2019年北京三十五中新高一新生入学分班考试数学试题-含详细解析

合集下载

2019年重点高中高一新生分班考试数学卷含答案(汇编)

2019年重点高中高一新生分班考试数学卷含答案(汇编)

2019年重点高中高一新生分班考试数学卷姓名:__________班级:__________考号:__________一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.一个数的倒数的绝对值是3,这个数是()A.3 B. C.3或﹣3 D.或﹣2.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60° D.30°3.的值是()A.±16 B.±4 C.16 D.−164.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为( )A.35°B.45°C.55°D.65°5.已知等边三角形的边长为,则它面积与边长之间的关系用图象大致可表示为()A.B. C.D.6.现有2cm,5cm长的两根木棒,再从下列长度的四根木棒中选取一根,可以围成一个三角形的是()A.2cm B.3cm C.5cm D.7cm7.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式是()A.1-3x-4y B.-1-3x-4y C.1+3x-4y D.-1-3x+4y8.函数y=与y=x+1的图象的交点坐标为(a,b),则a2+b2的值为()A.1 B.11 C.25 D.无法求解9.用一个半径为30,圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.10 B.20 C.10π D.20π10.如图,在菱形纸片ABCD中,,P为AB中点折叠该纸片使点C落在点处且点P在上,折痕为DE,则的大小为A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.已知是整数,则n是自然数的值是_____.12.用反证法证明∠A>60°时,应先假设_____.13.如果不等式组有解,那么m的范围是______.14.已知点,轴,且,则点N的坐标为______.15.如图,矩形的顶点在坐标原点,,分别在轴,轴的正半轴上,点的坐标为,点的坐标为,当此矩形绕点旋转到如图位置时的坐标为________.16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,点 D、E 分别在边AC、BC上,且CD:CE=3︰4.将△CDE绕点D顺时针旋转,当点C落在线段DE上的点 F处时,BF恰好是∠ABC的平分线,此时线段CD的长是________.三、解答题(本大题共8小题,共66分)17.(本题8分)解方程组和分式方程:(1)解方程组(2)解分式方程.18.(本题8分)平面上有3个点的坐标:,,在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上上的概率是多少?从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.19.(本题10分)某校组织学生开展课外社会实践活动,现有甲、乙两种大客车可租,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,甲种客车每辆载客量45人,乙种客车每辆载客量30人,共有师生330人,求最节省的租车费用是多少元?20.(本题8分)周末,小亮一家人去水库游玩,他在大坝上的点A处看到一棵大树的影子刚好落在坝底的BE处点A与大树及其影子在同一平面内,此时太阳光与地面夹角为,在A处测得树顶D的仰角为如图所示,已知背水坡AB的坡度:3,AB的长为10米,请你帮助小亮算一算这颗大树的高度结果精确到米,参考数据:,注:坡度是指坡面的铅直高度与水平宽度的比21.(本题10分)据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.22.(本题10分)已知:如图,抛物线y=x2﹣2x﹣3与x轴交于A、B两点,与y轴交于点C,该抛物线的顶点为M.(1)求点A、B、C的坐标.(2)求直线BM的函数解析式.(3)试说明:∠CBM+∠CMB=90°.(4)在抛物线上是否存在点P,使直线CP把△BCM分成面积相等的两部分?若存在,请求出点P的坐标;若不存在,请说明理由.23.(本题12分)如图1,正方形ABCD中,F为AB中点,连接DF,CE⊥DF于E,连接BE.(1)作出△ADF关于F成中心对称的图形,并探究BE和BC数量关系;(2)如图2,BM平分∠ABE交CE延长线于M,连接MD,试探究DM、CM、BM线段关系并给出证明;(3)若点F在线段AB上运动(不与端点重合),AB=4,写出BE长度的取值范围.答案分析一、选择题(本大题共10小题,每小题3分,共30分。

2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学 试题卷考生须知:1.全卷满分120分,考试时间120分钟,试题卷共6页,有三大题,共24小题.2.全卷答案必须做在答题纸卷Ⅰ、卷Ⅱ的相应位置上,做在试题卷上无效.卷 Ⅰ一.选择题(本题10小题,共30分.选出各题中唯一正确选项,不选、多选、错选,均不得分)1.﹣8的绝对值等于( )A .B .﹣8C .8D . 2.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.下面图案,从几何图形的角度看,这些图案既是中心对称图形又是轴对称图形的是( )A .B .C .D .4.如图是一个正方体,则它的表面展开图可以是( )5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( )A .B .C .D . 6.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,,∠AOB=60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是( )A .①,②B .①,④C .③,④D .②,③8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.1010.如图,已知∠AOB=30°,以O为圆心、a为半径画弧交OA、OB于A1、B1,再分别以A1、B1为圆心、a为半径画弧交于点C1,以上称为一次操作.再以C1为圆心a为半径重新操作,得到C2.重复以上步骤操作,记最后一个两弧的交点(离点O最远)为C K,则点C K到射线OB的距离为()A. B.C.a D.卷Ⅱ二.填空题(本题有6小题,每题4分,共24分)11.数据1,2,3,5,5的众数是,平均数是.12.因式分解:4m3﹣m = .13.如图所示:用一个半径为60cm,圆心角为150°的扇形围成一个圆锥,则这个圆锥的底面半径为 cm.14.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元以上一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.16.如图在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度,按照这种移动规律移动下去,第n次移动到点A n,到达点A如果点A n与原点的距离不小于50,那么n的最小值是,n取最小值时A n表示的数是三.解答题(本题有8小题,第17~19题每题6分,第20、21题8分,第22、23题每题10分,第24题12分,共66分)17.(6分)(1)计算:(2)解方程:18.(6分)为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.七年级参加社会实践活动天数的频数分布表七年级参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请估计该市七年级学生参加社会实践活动不少于5天的人数.19.(6分)根据卫生防疫部门要求,游泳池必须定期换水,清洗.游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m2)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.(8分)如图,矩形纸片ABCD中,AD=5,S ABCD=15,在边BC上取一点F,使BF=4,剪下△ABF,将它平移至△DCE的位置,拼成四边形AFED.①求证四边形AFED是菱形;②求四边形AFED两条对角线的长.21.(8分) 某市需要新建一批公交车候车亭,设计师设计了如图1所示产品.产品示意图的侧面如图2,其中支柱长DC 为2.1m ,且支柱DC 垂直于地面DG ,顶棚横梁AE 为长1.5m ,BC 为镶接柱,点B 是顶棚的镶接点,镶接柱与支柱的夹角∠BCD=150°,与顶棚横梁的夹角∠ABC=135°,要求使得横梁一端点E 在支柱DC 的延长线上,此时经测量得镶接点B与点E 的距离为0.35m .( , ,精确到0.01m .)(1)求E 到BC 的距离和EC 长度;(2)求点A 到地面的距离.22.(10分)如图,已知反比例函数(x >0,k 是常数)的图象经过点A (1,4),点 B (m ,n ),其中m >1,AM⊥x 轴,垂足为M ,BN⊥y 轴,垂足为N ,AM 与BN 的交点为C .(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标.23.(10分)《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线 经过原点O ,与x 轴的另一个交点为A ,则a= .【操作】将图①中抛物线在x 轴下方的部分沿x 轴折叠到x 轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G ,如图②.直接写出图象G 对应的函数解析式.【探究】图②中过点B (0,1)作直线l 平行x 轴,与图象G 的交点从左至右依次为点C ,D ,E ,F ,如图③.求图象G 在直线l 上方的部分对应的函数y 随x 增大而增大时x 的取值范围.【应用】P 是图③中图象G 上一点,其横坐标为m ,连接PD ,PE .直接写出△PDE 的面积不小于1时m 的取值范围.24.(12分)如图,在每一个四边形ABCD 中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.G(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,P在四边形ABCD的边AD上运动,作出使∠BPC最大的点P,说明此时∠BPC最大的理由;并求出cos∠BPC的值;。

