Colloid Chemistry and Surface Chemistry(胶体化学和表面化学)专业英语.
胶体化学专业英语

C. Properties of the solutions like colloids.
such as optical(光学的), rheological(流变 的) properties.
(2) Lyophobic colloids: There is a interface between dispersed phase and continuous phase, the colloids are unstable thermodynamically.
From thermodynamics that spontaneous process occur in the direction of decreasing Gibbs free energy. Therefore, the separation of a two-phase dispersion system to form distinct(明显 不同的) layers(层) is a change in the direction of decreasing Gibbs free energy.
(2) Kinetic stability(动力稳定性)
Kinetic stability: The separation rate of two phases is slow enough that the thermodynamic instability is of very little. Two-phase dispersions will always spontaneously change into a smaller number of larger particles given sufficient time. (unstable)
化学专业英语词汇

前沿讲座 Seminar专业英语 Professional English现代分析化学 Modern analytical che mistry生物分析技术 Bioanalytical techniques高分子进展 Advances in polymers功能高分子进展 Advances in function al polymers有机硅高分子研究进展 Progresses in organosilicon polymers高分子科学实验方法 Scientific experimental methods of polymers 高分子设计与合成 The design and sy nthesis of polymers反应性高分子专论 Instructions to re active polymers网络化学与化工信息检索 Internet Se arching for Chemistry & Chemical E ngineeringinformation有序分子组合体概论 Introduction to Organized Molecular Assembilies两亲分子聚集体化学 Chemistry of am phiphilic aggregates表面活性剂体系研究新方法 New Meth od for studying Surfactant System 微纳米材料化学 Chemistry of Micro-NanoMaterials分散体系研究新方法 New Method for studying dispersion分散体系相行为 The Phase Behavior of Aqueous Dispersions 溶液-凝胶材料 Sol-Gel Materials高等量子化学 Advanced Quantum Chemistry分子反应动力学 Molecular Reaction Dynamic计算量子化学 Computational QuantumChemistry群论 Group Theory分子模拟理论及软件应用 Theory andSoftware of Molecular Modelling &Application价键理论方法 Valence Bond Theory量子化学软件及其应用Software of Quantum Chemistry & its Application分子光谱学 Molecular Spectrum算法语言 Computational Languange高分子化学 Polymer Chemistry高分子物理 Polymer Physics药物化学 Medicinal Chemistry统计热力学 Statistic Thermodynamics液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium现代无机化学 Today's Inorganic Chemistry无机化学前沿领域导论 Introduction to Forward Field in Inorganic Chemistry量子化学 Quantum Chemistry分子材料 Molecular Material固体酸碱理论 Solid Acid-Base Theory萃取过程物理化学 Physical Chemistryin Extraction表面电化学 Surface Electrochemistry电化学进展 Advances on Electrochemistry现代电化学实验技术 Modern Experimental Techniques of Electrochemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications叶立德化学:理论和应用 Ylides Chemistry: Theory and Application立体化学与手性合成 Stereochemistryand Chiral Synthesis杂环化学 Heterocyclic Chemistry有机硅化学 Organosilicon Chemistry药物设计及合成 Pharmaceutical Design and Synthesis超分子化学 Supramolecular Chemistry分子设计与组合化学 Molecular Designand Combinatorial Chemistry纳米材料化学前沿领域导论 Introduction to Nano-materials Chemistry纳米材料控制合成与自组装 Controlled-synthesis and Self-assembly of Nan o-materials前沿讲座 Leading Front Forum专业英语 Professional English超分子化学基础 Basics of Supramolec ular Chemistry液晶材料基础 Basics of Liquid Crysta l Materials现代实验技术 Modern analytical testi ng techniques色谱及联用技术 Chromatography and Technology of tandem发光分析及其研究法 Luminescence an alysis and Research methods胶束酶学 Micellar Enzymology分析化学中的配位化合物 Complex in Analytical Chemistry电分析化学 Electroanalytical chemist ry生物分析化学 Bioanalytical chemistry分析化学 Analytical chemistry仪器分析 Instrument analysis高分子合成化学 Polymers synthetic c hemistry高聚物结构与性能 Structures and pr operties of polymers有机硅化学 Organosilicon chemistry 功能高分子Functional polymers有机硅高分子 Organosilicon polymers 高分子现代实验技术 Advanced experimental technology of polymers高分子合成新方法 New synthetic methods of polymers液晶与液晶高分子 Liquid crystals andliquid crystal polymers大分子反应 Macromolecules reaction水溶性高分子 Water-soluble polymers聚合物加工基础 The basic process ofpolymers聚合物复合材料 Composite materials高等化工与热力学 Advanced ChemicalEngineering and Thermodynamics高等反应工程学 Advanced Reaction Engineering高等有机化学 Advanced Organic Chemistry高等有机合成 Advanced Organic synthesis有机化学中光谱分析 Spectrum Analysis in Organic Chemistry催化作用原理 Principle of Catalysis染料化学 Dye Chemistry中间体化学与工艺学 Intermediate Chemistry and Technology化学动力学 Chemical Kinetics表面活性剂合成与工艺 Synthesis andTechnology of Surfactants环境化学 Environmental Chemistry化工企业清洁生产 Chemical Enterprise Clean Production化工污染及防治 Chemical Pollution and Control动量热量质量传递 Momentum, Heat and Mass Transmission化工分离工程专题 Separation Engineering耐蚀材料 Corrosion Resisting Material网络化学与化工信息检索 Internet Searching for Chemistry & Chemical Engineering information新型功能材料的模板组装 Templated Assembly of Novel Advanced Materials胶体与界面 Colloid and Interface纳米材料的胶体化学制备方法 Colloid Chemical Methods for Preparing Nano-materials脂质体化学 Chemistry of liposome表面活性剂物理化学 Physico-chemistry of surfactants高分子溶液与微乳液 Polymer Solutions and Microemulsions两亲分子的溶液化学 Chemistry of Amphiphilic Molecules in solution介孔材料化学 Mesoporous Chemistry超细颗粒化学 Chemistry of ultrafinepowder分散体系流变学 The Rheolgy of Aqueous Dispersions量子化学 Quantum Chemistry统计热力学 Statistic Thermodynamics群论 Group Theory分子模拟 Molecular Modelling高等量子化学 Advanced Quantum Ch emistry价键理论方法 Valence Bond Theory 量子化学软件及其应用Software of Q uantum Chemistry & its Application计算量子化学 Computational Quantum