控制工作状态,以及将产生的真空传递给制动系统中的真空助力器。

这样,驾驶员在制动过程中所需的力量就会得到减轻,提高了驾驶的舒适性和安全性。

制动主缸及真空助力器结构及原理

制动主缸及真空助力器结构及原理

真空助力器带制动主缸和比例阀的构造原理及故障分析真空助力器带制动主缸和比例阀的构造原理及故障分析一真空助力器与制动主缸的构造及原理(一)液压管路联接形式奇瑞轿车采用液压对角线双回路制动系统联接,如图1所示。

制动主缸3的第一腔出油口通过比例阀与右前轮、左后轮的制动管路4联接相通。

制动主缸3的第二腔出油口通过比例阀与左前轮、右后轮的制动管路5联接相通。

两个制动管路4、5呈穿插型对角线布置。

这种液压对角线双回路制动系统的联接形式,能保证在某一个回路出现故障时仍能得到总制动效率的50%。

此外,这种制动系统构造简单,而且直行时紧急制动的稳定性好。

(二)串联式双腔制动主缸1 带补尝孔串联式双腔制动主缸奇瑞轿车采用补尝孔串联式双腔制动主缸,其构造原理如图2所示。

制动时,驾驶员踩下制动踏板,真空助力器推动第一活塞13左移,在主皮碗盖住补尝孔15后,第一工作腔9的制动液建立起压力,在此压力下及第一回位簧的抗力作用下,又推动第二活塞7,并克制第二回位簧抗力2左移,在主皮碗盖住补尝孔4后,第二工作腔3随之产生压力,制动液通过四个出油口进入前、后制动管路,对汽车施行制动。

解除制动时,驾驶员松开制动踏板,活塞在弹簧作用下开场回位,高压制动液顺管路回流入制动主缸。

由于活塞回位速度迅速,工作腔容积相对增大,致使制动液压力迅速降低,管路中的制动液受到管路阻力的影响,制动液来不及充分流回工作腔充满活塞移动让出的空间,这样使工作腔形成一定的真空度,贮液罐里的制动液便经回油孔14、16和活塞上面的四个小孔推开阀片6经主皮碗5、11的边缘流入工作腔。

当活塞完全回到位时,工作腔通过补尝孔与贮液罐相通,这时多余的制动液经补尝孔流回到贮液罐。

等待下一次制动,这样往复循环进展。

2 带ABS的中心阀式双腔制动主缸ABS系统配备于奇瑞豪华轿车,大大提高了整车的平安性和制动稳定性,为了提高ABS系统工作的可靠性,奇瑞轿车采用了中心阀式双腔制动主缸,其构造如图3所示。