北京第三十五中学高一数学理联考试题含解析

北京第三十五中学高一数学理联考试题含解析

北京第三十五中学高一数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,,,则、、的大小关系是()A. B. C. D.参考答案:B考点:比较大小【方法点睛】比较大小的常用方法(1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:[KS5UKS5U.KS5U一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系.(4)借助第三量比较法2. 已知f(x)=,则f [f(-2)]=( ).A.-1B. 0C. 2D.参考答案:3. 如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()(A) 锐角三角形 (B) 直角三角形 (C) 钝角三角形 (D) 由增加的长度决定参考答案:A 略4. 函数的周期是()A.B.C.D.参考答案:D略5. 在中,已知,则在中,等于()A. B. C. D. 以上都不对参考答案:C略6. 等差数列{an}中,a1>0,公差d<0,Sn为其前n项和,对任意自然数n,若点(n,Sn)在以下4条曲线中的某一条上,则这条曲线应是()参考答案:C∵Sn=na1+d,∴Sn=n2+(a1-)n,又a1>0,公差d<0,所以点(n,Sn)所在抛物线开口向下,对称轴在y轴右侧.7. 若集合,,则=-------------()A. B. C. D.参考答案:C8. 在定义域为(a>0)内,函数均为奇函数、,则为()A、奇函数B、偶函数C、非奇非偶函数D、无法判断奇偶性参考答案:A9. 已知,,则的值为()A.B.C.或D.或参考答案:A略10. 海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋. 如图:是某港口在某季节每天的时间与水深在直角坐标系中画出的散点图(时间为横坐标,水深为纵坐标)下列函数中,能近似描述这个港口的水深与时间的函数关系的是()A.B. C. D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 已知角α的终边经过点P(4,﹣3),则2sinα+3cosα=.参考答案:【考点】G9:任意角的三角函数的定义.【分析】利用任意角的三角函数的定义,求得sinα和cosα的值,可得2sinα+3cosα的值.【解答】解:∵角α的终边经过点P (4,﹣3),∴x=4,y=﹣3,r=|OP|=5,∴sinα==﹣,cosα==,∴2sinα+3cosα=2?(﹣)+3?=,故答案为:.12. 在等比数列{a n}中,已知,则=________________. 参考答案:12813. 利用更相减损之术求1230与411的最大公约数时,第三次做差所得差值为________。