Chemistry分子模拟软件及其应用Software of M olecular Modelling & its Application分子反应动力学 Molecular Reaction D ynamic分子光谱学 Molecular Spectrum算法语言 Computational Languange 高分子化学 Polymer Chemistry高分子物理 Polymer Physics腐蚀电化学 Corrosion Electrochemist ry物理化学 Physical Chemistry结构化学 structural Chemistry现代分析与测试技术(试验为主) Moder n Analysis and Testing Technology(e xperimetally)高等无机化学 Advanced Inorganic Ch emistry近代无机物研究方法 Modern Research Methods for Inorganic Compounds 萃取化学研究方法 Research Methods for Extraction Chemistry单晶培养 Crystal Culture 固态化学 Chemistry of Solid Substance液-液体系专论 Discussion on Liquid-Liquid System配位化学进展 Progress in Coordination Chemistry卟啉酞箐化学 Chemistry of Porphyrine and Phthalocyanine无机材料及物理性质 Inorganic Materials and Their Physical Properties物理无机化学 Physical Inorganic Chemistry相平衡 Phase Equilibrium生物化学的应用 Application of Biologic Chemistry生物无机化学 Bio-Inorganic Chemistry绿色化学 Green Chemistry金属有机化合物在均相催化中的应用 Applied Homogeneous Catalysis with Organometallic Compounds功能性食品化学 Functionalized FoodChemistry无机药物化学 Inorganic Pharmaceutical Chemistry电极过程动力学 Kinetics on ElectrodeProcess电化学研究方法 Electrochemical Research Methods生物物理化学 Biological Physical Chemistry波谱与现代检测技术 Spectroscopy and Modern Testing Technology理论有机化学 theoretical Organic Chemistry合成化学 Synthesis Chemistry有机合成新方法 New Methods for Organic Synthesis生物有机化学 Bio-organic Chemistry药物化学 Pharmaceutical Chemistry金属有机化学 Organometallic Chemistry金属-碳多重键化合物及其应用 Compounds with Metal-Carbon multiple bonds and Their Applications分子构效与模拟 Molecular Structure-Activity and Simulation过程装置数值计算 Data Calculation ofProcess Devices石油化工典型设备 Common Equipmentof Petrochemical Industry化工流态化工程 Fluidization in Chemical Industry化工装置模拟与优化 Analogue and Optimization of Chemical Devices化工分离工程 Separation Engineering化工系统与优化 Chemical System andOptimization高等化工热力学 Advanced Chemical Engineering and Thermodynamics超临界流体技术及应用 Super CraticalLiguid Technegues and Applications膜分离技术 Membrane Separation T echnegues溶剂萃取原理和应用 Theory and Appli cation of Solvent Extraction树脂吸附理论 Theory of Resin Adso rption中药材化学 Chemistry of Chinese Me dicine生物资源有效成分分析与鉴定 Analysis and Detection of Bio-materials相平衡理论与应用 Theory and Applic ation of Phase Equilibrium计算机在化学工程中的应用 Application of Computer in Chemical Engineerin g微乳液和高分子溶液 Micro-emulsion a nd High Molecular Solution传递过程 Transmision Process反应工程分析 Reaction Engineering A nalysis腐蚀电化学原理与应用 Principle and A pplication of Corrosion Electrochem istry腐蚀电化学测试方法与应用 Measureme nt Method and Application of Corro sion Electrochemistry耐蚀表面工程 Surface Techniques of Anti-corrosion缓蚀剂技术 Inhabitor Techniques 腐蚀失效分析 Analysis of Corrosion Destroy材料表面研究方法 Method of Studyin g Material Surfacc分离与纯化技术 Separation and Purification Technology现代精细有机合成 Modern Fine Organic Synthesis化学工艺与设备 Chemical Technologyand Apparatuas功能材料概论 Functional Materials Conspectus油田化学 Oilfield Chemistry精细化学品研究 Study of Fine Chemicals催化剂合成与应用 Synthesis and Application of Catalyzer低维材料制备 Preparation of Low-Dimension Materials手性药物化学 Symmetrical Pharmaceutical Chemistry光敏高分子材料化学 Photosensitive Polymer Materials Chemistry纳米材料制备与表征 Preparation andCharacterization of Nanostructuredmaterials溶胶凝胶化学 Sol-gel Chemistry纳米材料化学进展 Proceeding of Nano-materials Chemistry●化学常用词汇汉英对照表1●氨ammonia氨基酸amino acid铵盐ammonium salt饱和链烃saturated aliphatichydrocarbon苯benzene变性denaturation不饱和烃unsaturatedhydrocarbon超导材料superconductivematerial臭氧ozone醇alcohol次氯酸钾potassiumhypochlorite醋酸钠sodium acetate蛋白质protein氮族元素nitrogen groupelement碘化钾potassium iodide碘化钠sodium iodide电化学腐蚀electrochemicalcorrosion电解质electrolyte电离平衡ionizationequilibrium电子云electron cloud淀粉starch淀粉碘化钾试纸starchpotassium iodide paper二氧化氮nitrogen dioxide二氧化硅silicon dioxide二氧化硫sulphur dioxide二氧化锰manganese dioxide芳香烃arene放热反应exothermic reaction非极性分子non-polar molecule非极性键non-polar bond肥皂soap分馏fractional distillation酚phenol复合材料composite干电池dry cell干馏dry distillation甘油glycerol高分子化合物polymer共价键covalent bond官能团functional group光化学烟雾photochemical fog过氧化氢hydrogen peroxide合成材料synthetic material合成纤维synthetic fiber合成橡胶synthetic rubber核电荷数nuclear charge number核素nuclide化学电源chemical powersource化学反应速率chemical reactionrate化学键chemical bond化学平衡chemical equilibrium 还原剂reducing agent磺化反应sulfonation reaction 霍尔槽 Hull Cell极性分子polar molecule极性键polar bond加成反应addition reaction加聚反应addition polymerization甲烷methane碱金属alkali metal碱石灰soda lime结构式structural formula聚合反应po1ymerization可逆反应reversible reaction空气污染指数air pollution index勒夏特列原理Le Chatelier's principle离子反应ionic reaction离子方程式ionic equation离子键ionic bond锂电池lithium cell两性氢氧化物amphoteric hydroxide两性氧化物amphoteric oxide裂化cracking裂解pyrolysis硫氰化钾potassium thiocyanate硫酸钠sodium sulphide氯化铵ammonium chloride氯化钡barium chloride氯化钾potassium chloride氯化铝aluminium chloride氯化镁magnesium chloride氯化氢hydrogen chloride氯化铁iron (III) chloride氯水chlorine water麦芽糖maltose煤coal酶enzyme摩尔mole摩尔质量molar mass品红magenta或fuchsine葡萄糖glucose气体摩尔体积molar volume of gas铅蓄电池lead storage battery强电解质strong electrolyte氢氟酸hydrogen chloride氢氧化铝aluminium hydroxide取代反应substitutionreaction醛aldehyde炔烃alkyne燃料电池fuel cell弱电解质weak electrolyte石油Petroleum水解反应hydrolysis reaction四氯化碳carbontetrachloride塑料plastic塑料的降解plasticdegradation塑料的老化plastic ageing酸碱中和滴定acid-baseneutralization