真空助力器的工作过程

真空助力器的工作过程

真空助力器的工作过程一、引言真空助力器是一种常见的汽车制动系统,它通常被用于提高汽车制动的效率和安全性。

本文将介绍真空助力器的工作原理和过程。

二、真空助力器的基本原理真空助力器是一种利用汽车发动机进气道中负压产生的真空来增强制动效果的装置。

当驾驶员踩下制动踏板时,真空助力器会利用进气道中的负压来增加制动系统中的压力,从而使制动更加灵敏。

三、真空助力器的结构1. 主缸:主缸是一个圆柱形容器,内部有一个活塞。

当驾驶员踩下制动踏板时,活塞会向前移动,并将液体推入制动管路中。

2. 真空室:真空室是一个密封的容器,其内部连接着发动机进气道。

当发动机运转时,进气道中产生了负压,这个负压会被传递到真空室内。

3. 动力杆:动力杆连接着主缸和真空室。

当驾驶员踩下制动踏板时,主缸内部的活塞会向前移动,同时动力杆也会向前移动,从而使真空室内的负压传递到主缸中。

四、真空助力器的工作过程1. 踩下制动踏板:当驾驶员踩下制动踏板时,主缸内部的活塞会向前移动,并将液体推入制动管路中。

同时,动力杆也会向前移动。

2. 产生负压:当发动机运转时,进气道中产生了负压,这个负压会被传递到真空室内。

3. 压缩空气:随着驾驶员踩下制动踏板,真空室内的负压被传递到主缸中。

这个负压将使主缸内部的活塞产生一个向后的力量,并将制动液体推回到主缸中。

4. 增加制动力量:由于真空助力器提供了额外的力量,所以可以增加制动系统中的压力。

这样就可以使汽车更快地停止。

五、结论真空助力器是一种非常重要的汽车制动系统组件。

它利用发动机进气道中产生的负压来增强制动效果,并提高汽车的安全性和舒适度。

在选择和维护真空助力器时,需要注意其结构和工作原理,以确保其正常运行。

真空助力系统工作原理

真空助力系统工作原理

真空助力系统工作原理
真空助力系统是一种常见的汽车制动系统,它通过利用真空来增强司机踩下制动踏板的力量,从而提供更好的制动效果。

真空助力系统的工作原理基于气压差的原理。

真空助力系统由真空助力器、制动主缸、制动踏板和真空泵等组成。

当司机踩下制动踏板时,制动踏板上的杆杆会向下移动,杆杆上的推杆与真空助力器上的活塞相连接。

真空助力器内部有一个膜片,当活塞开始向下移动时,它会吸入大量的空气并压缩。

由于真空助力器的一个端口连接到车辆的进气歧管,而另一个端口连接到制动主缸,所以当活塞向下移动时,真空助力器内部的压力会下降,而制动主缸内的压力不变。

由于气压差的存在,真空助力器将会施加一个辅助力,帮助司机向下推压制动踏板。

通过这种方式,真空助力系统可以减小司机需要施加的力量,从而提供更轻松的制动操作。

此外,真空助力系统还可以提高制动系统的灵敏度和反应速度,使车辆在紧急制动时更加安全和稳定。

为了保证真空助力系统的正常工作,需要保持真空泵的良好状态。

真空泵通过驱动发动机的运转来产生真空。

它能够抽取进气歧管中的空气,从而保持助力器内部的真空压力。

如果真空泵出现故障或损坏,
将会导致助力器内的真空压力不足,造成制动效果下降甚至完全失效。

总而言之,真空助力系统通过利用气压差来增强司机施加在制动踏板上的力量,提供更好的制动效果。

它是汽车制动系统中常见且重要的部分,为驾驶者提供更安全和舒适的驾驶体验。

真空助力系统工作原理

真空助力系统工作原理

真空助力系统工作原理
真空助力系统是一种常用于汽车制动系统中的辅助装置,它通过利用真空来增加制动踏板的力量,并提供更好的制动效果。

其工作原理如下:
1.真空泵:真空助力系统中的关键部件是真空泵,它通过驱动装置(通常是发动机的曲轴或电动马达)产生真空。

真空泵会通过吸气阀将空气抽出真空室,形成真空状态。

2.真空室:真空室是一个密封的容器,用于存储真空。

真空泵将抽出的空气送入真空室,使其内部压力降低,形成真空状态。

3.真空传感器:真空传感器用于监测真空室内的压力变化。