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题-含详细解析

2019年北大附中新高一分班考试数学试题-真题一、选择题(本大题共8小题,共24分)1.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A. 200tan70°米B. 200tan70∘米 C. 200sin 70°米 D. 200sin70∘米2.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(−1,n),其部分图象如图所示.以下结论错误的是()A. abc>0B. 4ac−b2<0C. 3a+c>0D. 关于x的方程ax2+bx+c=n+1无实数根3.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A. 1个B. 2个C. 3个D. 4个4.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L”形纸片,图(2)是一张由6个小正方形组成的3×2方格纸片.把“L”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法.图(4)是一张由36个小正方形组成的6×6方格纸片,将“L”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n种不同放置方法,则n的值是()A. 160B. 128C. 80D. 485.如图,将矩形ABCD折叠,使点C和点A重合,折痕为EF,EF与AC交于点O.若AE=5,BF=3,则AO的长为()A. √5B. 3√5 C. 2√5 D. 4√526.将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度ℎ(cm)与注水时间t(min)的函数图象大致为图中的()A. B.C. D.7.在平面直角坐标系中,点O为坐标原点,抛物线y=x2−2x−3与y轴交于点A,与x轴正半轴交于点B,连接AB,将Rt△OAB向右上方平移,得到Rt△O′A′B′,且点O′,A′落在抛物线的对称轴上,点B′落在抛物线上,则直线A′B′的表达式为()D. y=x+2A. y=xB. y=x+1C. y=x+128.已知P1(x1,y1),P2(x2,y2)是抛物线y=ax2−2ax上的点,下列命题正确的是()A. 若|x1−1|>|x2−1|,则y1>y2B. 若|x1−1|>|x2−1|,则y1<y2C. 若|x1−1|=|x2−1|,则y1=y2D. 若y1=y2,则x1=x2二、填空题(本大题共8小题,共24分)9.如图,在△ABC中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB、BC于点D、E.DE的同样长为半径作弧,两弧交于点F.②分别以点D、E为圆心,大于12③作射线BF交AC于点G.如果AB=8,BC=12,△ABG的面积为18,则△CBG的面积为______.10.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长至点F,使DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为______.得DF=1411.抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,下列四个结论:①一元二次方程ax2+bx+c=0的根为x1=2,x2=−4;②若点C(−5,y1),D(π,y2)在该抛物线上,则y1<y2;③对于任意实数t,总有at2+bt≤a−b;④对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则p的值只有两个.其中正确的结论是______(填写序号).12.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是______.第12题图第13题图13.如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC相切于点M,N.已知∠BAC=⏜的长为π,则图中阴影部分的面积为______.120°,AB+AC=16,MN14.矩形纸片ABCD,长AD=8cm,宽AB=4cm,折叠纸片,使折痕经过点B,交AD边于点E,点A落在点A′处,展平后得到折痕BE,同时得到线段BA′,EA′,不再添加其它线段.当图中存在30°角时,AE的长为______厘米.第14题图第15题图15.如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC=______度.16.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是______.(写出所有正确结论的序号)三、计算题(本大题共1小题,共6分)17.某公司生产A型活动板房成本是每个425元.图①表示A型活动板房的一面墙,它由长方形和抛物线构成,长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.(1)按如图①所示的直角坐标系,抛物线可以用y=kx2+m(k≠0)表示.求该抛物线的函数表达式;(2)现将A型活动板房改造为B型活动板房.如图②,在抛物线与AD之间的区域内加装一扇长方形窗户FGMN,点G,M在AD上,点N,F在抛物线上,窗户的成本为50元/m2.已知GM=2m,求每个B型活动板房的成本是多少?(每个B型活动板房的成本=每个A型活动板房的成本+一扇窗户FGMN的成本)(3)根据市场调查,以单价650元销售(2)中的B型活动板房,每月能售出100个,而单价每降低10元,每月能多售出20个.公司每月最多能生产160个B型活动板房.不考虑其他因素,公司将销售单价n(元)定为多少时,每月销售B型活动板房所获利润w(元)最大?最大利润是多少?四、解答题(本大题共12小题,共46分)18. 如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.进货单商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下: 李阿姨:我记得甲商品进价比乙商品进价每件高50%. 王师傅:甲商品比乙商品的数量多40件. 请你求出乙商品的进价,并帮助他们补全进货单.19. 阅读感悟:有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题: 已知实数x 、y 满足3x −y =5①,2x +3y =7②,求x −4y 和7x +5y 的值.本题常规思路是将①②两式联立组成方程组,解得x 、y 的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①−②可得x −4y =−2,由①+②×2可得7x +5y =19.这样的解题思想就是通常所说的“整体思想”. 解决问题:(1)已知二元一次方程组{2x +y =7,x +2y =8,则x −y =______,x +y =______;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x 、y ,定义新运算:x ∗y =ax +by +c ,其中a 、b 、c 是常数,等式右边是通常的加法和乘法运算.已知3∗5=15,4∗7=28,那么1∗1=______.20.如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=kx(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”(1)当n=1时.①求线段AB所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.(2)若小明的说法完全正确,求n的取值范围.21.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG =ABAD=23,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.22.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,AE与过点D的切线互相垂直,垂足为E.(1)求证:AD平分∠BAE;(2)若CD=DE,求sin∠BAC的值.23.某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=ax2+bx+c.当x=10时,y=400;当x=20时,y=1000.B城生产产品的每件成本为70万元.(1)求a,b的值;(2)当A,B两城生产这批产品的总成本的和最少时,求A,B两城各生产多少件?(3)从A城把该产品运往C,D两地的费用分别为m万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(2)的条件下,直接写出A,B两城总运费的和的最小值(用含有m的式子表示).24.实际问题:某商场为鼓励消费,设计了抽奖活动,方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,n(n为整数,且n≥4)这n个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n(n为整数,且n≥5)这n个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n(n为整数,且n≥3)这n个整数中任取a(1<a<n)个整数,这a个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,n+3(n为整数,且n≥2)这(n+1)个整数中任取a(1<a<n+1)个整数,这a个整数之和共有______种不同的结果.25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G.