titration酸雨acid rain羧酸carboxylic acid碳酸钠 sodium carbonate碳酸氢铵 ammonium bicarbonate碳酸氢钠 sodium bicarbonate糖类 carbohydrate烃 hydrocarbon烃的衍生物 derivative ofhydrocarbon烃基 hydrocarbonyl同分异构体 isomer同素异形体 allotrope同位素 isotope同系物 homo1og涂料 coating烷烃 alkane物质的量amount of substance物质的量浓度 amount-of-substanceconcentration of B烯烃 alkene洗涤剂 detergent纤维素 cellulose相对分子质量 relative molecularmass相对原子质量relative atomic mass消去反应 elimination reaction硝化反应 nitratlon reaction硝酸钡 barium nitrate硝酸银silver nitrate溴的四氯化碳溶液 solution ofbromine in carbon tetrachloride溴化钠 sodium bromide溴水bromine water溴水 bromine water盐类的水解hydrolysis of salts盐析salting-out焰色反应 flame test氧化剂oxidizing agent氧化铝 aluminium oxide氧化铁iron (III) oxide乙醇ethanol乙醛 ethana1乙炔 ethyne乙酸ethanoic acid乙酸乙酯 ethyl acetate乙烯ethene银镜反应silver mirror reaction硬脂酸stearic acid油脂oils and fats有机化合物 organic compound元素周期表 periodic table ofelements元素周期律 periodic law ofelements原电池 primary battery原子序数 atomic number皂化反应 saponification粘合剂 adhesive蔗糖 sucrose指示剂 Indicator酯 ester酯化反应 esterification周期period族group(主族:main group)Bunsen burner 本生灯product 化学反应产物flask 烧瓶apparatus 设备PH indicator PH值指示剂,氢离子(浓度的)负指数指示剂matrass 卵形瓶litmus 石蕊litmus paper 石蕊试纸graduate, graduated flask 量筒,量杯reagent 试剂test tube 试管burette 滴定管retort 曲颈甑still 蒸馏釜cupel 烤钵crucible pot, melting pot 坩埚pipette 吸液管filter 滤管stirring rod 搅拌棒element 元素body 物体compound 化合物atom 原子gram atom 克原子atomic weight 原子量atomic number 原子数atomic mass 原子质量molecule 分子electrolyte 电解质ion 离子anion 阴离子cation 阳离子electron 电子isotope 同位素isomer 同分异物现象polymer 聚合物symbol 复合radical 基structural formula 分子式valence, valency 价monovalent 单价bivalent 二价halogen 成盐元素bond 原子的聚合mixture 混合combination 合成作用compound 合成物alloy 合金organic chemistry 有机化学inorganic chemistry 无机化学derivative 衍生物series 系列acid 酸hydrochloric acid 盐酸sulphuric acid 硫酸nitric acid 硝酸aqua fortis 王水fatty acid 脂肪酸organic acid 有机酸 hydrosulphuric acid 氢硫酸hydrogen sulfide 氢化硫alkali 碱,强碱ammonia 氨base 碱hydrate 水合物hydroxide 氢氧化物,羟化物hydracid 氢酸hydrocarbon 碳氢化合物,羟anhydride 酐alkaloid 生物碱aldehyde 醛oxide 氧化物phosphate 磷酸盐acetate 醋酸盐methane 甲烷,沼气butane 丁烷salt 盐potassium carbonate 碳酸钾soda 苏打sodium carbonate 碳酸钠caustic potash 苛性钾caustic soda 苛性钠ester 酯gel 凝胶体analysis 分解fractionation 分馏endothermic reaction 吸热反应exothermic reaction 放热反应precipitation 沉淀to precipitate 沉淀to distil, to distill 蒸馏distillation 蒸馏to calcine 煅烧to oxidize 氧化alkalinization 碱化to oxygenate, to oxidize 脱氧,氧化to neutralize 中和to hydrogenate 氢化to hydrate 水合,水化to dehydrate 脱水fermentation 发酵solution 溶解combustion 燃烧fusion, melting 熔解alkalinity 碱性isomerism, isomery 同分异物现象hydrolysis 水解electrolysis 电解electrode 电极anode 阳极,正极cathode 阴极,负极catalyst 催化剂catalysis 催化作用oxidization, oxidation 氧化reducer 还原剂dissolution 分解synthesis 合成reversible 可逆的1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from IdealBehavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics热力学第一定律10. Heat and Work 热与功11. Endothermic and ExothermicProcesses 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of Volume, Pressure, Temperature Changes and Catalysts i. 体积,压力,温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-Bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and Bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-Base Pairs 共轭酸碱对40. Relative Strength of Acids and Bases 酸碱的相对强度41. Lewis Acids and Bases 路易斯酸碱42. Hydrolysis of Metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product ConstantKsp 溶度积常数49. Precipitation and separation ofIons 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-ReductionEquations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons电子的波动性63. Bohr’s Model of The HydrogenAtom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s (p, d, f) Orbital s(p,d,f)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes, Atomic Numbers, andMass Numbers 同位素,原子数,质量数77. Periodic Properties of theElements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性83. Metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. Metallic Solids 金属晶体106. Metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature, Composition and Structure of Complexes 配合物的命名,组成和结构116. Charges, Coordination Numbers,and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations inOctahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planarComplexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali Metals 碱金属127. Alkaline Earth Metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (Boron, Aluminium,Gallium, Indium, Thallium) 硼族(硼,铝,镓,铟,铊)135. Borane 硼烷136. Carbon Group (Carbon, Silicon,Germanium, Tin, Lead) 碳族(碳,硅,锗,锡,铅)137. Graphite, Carbon Monoxide,Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid, Carbonates andCarbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation ofSilicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (Phosphorus,Arsenic, Antimony, and Bismuth) 氮族(磷,砷,锑,铋)142. Ammonia, Nitric Acid, PhosphoricAcid 氨,硝酸,磷酸143. Phosphorates, phosphorusHalides 磷酸盐,卤化磷144. Oxygen Group (Oxygen, Sulfur,Selenium, and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone, Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine, Chlorine,Bromine, Iodine) 