当真空室内的压力下降到一定程度时,传感器会触发系统启动。

4.真空助力器:真空助力器是系统中的另一个重要组件,它与制动踏板相连。

当驾驶员踩下制动踏板时,真空助力器会根据传感器的信号启动。

5.真空助力器工作:真空助力器内部包含一个活塞和一个密封膜。

当系统启动时,真空助力器的活塞会受到真空的吸引力,向前移动,并将这个力量传递给制动踏板。

6.制动踏板力增强:真空助力器的作用是增加制动踏板的力量。

当驾驶员踩下制动踏板时,真空助力器会将真空的力量转化为机械力,使制动踏板更容易踩下,减轻驾驶员的踩踏力度。

总结起来,真空助力系统通过利用真空泵产生真空,然后将真空传递给真空助力器,使其提供额外的力量来增加制动踏板的力量,从
而提高汽车制动效果。

真空助力器工作原理

真空助力器工作原理

其他应用领域
除了汽车刹车系统,真空助力器还应用于其他领域,如工业制动系统、电梯和自 动扶梯等。
在工业制动系统中,真空助力器能够提供稳定的制动力,确保安全可靠地停止设 备。在电梯和自动扶梯中,真空助力器用于控制电机的旋转速度和方向,确保平 稳运行。
PART 06
结论
对汽车工业的影响
提高驾驶安全性
未来发展趋势
01
02
03
智能化发展
随着智能化技术的不断进 步,真空助力器将与智能 驾驶系统相结合,实现更 加智能化的制动控制。
轻量化设计
为了降低汽车能耗和排放, 真空助力器将进一步采用 轻量化材料和设计,降低 产品重量。
集成化与模块化
为了简化汽车结构和降低 制造成本,真空助力器将 进一步与其他制动系统部 件集成化和模块化。
距离,提高车辆的安全性。
优势
提高制动性能 减轻驾驶者负担 提高驾驶安全性
适应性强
真空助力器能够显著提高制动性能,缩短制动距离,提高车辆 的制动效能。
由于真空助力器的助力作用,驾驶者在使用制动踏板时可以更 为轻松,减轻了驾驶者的负担。
真空助力器能够提供稳定的制动力,避免了因驾驶者操作不当 而引起的制动不均匀或过猛,提高了驾驶安全性。
促进汽车工业技术创新
真空助力器能够显著提高制动系统的 响应速度,缩短制动距离,从而提高 驾驶安全性。
真空助力器的应用推动了汽车工业在材 料、工艺和设计等方面的技术创新,提 高了汽车的整体性能和竞争力。
改善驾驶舒适性
通过减轻制动踏板力,真空助力器可 以减少驾驶者在制动过程中的疲劳感, 提高驾驶舒适性。
助力过程
当驾驶员踩下制动踏板时,制 动主缸的活塞杆通过推杆推动

真空助力器结构与原理

真空助力器结构与原理

真空助力器结构与原理
真空助力器结构与原理:
I. 结构特点
1. 由真空发生器、真空容器、真空助力器三部分组成;
2. 使用完全封闭的真空容器制作,外表面镀锌板或涂胶处理,防止真空受损;
3. 真空助力器内润滑,使用密封环挡圈圆柱齿轮主令,确保助力器的安全操作;
4. 由液压介质和压差控制设备带动旋转;
5. 还配备有活塞、连杆及其活塞杆连接块、滚珠轴承等元件。

II. 原理
1. 真空助力器(板片式真空液压器)是利用系统内部真空容器内排气和排气阀的自动控制,使活塞实现不受空气压力而维持恒定的真空应力作用;
2. 活塞空气压力对等的下拉力,可使活塞上的连杆产生连续的螺旋线运动,变换至输出端;
3. 同时,只有在活塞的上部充满空气的真空容器使得活塞具有超出入口处气压变化而维持恒定输出力的作用;
4. 当系统中真空助力器的液压介质或者气压发生变化时,活塞也会相应的改变,实现可控的液压力输出、变速功能;
5. 采用真空助力器设计的元件组合可以实现更理想的运动性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单滑体式真空助力器工作原理1、未抽真空和抽真空平衡后均为图1 (a) 所示状态真空阀开启,空气阀关闭,前后腔导通2、当缓慢推动控制推杆, 控制阀活塞及控制阀总成前行Δ后, 真空阀口关闭, 控制阀活塞与控制阀总成分离, 大气阀口打开如图1 (b) 所示。