特例感知:(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为F,一条直角边与AC重合,另一条直角边恰好经过点B.通过观察、测量BF与CG的长度,得到BF=CG.请给予证明.猜想论证:(2)当三角尺沿AC方向移动到图2所示的位置时,一条直角边仍与AC边重合,另一条直角边交BC于点D,过点D作DE⊥BA垂足为E.此时请你通过观察、测量DE、DF与CG的长度,猜想并写出DE、DF与CG之间存在的数量关系,并证明你的猜想.联系拓展:(3)当三角尺在图2的基础上沿AC方向继续移动到图3所示的位置(点F在线段AC上,且点F与点C不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)26.已知抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…−2−1012…y…m0−3n−3…(1)根据以上信息,可知抛物线开口向______,对称轴为______;(2)求抛物线的表达式及m,n的值;(3)请在图1中画出所求的抛物线.设点P为抛物线上的动点,OP的中点为P′,描出相应的点P′,再把相应的点P′用平滑的曲线连接起来,猜想该曲线是哪种曲线?(4)设直线y=m(m>−2)与抛物线及(3)中的点P′所在曲线都有两个交点,交点从左到右依次为A1,A2,A3,A4,请根据图象直接写出线段A1A2,A3A4之间的数量关系______.27.某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积S1,S2,S3之间的关系问题”进行了以下探究:类比探究(1)如图2,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为斜边向外侧作Rt△ABD,Rt△ACE,Rt△BCF,若∠1=∠2=∠3,则面积S1,S2,S3之间的关系式为______;推广验证(2)如图3,在Rt△ABC中,BC为斜边,分别以AB,AC,BC为边向外侧作任意△ABD,△ACE,△BCF,满足∠1=∠2=∠3,∠D=∠E=∠F,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;拓展应用(3)如图4,在五边形ABCDE中,∠A=∠E=∠C=105°,∠ABC=90°,AB=2√3,DE=2,点P在AE上,∠ABP=30°,PE=√2,求五边形ABCDE的面积.28.已知直线l1:y=−2x+10交y轴于点A,交x轴于点B,二次函数的图象过A,B两点,交x轴于另一点C,BC=4,且对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2≥5时,总有y1>y2.(1)求二次函数的表达式;(2)若直线l2:y=mx+n(n≠10),求证:当m=−2时,l2//l1;(3)E为线段BC上不与端点重合的点,直线l3:y=−2x+q过点C且交直线AE于点F,求△ABE与△CEF面积之和的最小值.答案和解析1.【答案】B【解析】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°−70°=20°,∴∠PTQ=70°,∴tan70°=PQPT,∴PT=PQtan70∘=200tan70∘,即河宽200tan70∘米,故选:B.在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.此题考查了解直角三角形的应用−方向角问题,掌握方向角与正切函数的定义是解题的关键.2.【答案】C【解析】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=−b2a=−1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2−4ac>0,即4ac−b2<0,故B正确;C.∵抛物线的对称轴为直线x=−1,抛物线与x轴的一个交点在(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(−1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B 进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c与直线y=n+1无交点,可对D进行判断.本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.3.【答案】C【解析】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD//BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB=ABBE =612=12,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.4.【答案】A【解析】解:观察图象可知(4)中共有4×5×2=40个3×2的长方形,由(3)可知,每个3×2的长方形有4种不同放置方法,则n的值是40×4=160.故选:A.对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.此题考查了规律型:图形的变化类,要求学生通过观察图形,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.5.【答案】C【解析】解:∵矩形ABCD,∴AD//BC,AD=BC,AB=CD,∴∠EFC=∠AEF,∴AE=AF=3,由折叠得,FC=AF,OA=OC,∴BC=3+5=8,在Rt△ABF中,AB=√52−32=4,在Rt△ABC中,AC=√42+82=4√5,∴OA =OC =2√5,故选:C .由矩形的性质,折叠轴对称的性质,可求出AF =FC =AE =5,由勾股定理求出AB ,AC ,进而求出OA 即可. 本题考查矩形的性质、折叠轴对称的性质,勾股定理等知识,根据图形直观,求出线段的长是得出答案的前提. 6.【答案】B【解析】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A 、D 一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h 不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h 随t 的增大而增大,当水注满小杯后,小杯内水面的高度h 不再变化.故选:B .根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度ℎ(cm)与注水时间t(min)的函数图象.本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.7.【答案】B【解析】解:如图,∵抛物线y =x 2−2x −3与y 轴交于点A ,与x 轴正半轴交于点B ,令y =0,解得x =−1或3,令x =0,求得y =−3,∴A(3,0),B(0,−3),∵抛物线y =x 2−2x −3的对称轴为直线x =−−22×1=1,∴A′的横坐标为1,设A′(1,n),则B′(4,n +3),∵点B′落在抛物线上,∴n +3=16−8−3,解得n =2,∴A′(1,2),B′(4,5),设直线A′B′的表达式为y =kx +b ,∴{k +b =24k +b =5, 解得{k =1b =1∴直线A′B′的表达式为y =x +1,故选:B.求得A、B的坐标以及抛物线的对称轴,根据题意设出A′(1,n),则B′(4,n+3),把B′(4,n+3)代入抛物线解析式求得n,即可求得A′、B′的坐标,然后根据待定系数法即可求得直线A′B′的表达式.本题考查了抛物线与x轴的交点,坐标和图形变换−平移,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据题意表示出A′、B′的坐标是解题的关键.8.【答案】C【解析】解:∵抛物线y=ax2−2ax=a(x−1)2−a,∴该抛物线的对称轴是直线x=1,当a>0时,若|x1−1|>|x2−1|,则y1>y2,故选项B错误;当a<0时,若|x1−1|>|x2−1|,则y1<y2,故选项A错误;若|x1−1|=|x2−1|,则y1=y2,故选项C正确;若y1=y2,则|x1−1|=|x2−1|,故选项D错误;故选:C.根据题目中的抛物线和二次函数的性质,利用分类讨论的方法可以判断各个选项中的说法是否正确,从而可以解答本题.本题考查二次函数的性质,命题与定理,解答本题的关键是明确题意,利用二次函数的性质解答.9.【答案】27【解析】解:如图,过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可知:BG是∠ABC的平分线,∴GM=GN,∵△ABG的面积为18,∴1×AB×GM=18,2∴4GM=18,∴GM=9,2∴△CBG的面积为:12×BC×GN=12×12×92=27.故答案为:27.过点G作GM⊥AB于点M,GN⊥AC于点N,根据作图过程可得AG是∠ABC的平分线,根据角平分线的性质可得GM=GN,再根据△ABG的面积为18,求出GM的长,进而可得△CBG的面积.