卤素(氟,氯,溴,碘)148. Halides, Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition Metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision精密度188. relative standard deviation相对标准偏差(RSD)189. coefficient variation变异系数(CV)190. confidence level置信水平191. confidence interval置信区间192. significant test显著性检验193. significant figure有效数字194. standard solution标准溶液195. titration滴定196. stoichiometric point化学计量点197. end point滴定终点198. titration error滴定误差199. primary standard基准物质200. amount of substance物质的量201. standardization标定202. chemical reaction化学反应203. concentration浓度204. chemical equilibrium化学平衡205. titer滴定度206. general equation for a chemicalreaction化学反应的通式207. proton theory of acid-base酸碱质子理论208. acid-base titration酸碱滴定法209. dissociation constant解离常数210. conjugate acid-base pair共轭酸碱对211. acetic acid乙酸212. hydronium ion水合氢离子213. electrolyte电解质214. ion-product constant of water水的离子积215. ionization电离216. proton condition质子平衡217. zero level零水准218. buffer solution缓冲溶液219. methyl orange甲基橙220. acid-base indicator酸碱指示剂221. phenolphthalein酚酞222. coordination compound配位化合物223. center ion中心离子224. cumulative stability constant累积稳定常数225. alpha coefficient酸效应系数226. overall stability constant总稳定常数227. ligand配位体228. ethylenediamine tetraacetic acid 乙二胺四乙酸229. side reaction coefficient副反应系数230. coordination atom配位原子231. coordination number配位数232. lone pair electron孤对电子233. chelate compound螯合物234. metal indicator金属指示剂235. chelating agent螯合剂236. masking 掩蔽237. demasking解蔽238. electron电子239. catalysis催化240. oxidation氧化241. catalyst催化剂242. reduction还原243. catalytic reaction催化反应244. reaction rate反应速率245. electrode potential电极电势246. activation energy 反应的活化能247. redox couple 氧化还原电对248. potassium permanganate 高锰酸钾249. iodimetry碘量法250. potassium dichromate 重铬酸钾251. cerimetry 铈量法252. redox indicator 氧化还原指示253. oxygen consuming 耗氧量(OC)254. chemical oxygen demanded 化学需氧量(COD)255. dissolved oxygen 溶解氧(DO)256. precipitation 沉淀反应257. argentimetry 银量法258. heterogeneous equilibrium of ions多相离子平衡259. aging 陈化260. postprecipitation 继沉淀261. coprecipitation 共沉淀262. ignition 灼烧263. fitration 过滤264. decantation 倾泻法265. chemical factor 化学因数266. spectrophotometry 分光光度法267. colorimetry 比色分析268. transmittance 透光率269. absorptivity 吸光率270. calibration curve 校正曲线271. standard curve 标准曲线272. monochromator 单色器273. source 光源274. wavelength dispersion 色散275. absorption cell吸收池276. detector 检测系统277. bathochromic shift 红移278. Molar absorptivity 摩尔吸光系数279. hypochromic shift 紫移280. acetylene 乙炔281. ethylene 乙烯282. acetylating agent 乙酰化剂283. acetic acid 乙酸284. adiethyl ether 乙醚285. ethyl alcohol 乙醇286. acetaldehtde 乙醛287. β-dicarbontl compound β–二羰基化合物288. bimolecular elimination 双分子消除反应289. bimolecular nucleophilic substitution 双分子亲核取代反应290. open chain compound 开链族化合物291. molecular orbital theory 分子轨道理论292. chiral molecule 手性分子293. tautomerism 互变异构现象294. reaction mechanism 反应历程295. chemical shift 化学位移296. Walden inversio 瓦尔登反转n 297. Enantiomorph 对映体298. addition rea ction 加成反应299. dextro- 右旋300. levo- 左旋301. stereochemistry 立体化学302. stereo isomer 立体异构体303. Lucas reagent 卢卡斯试剂304. covalent bond 共价键305. conjugated diene 共轭二烯烃306. conjugated double bond 共轭双键307. conjugated system 共轭体系308. conjugated effect 共轭效应309. isomer 同分异构体310. isomerism 同分异构现象311. organic chemistry 有机化学312. hybridization 杂化313. hybrid orbital 杂化轨道314. heterocyclic compound 杂环化合物315. peroxide effect 过氧化物效应t316. valence bond theory 价键理论317. sequence rule 次序规则318. electron-attracting grou p 吸电子基319. Huckel rule 休克尔规则320. Hinsberg test 兴斯堡试验321. infrared spectrum 红外光谱322. Michael reacton 麦克尔反应323. halogenated hydrocarbon 卤代烃324. haloform reaction 卤仿反应325. systematic nomenclatur 系统命名法e326. Newman projection 纽曼投影式327. aromatic compound 芳香族化合物328. aromatic character 芳香性r329. Claisen condensation reaction克莱森酯缩合反应330. Claisen rearrangement 克莱森重排331. Diels-Alder reation 狄尔斯-阿尔得反应332. Clemmensen reduction 克莱门森还原333. Cannizzaro reaction 坎尼扎罗反应334. positional isomers 位置异构体335. unimolecular elimination reaction单分子消除反应336. unimolecular nucleophilicsubstitution 单分子亲核取代反应337. benzene 苯338. functional grou 官能团p339. configuration 构型340. conformation 构象341. confomational isome 构象异构体342. electrophilic addition 亲电加成343. electrophilic reagent 亲电试剂344. nucleophilic addition 亲核加成345. nucleophilic reagent 亲核试剂346. nucleophilic substitution reaction亲核取代反应347. active intermediate 活性中间体348. Saytzeff rule 查依采夫规则349. cis-trans isomerism 顺反异构350. inductive effect 诱导效应 t351. Fehling’s reagent 费林试剂352. phase transfer catalysis 相转移催化作用353. aliphatic compound 脂肪族化合物354. elimination reaction 消除反应355. Grignard reagent 格利雅试剂 356. nuclear magnetic resonance 核磁共振357. alkene 烯烃358. allyl cation 烯丙基正离子359. leaving group 离去基团360. optical activity 旋光性361. boat confomation 船型构象 362. silver mirror reaction 银镜反应363. Fischer projection 菲舍尔投影式 364. Kekule structure 凯库勒结构式365. Friedel-Crafts reaction 傅列德尔-克拉夫茨反应366. Ketone 酮367. carboxylic acid 羧酸368. carboxylic acid derivative 羧酸衍生物369. hydroboration 硼氢化反应 370. bond oength 键长371. bond energy 键能372. bond angle 键角373. carbohydrate 碳水化合物374. carbocation 碳正离子375. carbanion 碳负离子376. alcohol 醇377. Gofmann rule 霍夫曼规则 378. Aldehyde 醛379. Ether 