真空阀关闭,空气阀开启,前后腔隔开。

3、助力器的后腔进入一定量的大气, 使前后腔形成一定的压差, 当压差对动力缸产生的推力大于动力缸回位簧预紧力时, 便在助力器出力杆(也叫助力器推杆) 产生输出力, 同时该力的反力使反力盘变形, 如果此时反力盘的变形尚未消除反力盘与控制阀活塞之间的间隙, 则在输入力(控制阀内、外弹簧预紧力的合力) 几乎不变的情况下, 大气阀口继续打开, 随着后腔的大气不断进入, 前后腔压差随之增大, 输出力增大, 反力盘的变形也大了, 直到反力盘与控制阀活塞之间的间隙消除, 此时输出力的反力以等压强传递原理按一定比例(这个比例即为静特性曲线中的助力比。

根据压强传递原理, 助力比= 出力杆座面积/控制阀活塞头部面积) 传到控制阀活塞上,使控制部分处于图1 (c) 所示的动平衡状态。

前后压力差推动反馈盘变形向后凸消除活塞头部同反馈盘之间的间隙并推动活塞后移关闭空气阀,真空阀也关闭,此时系统处于平衡状态。

4、这个状态随着输入力的增大一直维持到静特性曲线的最大助力点(此点两腔压差达到最大)。

随着输入力的继续增大, 动平衡状态被打破, 控制部分处于图1 (d) 所示状态, 此时输出力与输入力等量变化。

输入杆增加输入力,打破平衡,活塞杆前移空气阀打开。

空气阀打开,真空阀关闭5、撤去输入力, 助力器又回到图1 (a) 所示状态。

撤销输入力,活塞回到初始位置。

空气阀关闭,真空阀打开。

锁片定位单阀体式真空助力器工作原理1、在未抽真空时, 控制部分如图2(b) 所示, 此时由于动力缸弹簧的压力促使锁片将控制阀活塞向前“推动”, 使控制阀活塞与控制阀总成分离,空气阀打开,真空关闭。

锁片强制拉动活塞前移,真空阀关闭,空气阀打开。

2、当抽真空时, 前腔形成一定真空度, 后腔仍处于常气压状态。

随着压差增大, 其产生的推力克服了动力缸回位簧的预紧力时, 动力缸部分向前移动, 形成了图 2 (c) 所示状态, 使前后腔同时处于抽真空状态。

当两腔压差缓和到仅能克服动力缸回位簧预紧力时, 动力缸部分在回位簧作用下后移, 形成图2 (d) 所示平衡状态。

真空接通后前后腔压差导致黄色的动力缸向前移动,紫色的密封圈前移关闭空气阀,密封圈同动力缸密封边脱开,真空阀打开。

当两腔压差缓和到仅能克服动力缸回位簧预紧力时, 动力缸部分在回位簧作用下后移,关闭真空阀。

达到平衡状态。

平衡状态真空助力器两腔状态3、当缓慢推动控制推杆时, 大气阀立即打开(故该结构助力器的空行程为零, 这就是锁片定位单阀体式真空助力器与单阀体式真空助力器相比在性能上的优越之处)。

这以后它的工作过程与单阀体式结构相同。

当缓慢推动控制推杆时,空气阀马上打开二、特性曲线及参数介绍1、最大助力点:最大助力点在规定的真空条件下测得。

2、升压曲线同降压曲线:Fa E Z 为升压曲线,Fa1 E1 Z为降压曲线。

3、输入力为最大助力30%的输出力,输入力为最大助力80%的输出力,通过这两点计算助力比的值较准确。

4、助力器滞后率,当助力器输出力为最大助力的50%时,对降压曲线上的E0.5min及升压曲线上的E0.5max, E0.5min/E0.5max称为滞后率。

5、跳跃值,跳跃值的大小取决于空气阀座同反馈盘之间的间隙。

6、释放力,释放力是保证助力器装配有一定的预紧力,保证助力器能够完全回位,一般应大于30N.三,性能计算1.反馈盘式真空助力器的力平衡方程式根据上述的理论分析,可列出当助力器工作时处于“双阀关闭”的平衡状态时的力平衡等式为:FP=FR+PO(A1 –A2)+P(A2 –A3)+(P –P0)A4 –F1 (1)式(1)中FP——助力器的输出力;FR——阀杆输入力;PO——真空腔与大气腔间的压力差;A1——助力器有效作用面积;A2——阀体柄部截面积;A3——主缸推杆柄部截面积;A4——空气阀座密封面截面积;P——真空腔的真空度;F1——回位簧抗力。