本题考查了作图−基本作图、角平分线的性质,解决本题的关键是掌握角平分线的性质.10.【答案】9√3【解析】解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4√3,∵四边形ECGF是平行四边形,∴EF//CG,∴△EOD∽△GOC,∴EOGO =DOOC=EDGC,∵DF=14DE,∴DEEF =45,∴EDGC =45,∴EOGO =45,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4√3,∴GO=5√3,∴EG的最小值是9√3,故答案为:9√3.根据题意和平行四边形的性质,可以得到BD和EF的比值,再根据三角形相似和最短距离,即可得到EG的最小值,本题得以解决.本题考查平行四边形的性质、三角形的相似、垂线段最短,解答本题的关键是明确题意,利用数形结合的思想解答.11.【答案】①③【解析】解:∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过A(2,0),B(−4,0)两点,∴当y=0时,0=ax2+bx+c的两个根为x1=2,x2=−4,故①正确;该抛物线的对称轴为直线x=2+(−4)2=−1,函数图象开口向下,若点C(−5,y1),D(π,y2)在该抛物线上,则y1>y2,故②错误;当x=−1时,函数取得最大值y=a−b+c,故对于任意实数t,总有at2+bt+c≤a−b+c,即对于任意实数t,总有at2+bt≤a−b,故③正确;对于a的每一个确定值,若一元二次方程ax2+bx+c=p(p为常数,p>0)的根为整数,则两个根为−3和1或−2和0或−1和−1,故p的值有三个,故④错误;故答案为:①③.根据题目中的抛物线和二次函数的性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.12.【答案】14t2−14t+1【解析】解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,∵AE2+AM2=EM2,∴(2−x)2+t2=x2,解得x=t24+1,∴DE=t24+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=AMAD =t2=FG1,∴FG=t2,∵CG=DE=t24+1,∴CF=t24−t2+1,∴S四边形CDEF =12(CF+DE)×1=14t2−14t+1.故答案为:14t2−14t+1.连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2−x,由勾股定理得出(2−x)2+t2=x2,证得∠ADM=∠FEG,由锐角三角函数的定义得出FG,求出CF,则由梯形的面积公式可得出答案.本题考查了矩形的性质,折叠的性质,勾股定理,锐角三角函数,熟练掌握折叠的性质及方程的思想是解题的关键.13.【答案】3(8−√3−π)【解析】解:如图,连接OM、ON,∵半圆分别与AB,AC相切于点M,N.∴OM⊥AB,ON⊥AC,∵∠BAC=120°,∴∠MON=60°,∴∠MOB+∠NOC=120°,∵MN⏜的长为π,∴60πr180=π,∴r=3,∴OM=ON=r=3,连接OA,在Rt△AON中,∠AON=30°,ON=3,∴AN=√3,∴AM=AN=√3,∴BM+CN=AB+AC−(AM+AN)=16−2√3,∴S阴影=S△OBM+S△OCN−(S扇形MOE+S扇形NOF)=12×3×(BM+CN)−(120π×32360)=32(16−2√3)−3π=24−3√3−3π=3(8−√3−π).故答案为:3(8−√3−π).连接OM、ON,根据半圆分别与AB,AC相切于点M,N.可得OM⊥AB,ON⊥AC,由∠BAC=120°,可得∠MON=60°,得∠MOB+∠NOC=120°,再根据MN⏜的长为π,可得OM=ON=r=3,连接OA,根据Rt△AON中,∠AON=30°,ON=3,可得AM=AN=√3,进而可求图中阴影部分的面积.本题考查了切线的性质、弧长的计算、扇形面积的计算,解决本题的关键是掌握弧长和扇形面积的计算公式.14.【答案】4√33厘米或4√3厘米或8−4√3【解析】解:①当∠ABE=30°时,AE=AB×tan30°=4√33;②当∠AEB=30°时,AE=ABtan30∘=4√33=4√3;③∠ABE=15°时,∠ABA′=30°,延长BA′交AD于F,如下图所示,设AE=x,则EA′=x,EF=xsin60∘=2√3x3,∵AF=AE+EF=ABtan30°=4√33,∴x+2√3x3=4√33,∴x=8−4√3,∴AE=8−4√3.故答案为:4√33厘米或4√3厘米或8−4√3厘米.根据翻折可得∠ABE=∠A′BE,分3种情况讨论:当∠ABE=30°时或当∠AEB=30°时或当∠ABA′=30°时求AE的长.本题考查了翻折变换、矩形的性质,解决本题的关键是掌握矩形性质.15.【答案】30=120°,【解析】解:正六边形的每个内角的度数为:(6−2)⋅180°6所以∠ABC=120°−90°=30°,故答案为:30.由于六边形花环是用六个全等的直角三角形拼成的,所以这个六边形是正六边形,先算出正六边形每个内角的度数,即可求出∠ABC的度数.本题考查了多边形内角和定理.解题的关键是会计算正六边形的每个内角的度数.16.【答案】①④【解析】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA=OC,OB=OD,∴四边形ABCD是平行四边形,当OA=OC=OB=OD时,四边形ABCD是矩形.∵反比例函数的图象在一,三象限,∴直线AC与直线BD不可能垂直,∴四边形ABCD不可能是菱形或正方形,故选项①④正确,故答案为①④,如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.证明四边形ABCD是平行四边形即可解决问题.本题考查反比例函数的性质,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:(1)∵长方形的长AD=4m,宽AB=3m,抛物线的最高点E到BC的距离为4m.∴OH=AB=3,∴EO=EH−OH=4−3=1,∴E(0,1),D(2,0),∴该抛物线的函数表达式y=kx2+1,把点D(2,0)代入,得k=−14,∴该抛物线的函数表达式为:y=−14x2+1;(2)∵GM=2,∴OM=OG=1,∴当x=1时,y=34,∴N(1,34),∴MN=34,∴S矩形MNFG =MN⋅GM=34×2=32,∴每个B型活动板房的成本是:425+32×50=500(元).答:每个B型活动板房的成本是500元;(3)根据题意,得w=(n−500)[100+20(650−n)10]=−2(n−600)2+20000,∵每月最多能生产160个B型活动板房,∴100+20(650−n)10≤160,解得n≥620,∵−2<0,∴n≥620时,w随n的增大而减小,∴当n=620时,w有增大值为19200元.答:公司将销售单价n(元)定为620元时,每月销售B型活动板房所获利润w(元)最大,最大利润是19200元.【解析】(1)根据图形和直角坐标系可得点D和点E的坐标,代入y=kx2+m,即可求解;(2)根据M和N的横坐标相等,求出N点坐标,再求出矩形FGMN的面积,即可求解;(3)根据题意得到w关于n的二次函数,根据二次函数的性质即可求解.本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.18.【答案】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,依题意,得:7200(1+50%)x −3200x=40,解得:x =40,经检验,x =40是原方程的解,且符合题意,∴(1+50%)x =60,3200x =80,7200(1+50%)x =120. 答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.【解析】设乙商品的进价为x 元/件,则甲商品的进价为(1+50%)x 元/件,根据数量=总价÷单价结合购进的甲商品比乙商品多40件,即可得出关于x 的分式方程,解之经检验后即可得出x 的值,再将其分别代入(1+50%)x ,3200x ,7200(1+50%)x 中即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】−1 5 −11【解析】解:(1){2x +y =7 ①x +2y =8 ②. 由①−②可得:x −y =−1,由13(①+②)可得:x +y =5.故答案为:−1;5.(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,依题意,得:{20m +3n +2p =32 ①39m +5n +3p =58 ②, 由2×①−②可得m +n +p =6,∴5m +5n +5p =5×6=30.答:购买5支铅笔、5块橡皮、5本日记本共需30元.(3)依题意,得:{3a +5b +c =15 ①4a +7b +c =28 ②, 由3×①−2×②可得:a +b +c =−11,即1∗1=−11.故答案为:−11.(1)利用①−②可得出x −y 的值,利用13(①+②)可得出x +y 的值;(2)设铅笔的单价为m 元,橡皮的单价为n 元,日记本的单价为p 元,根据“买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元”,即可得出关于m ,n ,p 的三元一次方程组,由2×①−②可得除m +n +p 的值,再乘5即可求出结论;(3)根据新运算的定义可得出关于a ,b ,c 的三元一次方程组,由3×①−2×②可得出a +b +c 的值,即1∗1的值.。