醚380. Polymer 聚合物ace- 乙(酰基)acet- 醋;醋酸;乙酸acetamido- 乙酰胺基acetenyl- 乙炔基acetoxy- 醋酸基;乙酰氧基acetyl- 乙酰(基)aetio- 初allo- 别allyl- 烯丙(基);CH2=CH-CH2-amido- 酰胺(基)amino- 氨基amyl- ①淀粉②戊(基)amylo- 淀粉andr- 雄andro- 雄anilino- 苯胺基anisoyl- 茴香酰;甲氧苯酰anti- 抗apo- 阿朴;去水aryl- 芳(香)基aspartyl- 门冬氨酰auri- 金(基);(三价)金基aza- 氮(杂)azido- 叠氮azo- 偶氮basi- 碱baso- 碱benxoyl- 苯酰;苯甲酰benzyl- 苄(基);苯甲酰bi- 二;双;重biphenyl- 联苯基biphenylyl- 联苯基bis- 双;二bor- 硼boro- 硼bromo- 溴butenyl- 丁烯基(有1、2、3位三种)butoxyl- 丁氧基butyl- 丁基butyryl- 丁酰caprinoyl- 癸酰caproyl- 己酰calc- 钙calci- 钙calco- 钙capryl- 癸酰capryloyl- 辛酰caprylyl- 辛酰cef- 头孢(头孢菌素族抗生素词首)chlor- ①氯②绿chloro- ①氯②绿ciclo- 环cis- 顺clo- 氯crypto- 隐cycl- 环cyclo- 环de- 去;脱dec- 十;癸deca- 十;癸dehydro- 去氢;去水demethoxy- 去甲氧(基)demethyl- 去甲(基)deoxy- 去氧des- 去;脱desmethyl- 去甲(基)desoxy- 去氧dex- 右旋dextro- 右旋di- 二diamino- 二氨基diazo- 重氮dihydro- 二氢;双氢endo- 桥epi- 表;差向epoxy- 环氧erythro- 红;赤estr- 雌ethinyl- 乙炔(基)ethoxyl- 乙氧(基)ethyl- 乙基etio- 初eu- 优fluor- ①氟②荧光fluoro- ①氟②荧光formyl- 甲酰(基)guanyl- 脒基hepta- 七;庚hetero- 杂hexa- 六;己homo- 高(比原化合物多一个-CH2-)hypo- 次io- 碘indo- 碘iso- 异keto- 酮laevo- 左旋leuco- 白levo- 左旋。
2018中科院SCI分区化学大类分区

24
25
26
ANGEWAND TE CHEMIEINTERNAT IONAL EDITION NATURAL PRODUCT REPORTS ACS Catalysi s ACS Central Science Chemical Science Journal of Physical Chemistr y Letters GREEN CHEMISTR Y ALDRICHI MICA ACTA ChemSusC hem ORGANIC LETTERS CHEMICAL COMMUNIC ATIONS ANALYTIC AL CHEMISTR Y ACS Macro Letters Annual Review of Analytic al Chemistr y
3
2.934
3
2.928
3
2.895
3
2.891
Y
3
2.89
3
2.885
3
2.869
3
2.855
3
2.853
3
2.808
124
125
126
127
128 129
130
131
132
APPLIED ORGANOME TALLIC CHEMISTR Y JOURNAL OF BIOLOGIC AL INORGANI C CHEMISTR Y CATALYSI S SURVEYS FROM ASIA COLLOIDS AND SURFACES APHYSICOC HEMICAL AND ENGINEER ING ASPECTS ELECTROA NALYSIS SYNTHESI SSTUTTGAR T CATALYSI S LETTERS JOURNAL OF PHOTOCHE MISTRY AND PHOTOBIO LOGY ACHEMISTR Y Advances in Polymer Science
Colloids and Surfaces A Physicochem. Eng. Aspects 330 (2008) 72–79

Colloids and Surfaces A:Physicochem.Eng.Aspects 330(2008)72–79Contents lists available at ScienceDirectColloids and Surfaces A:Physicochemical andEngineeringAspectsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /c o l s u r faCoagulation of silica microspheres with hydrolyzed Al(III)—Significance of Al 13and Al 13aggregatesXiaohong Wu,Dongsheng Wang ∗,Xiaopeng Ge,Hongxiao TangState Key Laboratory of Environmental Aquatic Chemistry,RCEES,Chinese Academy of Sciences,P.O.B.2871,Beijing 100085,Chinaa r t i c l e i n f o Article history:Received 19February 2008Received in revised form 1July 2008Accepted 19July 2008Available online 30July 2008Keywords:Al 13[Al 13]n aggregatesSpecies transformation Coagulationa b s t r a c tCoagulation of silica microspheres by Al coagulants with high basicities was investigated at the constant pH 6.5.Aluminum coagulants were consisted of Al 13and [Al 13]n aggregates,with OH/Al ratios of 2.46,2.6and 2.8,respectively.The species distribution and transformation of the coagulants upon aging were studied by using ferron assay and 27Al NMR.In addition,size distribution and morphology of coagulants were also examined by PCS and SEM.The results showed that the tridecamer Al 13and outer sphere aggregated [Al 13]n were the dominant species for coagulants aged weekly,while sol–gels or precipitates were formed upon further aging.Accordingly,charge neutralization,electro-patch coagulation and bridge aggregation were proceeding for particle aggregation at lower aluminum concentration.Besides other three mechanisms,sweep flocculation was also involved at higher dosages.Hence,chemical interaction between particles and coagulants evolved from adsorption to surface precipitation for aluminum polycations by virtue of species transformation.©2008Elsevier B.V.All rights reserved.1.IntroductionHydrolyzing metal salts such as alum are widely used as coagu-lants in the water treatment for years.Recently,inorganic polymer flocculants (IPFs),e.g.polyaluminum chlorides (PACl),are already commercially available around the world.Chemical aspects of coag-ulation have been studied extensively and interpreted in terms of coordination requirements of the metal ions [1],and sur-face precipitation coupled with charge neutralization [2,3].With nuclear magnetic resonance (NMR)and small angle X-ray scat-tering (SAXS),aluminum polycation Al 13(O)4(OH)247+is thought to be the most effective species of PACl owing to its high pos-itive charge and Keggin structure [4–10].Although a model has tried to interpret the coagulation mechanism of PACl quantita-tively [11],additional improvements are needed to understand the coagulation process comprehensively through the coagulant speciation.Many studies have shown that the formation and decomposi-tion of Al 13depend critically on the pH,mineral ions and organic matter [12–18].It is generally accepted that the Al 13remains stable at the optimal pH (∼5)and relative low concentration (<10−3M)in the absence of organic substances and minerals.The aggrega-∗Corresponding author.Tel.:+861062849138;fax:+861062923543.E-mail address:wgds@ (D.Wang).tion and precipitation of Al 13complex occurs when pH >6[18].Below pH 6,the