P1——真空腔的绝对气压值P2——空气腔的绝对气压值P3——标准大气压力值说明:P1为真空腔的绝对气压值,P2为空气腔的绝对气压值,P3为标准大气压力值,所以真空腔的真空度等于:P=P3-P1,真空腔同空气腔之间的压力差等于:P0=P2-P1FP=FR+PO(A1 –A2)+P(A2 –A3)+(P –P0)A4 –F1= FR+ (P2-P1) (A1 –A2)+ (P3-P1) (A2 –A3)+( P3-P2) A4 –F1= FR+ (P2-P1) (A1 –A2)+ (P3-P1) (A2 –A3)+(( P+P1)-(P0+P1)) A4- F1= FR+PO(A1 –A2)+P(A2 –A3)+(P –P0)A4 –F1A1A2FP FRP3P1A3P2F1式(1)可转化为:FP=FR+POA1+(P –P0)(A2 –A4)–PA3 –F1 (2)由(2)式可以看出当压力差PO增加至最大即(PO=P),阀杆输入力FR不再增加时,助力器输出力FP 达到最大助力点(见图3特性曲线1),此时的回位簧抗力为F1,则助力器在最大助力点时的力平衡等式为:FP=FR+P(A1 –A3)–F1 (3)当真空腔的真空度P为80kPa时,则真空腔与大气腔的气压差为(0~80)kPa。

因此,随着大气腔的真空度的下降,大气压力作用于空气阀座产生的输入力Fk=(P –Po)A4与阀体柄部所影响的输入力也越来越小直至下降为零达到最大助力点,其二者变化规律均为减函数。

回位簧(9)抗力随着阀体前移而逐渐增加,其变化规律为增函数。

为此在达到助力点之前,如果将上述互为反函数的变化值视为近似相等时,则回位簧抗力F1可视为定值。

助力器的伺服力Fv=P(A1–A3)(4)在阀杆输入力FR中,一部分输入力用来克服阀杆回动簧的抗力F2,则有效输入力为FRY为:FRY=FR-F2(5)伺服力产生的助力除部分用来克服回位簧的抗力F1外,还要承受阀杆回动簧的抗力F2之后才作用在反馈盘上,为此作用在反馈盘上的有效伺服力FVY为:Fvy=P(A1 –A3)–F1+ F2 (6)将式(5)、(6)带入式(3)得:Fp= FRY+ FVY (7)根据平衡状态时的受力分析,反馈盘的内圈所承受的有效输入力FRY的压强与外圈所受的有效伺服力FVY 的压强相等时,助力器处于“双阀关闭”的平衡状态,可列如下等式:(8)真空助力器的伺服比计算助力器的伺服比IV是指有效伺服力FVY与有效输入力FRY的比值,可通过等式(8)转换表示:(9)真空助力器的助力比计算助力器的助力比It为助力器的输出力Fp与有效输入力FRY的比值,根据等式(7)和(9)可得出:(10)真空助力器的特性曲线方程考虑到助力器在实际工作过程中,由于相关零部件的摩擦阻力的存在。

为此,通常助力器的工作效率为η=0.85~0.95,所以式(2)变化为:Fp=[FR+P0A1+( A2+A4 )( P –Po ) –PA3 –F1]×η(11)式(3)变化为:Fp=[FR+P ( A1 –A3 ) –F1]×η(12)当助力器的输出力超过最大助力点时,由于真空度P为定值,则P ( A1 –A3 )为常数,输出力FP与输入力FR为线性递增变化。