2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷含答案

2019年重点高中高一新生分班考试数学卷班级: 姓名: 成绩: 一.选择题(本大题10小题,每小题3分,共30分) 1. 16的算术平方根是( )A. ±4B.4C.-4D.±22. 2018年广东省经济保持平稳健康发展,国家统计局核定,其实现地区生产总值(CDP)973000000元将数据973000000000用科学记数法表示为( ) A.9.73×1011 B.97.3×1011 C.9.73×1012 D.0.973×1033. 下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A. B C D 4. 下列计算中,正确的是( )A. 0(5)0-=B. 347x x x +=C. 23246()a b a b -=- D. 1222a a a -∙=5. 若一个多边形的内角和是1080°,则这个多边形的边数为( ) A.6 B.7 C.8 D.106. 在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球摸到绿球的概率为( )A.1B. 14C. 12D. 347. 如图,在△ABC 中,点D,E 分别在边AB,AC 上,下列条件中不能判断△ABC △AED 的是( )A .∠AED=∠B B .∠ADE=∠C C .D .8. 下列一元二次方程中,没有实数根的是( )A.x 2-2x=0B.x 2+4x-1=0C.2x 2-4x+3=0D.3x 2=5x-2 9. 等腰三角形的周长为11cm,一边长为3cm,则另两边长为( )A. 3cm,5cmB. 4cm,4cmC.3cm,5cm 或4cm,4cmD.以上都不对 10.如图,过点A(4、5)分别作x 轴、y 轴的平行线,交直线y=-x+6于B,C 两点,若函数(0)ky x x=>的图象与△ABC 的边有公共点,则A 的取值范围是( ) A. 5≤k ≤20 B. 8≤k ≤20 C. 5≤k ≤8 D. 9≤k ≤20二.填空题(本大題6小题,每小题4分,共24分)11.一组数据-3、2、2、0、2、1的众数是 。

高一新生分班考试数学试卷含答案

高一新生分班考试数学试卷含答案

CB高一新生分班考试数学试卷(含答案)(满分150分,考试时间120分钟)一、选择题(每题5分,共40分) 1.化简=-2aa ( )A .aB .a -C .aD .2a2.分式1||22---x x x 的值为0,则x 的值为 ( )A .21或-B .2C .1-D .2-3.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点。

若EF =2,BC =5,CD =3, 则tan C 等于 ( )A .43 B .35 C .34 D .45 4.如图,P A 、PB 是⊙O 切线,A 、B 为切点,AC 是直径,∠P = 40°,则∠BAC =( )A .040 B .080 C .020 D .0105.在两个袋内,分别装着写有1、2、3、4四个数字的4张卡片,今从每个袋中各任取一张卡片,则所取两卡片上数字之积为偶数的概率是 ( )A .21 B .165 C .167 D .436.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( ) A . 6B.4C .5D . 37.如图,正方形ABCD 的边长为4,P 为正方形边上一动点,运动B CD CB A 路线是A →D →C →B →A ,设P 点经过的路程为x ,以点A 、P 、D 为顶点的三角形的面积是y .则下列图象能大致反映y 与x 的函数关系的是 ( )8.若直角坐标系内两点P 、Q 满足条件①P 、Q 都在函数y 的图象上②P 、Q 关于原点对称,则称点对(P ,Q )是函数y 的一个“友好点对”(点对(P ,Q )与(Q ,P )看作同一个“友好点对”)。

已知函数⎪⎩⎪⎨⎧>≤++=02101422x xx x x y ,,,则函数y 的“友好点对”有( )个A .0 B.1 C. 2 D.3注意:请将选择题的答案填入表格中。

北京高一入学分班考试数学(1)

北京高一入学分班考试数学(1)

北京高一入学分班考试数学(1) 北京高一入学分班考试数学(1)一、选择题1.若a+b=8,ab=2,则a^3+b^3=()A。

128B。

464C。

496D。

5122.把多项式2ab+1-a^2+b^3写成两个一次式的乘积,得到()A。

(a+b-1)(b-a+1)B。

(a-b+1)(a-b-1)C。

(a+b-1)(a-b+1)D。

(a-b+1)(b-a+1)3.若a+√2b=1,√2a+b=1,则√(a+b+c)=()A。

1B。

2C。

3D。

44.当a>0时,-ax^3的符号是()A。

xaxB。

x-axC。

-x-axD。

-xax5.已知方程3x-y-7=0,2x+3y=1,y=kx-9有公共解,则k 的值是()A。

6B。

5C。

4D。

36.关于x的方程ax^2+bx+c(a≠0)中,若a与c异号,则根的情况是()A。

有两个不相等的实数根B。

有两个相等的实数根C。

没有实数根D。

无法确定7.设x1,x2是方程2x^2-6x+3=0的两根,则x1^2+x2的值是()A。

15B。

12C。

6D。

38.若A(-4,y1),B(-1,y2),C(1,y3)为二次函数y=-x^2+4x+5的图像上的三点,则y1,y2,y3的大小关系是()A。

y1<y2<y3B。

y3<y2<y1___<y1<y2D。

y2<y1<y39.函数y=1-|x|和函数y=1-x的图像有一个交点,这个交点的横坐标为a,纵坐标为b,则点(a,b)也在函数y=1+|x|的图像上,那么下列点中一定在函数y=1+|x|的图像上的是()A。