positive charge of 7+maintains and aggregation is avoided [16].Investigations suggested that the local range order of Al 13would not be significantly modified upon dilution and pH shock [10],while structural changes were observed in presence of humic material at different pH values [8].However,a few stud-ies have reported that a major rearrangement of Al 13must take place when hydrolysis advanced to OH/Al ratio of 3.0[19–21].The tridecamer was suggested to transform from the gel with open fractal structure to the bayerite hydroxide upon base hydroly-sis and aging [19,20].Exact definition of such transformation is still desired for the full application of the aluminum salt.As PACl exhibits coagulation efficiency over a wider temperature and pH range [4,6–8],it is important to unveil the coagulation mechanisms induced by its active species,i.e.Al 13.For this reason,hydrolysis aluminum species need to be separated and investigated during coagulation.The aim of this paper is to describe the nature of the transformed aluminum polycations,i.e.the Al 13and Al 13aggregates with high basicities (OH/Al =2.6,2.8),and their interactions with silica micro-spheres during coagulation.Particle aggregation induced by various species were investigated as a function of aluminum concentration at pH 6.5.Consequently,coagulation mechanisms are discussed by virtue of species distribution combined with jar test results in this study.Better understanding is extended on the effects of species transformation accordingly.0927-7757/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.colsurfa.2008.07.034X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–7973Fig.1.Size distribution of silica microshperes measured by Mastersize2000. 2.Materials and methods2.1.Silica microspheres and coagulantsAll the chemicals were analytical grade and experiments were conducted at room temperature(22±3◦C).The micro-sized silica spheres were used as model particles to prepare the working suspension because of their strong nega-tive charge and simple morphology as our previous study reported [22].Furthermore,a narrow size distribution of silica suspension was also indicated by static light scattering techniques(Malvern, Mastersizer2000,UK)as Fig.1shows.The mean diameter of silica particle was3.0m.The Al13was prepared by SO42−/Ba2+displacement method from the stock PACl solution as shown in[23].The concentration and OH/Al ratio(B values)of PACl solution werefixed to0.1mol/L and2.3,respectively.A batch of Al13was stocked to prepare Al13 aggregates with a slow base titration method.According to the tar-get B values(2.6and2.8),certain amount of NaOH(0.1M)was titrated slowly(0.1ml/min)to Al13solution under rapid stirring. Thefinal aluminum concentration of all the prepared coagulants wasfixed to0.05mol/L.2.2.Size distribution and morphology of coagulantsThe photon correlation spectroscopy(PCS)or dynamic light scattering was used to characterize the size of coagulant,by BI-200SM(Brookhaven,USA)instrument equipped with a BI-9000AT digital correlator.The instrument was operated at a532nm wave-length with vertical polarization.Before measurement,all the samples werefiltered twice using0.45m membrane(Millipore, USA).The instrument alignment and size determination were car-ried out as Wang et al.described[24].Scanning electron microscopy(SEM)was used to examine the morphology of aggregated coagulants by a HITACHI S-570.The sam-ples were prepared on the copper tab of aluminum pin stub.A drop of coagulant solution was placed on and air-dried at room tem-perature.In addition,the prepared substrate was sputter coated with gold in case of charging.The working distance and acceleration voltage are8.0mm and5.0keV,respectively.2.3.Speciation and zeta-potential analysisAll the coagulants were examined with ferron assay and solu-tion27Al NMR spectroscopy at different ages.Species distribution was characterized with ferron assay divided as Al a,Al b and Al c [25].The Al13was analyzed by a500MHz27Al NMR spectroscopy (Brookhaven,USA).The sequences,recording method,and Al13 content calculation were described earlier[22],and will not be repeated.The electrical property of coagulant was investigated by Zeta-sizer2000(Malvern,UK).It should be noted that difficulties still exist to directly measure the zeta-potential of coagulants,though sol–gels formed for aluminum solutions with high basicities.In this regard,the same method as measuring the zeta-potential of coated silica particle was followed[22],and100mg/L of sil-ica suspension was used as the carrier and excess coagulants of 2×10−4mol Al/L were added to ensure completely coverage of par-ticles.2.4.Jar testCoagulation test was performed by a JTY laboratory stirrer (Daiyuan Company,Beijing).The working suspension was pre-pared by adding silica microspheres into deionzed water with 0.001M NaHCO3and0.01M NaNO3,providing the alkalinity and ionic strength buffer,respectively.Jar test was taken in a500ml suspension and followed the procedure as:2min rapid mixing (200rpm),10min slow mixing(40rpm)and15min sedimentation. The zeta-potential was