因此式(12)可用来计算最大助力点之后的输出力的值。

由等式(7)考虑助力器效率可得:Fp=( FRY+ FVY)×η(13)由等式(9)可得:FVY=FRY IV (14)由等式(10)、(5)可得:Fp=FRY Itη= ( FR –F2)Itη(15)式(15)表明,当输入力FR≥F2时才能产生输出力。

因此,最小输入力(始动力)Fa的等式为:Fa=F2 (16)当助力器处于非工作状态时,真空腔与大气腔的气压差P0为零,由式(11)可得:Fp=[FR+P ( A2+A4 –A3 ) –F1]×η= 0 (17)根据式(17)可得出:FR=F1 –P ( A2+A4 –A3 ) (18)因为FR ≥0所以F1 ≥P ( A2+A4 –A3 ) (19)根据式(19)可知,回位簧装配抗力与真空腔的真空度、阀体柄部截面积A2、主缸推杆柄部截面积A3和空气阀座密封面截面积A4有关。

只有当式(19)成立时,助力器才不会出现自放大的失效模式即输入力为0时产生输出力,阀体才能压紧锁片(12)并靠在助力器的后壳体铆接部件(2)上。

当助力器在无真空状态下工作时,P=P0 = 0,式(11)变化为:Fp=( FR –F1 )×η(20)根据式(20)可知,无真空时所需最小输入力(始动力)Fb的等式为:Fb=F1 (21)特性曲线的跳跃值三角区真空助力器的输入——输出特性曲线如图1所示。

由图可见,由输入力的最小始动值Fa1与最大始动值Fa2为起点的特性曲线L1、L2构成的区间,是助力器的特性允许范围。

当输入力由0增至最小始动值Fa1之前,输出力Fp为0,而当输入力增至最小始动值Fa1时,输出力则出现跳跃值。

由FP T 1、FP T 2、Fa1、Fa2所围成的三角区即称为跳跃值三角区。

特性曲线的起始点越靠近Fa1,其跳跃值越大。

越靠近Fa2,其跳跃值越小。

可根据不同的产品及客户要求,通过调整压块与反馈盘的间隙来调整跳跃值的大小。

但过大的跳跃值会使助力器内部零件过早地磨损,使用寿命大大降低。

特性曲线的偏移由于助力器的输入输出特性曲线不是从零点开始的,而且其延长线也不一定通过坐标原点,因此特性曲线出现了偏移。

根据式(5)、(15)可得:FP=FRY It η= FR It η –F2 Itη(22)式(22)的斜率为:K = Itη截距为:b = –F2 Itη最大助力点后输出力等式(12)可变化为:Fp=[FR+P(A1–A3)–F1]η=FRη+[P(A1–A3)–F1]η(23)式(23)的斜率为:K1=η截距为:b1=[ P ( A1 –A3 ) –F1]η根据式(22)、(23)绘制特性曲线如图2所示,两条曲线的交点为最大助力点。

由于在输入力为Fa1时输出力具有最大跳跃值FPT1,则输出力为FP1:Fp1`=FR1Itη1 –Fa1Itη1 +FPT1 (24)Fp1`是在真空度为允许值的最上限、效率为最大值η1时的特性曲线偏移后的最大助力点时的输出力,与其对应的FR1输入力是偏移后的输入力,如图1中L1所示。

当输入力为最大始动力Fa 2`时输出力具有最小跳跃值FPT 2`,则输出力FP2`为:Fp2=FR2Itη2 –Fa2Itη2+FPT2 (25)Fp2是在真空度为允许值的最下限、效率为最小值η2时的特性曲线偏移后的最大助力点时的输出力,与其对应的FR2输入力是偏移后的输入力如图1中L2所示。

相关文档
最新文档