(a,b)B。

(-a,-b)C。

(a,-b)D。

(-a,b)10.函数y=-2x^2+x(-1≤x≤2)的最小值是()A。

-1B。

-1/8C。

8D。

-6二、填空题11.若a=1/3,b=2/3,则-1/(b-1)+a-13+22/(3-2b)=_____。

答案:-312.已知方程组2x+4y-z=0,x-2y+3z=0,则x∶y∶z=_____。

2019-2020学年北京人大附中高一分班考数学试题含解析

2019-2020学年北京人大附中高一分班考数学试题含解析

2019年人大附中新高一分班考试数学试题真题一、选择题(本大题共17小题,共34分)1. 小雨利用几何画板探究函数()a y x b x c =--图象,在他输λ一组,,a b c 的值之后,得到了如图所示的函数图象,根据学习函数的经验,可以判断,小雨输入的参数值满足( )A. 0,0,0a b c >>= B. 0,0,0a b c <>=C. 0,0,0a b c >== D. 0,0,0a b c <=>【答案】B 2. 大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如33235,37911=+=++,3413151719,=+++⋯若3m 分裂后,其中有一个奇数是103,则m 的值是( )A. 9B. 10C. 11D. 12【答案】B3. 如图,AB 是半圆O 直径,按以下步骤作图:(1)分别以,A B 为圆心,大于AO 长为半径作弧,两弧交于点P ,连接OP 与半圆交于点C ;(2)分别以,A C 为圆心,大于12AC 长为半径作弧,两弧交于点Q ,连接OQ 与半圆交于点D ;(3)连接,,,AD BD BC BD 与OC 交于点E .根据以上作图过程及所作图形,下列结论:①BD 平分ABC ∠;②//BC OD ;③CE OE =;④2AD OD CE =⋅;所有正确结论的序号是( )的A. ①②B. ①④C. ②③D. ①②④【答案】D 4. 图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟后,9号车厢才会运行到最高点?( )A. 10B. 20C. 152D. 452【答案】B 5. 某旅行团到森林游乐区参观,如表为两种参观方式与所需的缆车费用.已知旅行团的每个人皆从这两种方式中选择一种,且去程有15人搭乘览车,回程有10人搭乘缆车.若他们缆车费用的总花费为4100元,则此旅行团共有多少人?( )参观方式缆车费用去程及回程均搭乘缆车300元单程搭乘缆车,单程步行200元A. 16B. 19C. 22D. 25【答案】A 6. 如图,坐标平面上有一顶点为A 的抛物线,此拋物线与方程式2y 的图形交于B C 、两点,ABC 为正三角形.若A 点坐标为()3,0-,则此拋物线与y 轴的交点坐标为何?( )A. 90,2⎛⎫ ⎪⎝⎭ B. 270,2⎛⎫ ⎪⎝⎭ C. ()0,9 D. ()0,19【答案】B7. 如图的七边形ABCDEFG 中,,AB ED 的延长线相交于O 点.若图中1,2,3,4∠∠∠∠的外角的角度和为220 ,则BOD ∠的度数为何?( )A. 40B. 45C. 50D. 60【答案】A 8. 如图,菱形ABCD 的边长为10,圆O 分别与AB AD 、相切于、E F 两点,且与BG 相切于G 点.若5AO =,且圆O 的半径为3,则BG 的长度为( )A. 4B. 5C. 6D. 7【答案】C9. 桌面上有甲、乙、丙三个杯子,三杯内原本均装有一些水.先将甲杯的水全部倒入丙杯,此时丙杯的水量为原本甲杯内水量的2倍多40毫升;再将乙杯的水全部倒入丙杯,此时丙杯的水量为原本乙杯内水量的3倍少180毫升.若过程中水没有溢出,则原本甲、乙两杯内的水量相差多少毫升?( )A. 80B. 110C. 140D. 220【答案】B10. 如图,坐标平面上,二次函数24y x x k =-+-的图形与x 轴交于、A B 两点,与y 轴交于C 点,其顶点为D ,且0k >.若ABC 与ABD △的面积比为1:4,则k 值为何?( )A. 1B. 12C. 43D. 45【答案】D 11. 如图的ABC 中有一正方形DEFG ,其中D 在AC 上,、E F 在AB 上,直线AG 分别交DE BC 、于M N 、两点.若90,4,3,1B AB BC EF ∠==== ,则BN 的长度为何?( )A. 43 B. 32 C. 85 D. 127【答案】D12. 图(一)、图(二)分别为甲、乙两班学生参加投篮测验的投进球数直方图.若甲、乙两班学生的投进球数的众数分别为a b 、;中位数分别为c d 、,则下列关于a b c d 、、、的大小关系,何者正确?( )A. ,a b c d>> B. ,a b c d ><C. ,a b c d<> D. ,a b c d<<【答案】A 13. 如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. 12 B. 35 C. 2 D. 4-【答案】D14. 如图的矩形ABCD 中,E 点在CD 上,且AE AC <.若P Q 、两点分别在AD AE 、上,:4:1AP PD =,:4:1AQ QE =,直线PQ 交AC 于R 点,且Q R 、两点到CD 的距离分别为q r 、,则下列关系何者正确?( )A. ,q r QE RC <=B. ,q r QE RC<<C. ,q r QE RC== D. ,q r QE RC=<【答案】D 15. 下表为小洁打算在某电信公司购买一支MAT 手机与搭配一个号码的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,只收通话费;若通话费不超过月租费,只收月租费,若小洁每个月的通话费均为x 元,x 为400到600之间的整数,则在不考虑其他费用并使用两年的情况下,x 至少为多少才会使得选择乙方案的总花费比甲方案便宜?( )甲方案乙方案号码的月租费(元)400600MAT 手机价格(元)1500013000注意事项:以上方案两年内不可变更月租费A. 500B. 516C. 517D. 600【答案】C 16. 如图的矩形ABCD 中,E 为AB 的中点,有一圆过,,C D E 三点,且此圆分别与,AD BC 相交于,P Q 两点.甲、乙两人想找到此圆的圆心O ,其作法如下:(甲)作DEC ∠的角平分线L ,作DE 的中垂线,交L 于O 点,则O 即为所求;(乙)连接,PC QD ,两线段交于一点O ,则O 即为所求.对于甲、乙两人的作法,下列判䉼何者正确?( )A. 两人皆正确B. 两人皆错误C 甲正确,乙错误D. 甲错误,乙正确【答案】A17. 如图,正六边形ABCDEF 中,P Q 、两点分别为,ACF CEF △△的内心.若2AF =,则PQ 的长度为何?( ).A. 1B. 2C. 2- D. 4-【答案】C 二、填空题(本大题共3小题,共9分)18. 如图,正方形ABCD 的边长是3,,P Q 分别在,AB BC 的延长线上,BP CQ =,连接,AQ DP 交于点O ,并分别与,CD BC 交于点,F E ,连接AE .下列结论:①AQ DP⊥②2OA OE OP=⋅③AOD OECFS S = 四边形④当1BP =时,1an 136t OAE ∠=其中正确结论的序号是__________.【答案】①③④19. 在等边ABC 中,M N P 、、分别是边AB BC CA 、、上的点(不与端点重合),对于任意等边ABC ,下面四个结论中:①存在无数个MNP △是等腰三角形;②存在无数个MNP △是等边三角形;③存在无数个MNP △是等腰直角三角形;④存在一个MNP △在所有MNP △中面积最小.