measured after rapid mixing,and the resid-ual turbidity was measured separately with HACH2100N turbid meter after sedimentation.Suspension’s pH was adjusted with HCl (0.05M)or NaOH(0.05M)before coagulant injection,and was not readjusted as pH drop resulting from hydrolysis can be neglected. Thefloc size distribution was measured in situ by small angle light scattering(Mastersizer2000,Malvern,UK).The instrument deter-mined the scattered intensity at measuring angles ranging from0◦to46◦with a He–Ne laser light of632.8nm.An integration time of 40s per curve was chosen to compromise measuring speed and data quality.The size information of aggregated particles was monitored during coagulation using standard1L glass beaker,and performed the same procedure as jar test.3.Results3.1.Coagulant size distribution and morphologySize determination of coagulant remains to be uncertain due to the polydispersityfluctuations,hydrodynamic interactions and sample contamination,though some pioneer work had been reported[24].However,the speciation transformation of coagu-lant can also be reflected through the size information.For the IPFs such as PACl,colloidal aluminum species formed with increas-ing basicity and could be detected by PCS.Fig.2shows the size distribution of coagulants analyzed by NNLS after1week aging. Two sectional distributions can be seen clearly for three coagu-lants,indicating size aggregation and structure rearrangement of Al13with further alkalinification.With increasing B values,particle size increases from about10to several decade nm and the large size section becomes broader.It is well known that the size of Keggin Al13is∼2nm and its freshly formed aggregates can be hundreds nm[10].As can be seen from Fig.2a,the small section is of size about2nm and the large one is of size between10and20nm,the analyzed results agrees well with the previous reports.However, owing to the requirement of instrument measurement,the hun-dreds nm aggregates may befiltrated and could not detected by PCS.In this regard,the SEM was employed to study the morphol-ogy transformation and also the size growth of Al13aggregates.74X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–79Fig.2.Size distribution of weekly-aged coagulants measured by PCS.Fig.3.SEM images of the Al13aggregates at different ages.Table1The Al species distribution of coagulants at different agesB(OH/Al)Al T(mol/L)Ferron assay(%)27Al NMR(%)pH a pH bAl a a Al b a Al c a Al a b Al b b Al c b Al13a Al13b2.460.05 5.095.003.290.3 6.599.099.0 5.234.97 2.60.05 1.981.117 2.352.145.681.047.7 5.60 4.95 2.80.050.778.121.20.215.284.637.10 5.87 5.82a Coagulants aged for a week.b Coagulants aged for6months.X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–7975In Fig.3,the distinct structures of coagulants are presented at different transformation stages,and correspond well with former studies[10,19].The independently formed particles stick together for weekly aged B2.6,and a more compact structure appears upon aging and alkalinification.Furthermore,the sizes of aggregates increase to hundreds micrometers in Fig.3for B2.8and B2.6(6-month aged).Although species transformation occurring during air-drying process may lead to size enlargement for all the coag-ulants,the relatively large scales can be clearly observed by SEM.A precise determination of Al species in the aggregates were carried out by ferron assay and NMR,showing the existence of Keggin Al13 in the weekly aged aggregates(next part).With further aging(6-month),larger polymer species may be formed and are not possible to be precisely detected with our data.However,it can be hypoth-esized that the Al13aggregates were formed by individual Al13unit via out-sphere bridging,and these structures maintain the identical tetrahedral environment under certain condition[17].Conse-quently,[Al13]n is referred as such fractal species,and their cor-responding coagulation behaviors are compared with Al13later on.3.2.Speciation of coagulants at different agesAlthough large amount of studies have addressed on the chemi-cal speciation of hydrolyzed aluminum,disagreements still exist on the species transformation[7,17,26].With aging time,the species distributions change greatly for Al13aggregates(B2.6,B2.8)and remain stable for pure Al13(B2.46),as Table1and paring the species analysis,it can be seen that the Al b almost equals to Al13for B2.46and2.6,while Al13decrease greatly for B2.8when Al b proportion was high.Apparently,larger poly-meric species,even sol–gels,had formed and led to the unclear solution of B2.8.It can be suggested herein that structure rearrange-ment occurred during further alkalinification for Al13to form larger polymers like[Al13]n.When contacting with ferron colorimetric solution,this kind of[Al13]n can be decomposed upon dilution and pH shock and hence exhibited higher activity within2h.On the other side,these[Al13]n aggregates may transfer to be the colloidal Al species or precipitates upon aging.These colloidal Al species can-not be disassembled and are inert to the ferron solution,which is demonstrated in Table1as Al b