所有正确结论的序号是__________.【答案】①②③20. 如图,在Rt ABC 中,90C = ∠,记,x AC y BC AC ==-,在平面直角坐标系xOy 中,定义(),x y 为这个直角三角形的坐标,Rt ABC 为点(),x y 对应的直角三角形.有下列结论:①在x 轴正半轴上的任意点(),x y对应的直角三角形均满足AB =;②在函数2019(0)y x x=>的图象上存在两点边,P Q ,使得它们对应的直角三角形相似;③对于函2(2020)1(0)y x x =-->图象上的任意一点P ,都存在该函数图象上的另一点Q ,使得这两个点对应的直角三角形相似;④在函数22020(0)y x x =-+>的图象上存在无数对点,(P Q P 与Q 不重合),使得它们对应的直角三角形全等.所有正确结论的序号是__________.【答案】①③④三、解答题(本大题共9小题,第21-26题每题6分,第27-29题,每题7分,共57分)21. 如图,AM 是ABC 的中线,D 是线段AM 上一点(不与点A 重合)//DE AB 交AC 于点,//F CE AM ,连结AE.的(1)如图1,当点D 与M 重合时,求证:四边形ABDE 是平行四边形;(2)如图2,当点D 不与M 重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长BD 交AC 于点H ,若BH AC ⊥,且BH AM =.①求CAM ∠的度数;②当4FH DM ==时,求DH 的长.【答案】(1)证明见解析;(2)成立,理由见解析;(3)①30°;②22. 对于平面直角坐标系xOy 中的点P 和M ,给出如下定义:若M 上存在两个点,A B ,使AB =2PM ,则称点P 为 的“美好点”.(1)当 M 半径为2,点M 和点O 重合时.①点()()()1232,0,1,1,2,2P P P -中, O 的“美好点"是__________.②若直线2y x b =+上存在点P 为 O 的“美好点”,求b 的取值范围;(2)点M 为直线y x =上一动点,以2为半径作M ,点P 为直线4y =上一动点,点P 为 M 的“美好点”,求点M 的横坐标m 的取值范围.【答案】(1)①P 1和P 2;②b (2)2≤m ≤6.23. 如图,在平面直角坐标系xOy 中,过T e 外一点P 引它的两条切线,切点分别为,M N ,若60≤ 180MPN ∠< ,则称P 为T e 的环绕点.(1)当 O 半径为1时,①在()()()1231,0,1,1,0,2P P P 中,O 的环绕点是__________.②直线2y x b =+与x 轴交于点A ,与y 轴交于点B ,若线段AB 上存在 的环绕点,求b 的取值范围;(2)T e 的半径为1,圆心为()0,t ,以(0)m m ⎛⎫> ⎪ ⎪⎝⎭为半径的所有圆构成图形H ,若在图形H 上存在T e 的环绕点,直接写出t 的取值范围.【答案】(1)①P 1,P 3;②1b ≤<或1b ≤-<;(2)-2<t ≤4.24. 在平面直角坐标系xOy 中,我们称横从坐标都是整数的点为整点,若坐标系内两个整点(),A p q 、()(),B m n m n ≤满足关于x 的多项式2x px q ++能够因式分解为()()x m x n ++,则称点B 是A 的分解点.例如()3,2A 、()1,2B 满足()()23212x x x x ++=++,所以B 是A 的分解点.(1)在点()15,6A 、()20,3A 、()32,0A -中,请找出不存在分解点的点__________;(2)点P 、Q 在纵轴上(P 在Q 的上方),点R 在横轴上,且点P 、Q 、R 都存在分解点,若PQR 面积为6,请直接写出满足条件的PQR 的个数及每个三角形的顶点坐标;(3)已知点D 在第一象限内,D 是C 的分解点,请探究OCD 是否可能是等腰三角形?若可能请求出所有满足条件的点D 的坐标;若不可能,请说明理由.【答案】(1)2A ;(2)答案见解析;(3)OCD 不可能为等腰三角形,理由见解析.25. 已知关于x 的一元二次方程2104x bx c ++=(1)21c b =-时,求证:方程一定有两个实数根.(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b ,从乙袋中随机抽取一个小球,记录标有的数字为c ,利用列表法或者树状图,求b c 、的值使方程2104x bx c ++=两个相等的实数根的概率.【答案】(1)证明见解析;(2)16.26. 如图,在平面直角坐标系xOy 中,直线():10l y kx k =-≠与函数(0)m y x x=>的图象交于点()3,2A .(1)求,k m 的值;(2)将直线l 沿y 轴向上平移(0)t t >个单位后,所得直线与x 轴,y 轴分别交于点,P Q ,与函数y =(0)m x x>的图象交于点C .①当2t =时,求线段QC 的长.②若23QC PQ<<,结合函数图象,直接写出t 的取值范围.【答案】(1)1,6k m ==;(2)①;②12t <<.27. 在平面直角坐标系xOy 中,拋物线2224y x ax a a =-+-+顶点为A ,点,B C 为直线3y =上的两个动点(点B 在点C 的左侧),且3BC =.(1)求点A 的坐标(用含a 的代数式表示);(2)若ABC 是以BC 为直角边的等腰直角三角形,求拋物线的解析式;(3)过点A 作x 轴的垂线,交直线3y =于点D ,点D 恰好是线段BC 三等分点且满足3BC BD =,若抛物线与线段BC 只有一个公共点,结合函数的图象,直接写出a 的取值范围.【答案】(1)(),4A a a -;(2)2(2)6y x =++或2(4)y x =-;(3)1a =或25a <≤.28. 如图,在Rt ABC 中,90ACB ∠= ,点C 关于直线AB 的对称点为D ,连接,BD CD ,过点B 作//BE AC 交直线AD 于点E .(1)依题意补全图形;(2)找出一个图中与CDB △相似的三角形,并证明;(3)延长BD 交直线AC 于点F ,过点F 作FH //AE 交直线BE 于点H ,请补全图形,猜想,,BC CF BH 之间的数量关系并证明.【答案】(1)答案见解析;(2)与CDB △相似的三角形是ABE △,证明见解析;(3)作图见解析;22BH FC BC CF ⋅=+,证明见解析.29. 新定义:在平面直角坐标系xOy 中,若几何图形G 与A 有公共点,则称几何图形G 的叫A 的关联图形,特别地,若A 的关联图形G 为直线,则称该直线为A 的关联直线.如图,M ∠为A 的关联图形,的直线l 为A 的关联直线.(1)已知 O 是以原点为圆心,2为半径的圆,下列图形:①直线22y x =+;②直线3y x =-+;③双曲线2y x=,是O 关联图形的是__________(请直接写出正确的序号);(2)如图1,T e 的圆心为()1,0T ,半径为1,直线:l y x b =-+与x 轴交于点N ,若直线l 是T e 的关联直线,求点N 的横坐标的取值范围;(3)如图2,已知点()0,2B 、()2,0C 、()0,2D -,I 经过点C ,I 的关联直线HB 经过点B ,与I 的一个交点为P ;I 的关联直线HD 经过点D ,与I 的一个交点为Q ;直线HB 、HD 交于点H ,若线段PQ 在直线6x =上且恰为I 的直径,请直接写出点H 横坐标h 的取值范围.【答案】(1)①③;(2)11b +≤≤;(3)60h -≤<或02h <≤.的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档