percentages decrease greatly(6-month-aged B2.6and B2.8).It was not clear whether this kind of Al13aggregates could be assigned to Al30or not,since no alu-minum monomer was presented in the pure Al13solution(Fig.4a) and the aging temperature was set at room temperature[27].Fur-thermore,the formed precipitates may differ from the aluminum hydroxide with gibbsite structure,which will be shown by the fol-lowing coagulation test,although clear definition is needed in the future study.3.3.Zeta-potential of coagulantsThe measured zeta-potentials of silica particles coated with weekly-aged coagulants are presented in Fig.5,and values of the original particles are also indicated[22].It can be seen that positive zeta values maintain stable in the pH range of4–7for coated silica pared with pure Al13,the zeta values of Al13aggre-gates are higher in the acidic range,which can be possibly caused by the release of Al13unit under pH shock.Therefore,the suggested structure of[Al13]n can be indirectly proved,while direct infor-mation is required and under further investigation in our group. The zeta-potential of half-year aged Al13aggregates were not mea-sured in this study,since the electrical properties of coagulants are controlled by the proportions of polycations.Although the Al b per-centage decreased greatly for the half-year aged B2.8(Table1), the jar test results also indicated high zeta-potential whenalu-Fig.4.27Al NMR spectra of the cogulants.(a)Coagulants aged for a week;(b)coag-ulants aged for6months.minum concentration reached10−4mol/L(Fig.6b).This could be attributed by the some released Al13and some undetected larger polymers by NMR[27],yet precise determination has not been reported.76X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–79Fig.5.Zeta-potential curves of silica microspheres with or without coating of coagulants as a function of pH.Silica concentration:100mg/L;total aluminum con-centration[Al]T:2×10−4mol/L;(*)measure by Wu et al.[22].3.4.Coagulation results3.4.1.Particle removal and zeta-potentialAll the jar tests were performed at constant pH value(6.5) under room temperature.As pure Al13(B2.46)remained stable in almost a year(data is not shown),only6-month-aged Al13 was selected to compare the coagulation performances between the Al13aggregates.The zeta-potential and residual turbidities are presented in Fig.6as a function of coagulant dosage.It can be seen that the suspension injected with pure Al13reaches the C.C.C (critical coagulation concentration)at the lower dosage around 1×10−6mol/L,when particles are still negatively charged.More-over,re-stabilization occurs right after charge reversal,which is similar to the former report about high Al13-content PACl[22].For B2.6and B2.8of different ages,the distinct coagulation behaviors exhibit clearly in the Fig.6a and b.With increasing dosages,suspen-sion destabilization and re-stabilization occur for the weekly-aged coagulants,whereas re-stabilization zone disappears for the6-month-aged B2.8.Obviously,different coagulation mechanisms are involved,resulting from the species transformation in situ and pre-formed alkalinification.For the B2.6and B2.8aged for a week (Fig.6a),part of the larger polymer or colloidal[Al13]n(higher Al b)may decompose into Al13units upon injection,and result in higher zeta-potential and re-stabilization at higher dosages.The charge variation of silica suspension is consistent with the elec-trical properties of Al13and Al13aggregates presented in Fig.5. Furthermore,as mentioned earlier,the particle size Al13aggre-gates are larger than pure Al13,which decade nm particles appear. With that respect,Al13aggregates can interact and bridge more particles than Al13unit does.Therefore,a rather gentle increas-ing slope of residual turbidity is observed for B2.6,although the corresponding zeta-potential is higher than B2.46.Moreover,the stabilization zone is much wider for B2.8at that condition.Accord-ingly,strong charge neutralization and electro-patch coagulation are performed between negative silica microspheres and positive polycations(Al13and[Al13]n),combining with a weak bridge aggre-gation.For the6-month aged Al13aggregates,significantly lower turbidities are observed at the higher dosages([Al]>10−5mol/L), while similar trends of coagulation behavior can be observed for B2.46and B2.6,yet re-stabilization zone disappears for B2.8 (Fig.6b).It can be understood that other mechanisms dominate the coagulation process besides charge neutralization for these6-month-aged coagulants,as part of the[Al13]n transformed into sol–gels or precipitates upon aging(lower Al b).No matter original or destabilized particles can be both linked together or wrapped by this kind of sol–gels or precipitates,and led to relative lower turbidities after charge reversal(zeta>10mV).3.4.2.Floc size distributionBased on the coagulation behaviors shown in Fig.6,it is evi-dent that the optimum coagulation concentration occurs at higher dosage for B2.8than that for B2.46and B2.6,i.e.10−5mol/L and10−6mol/L,respectively.Figs.7and8show the comparison between the size distributions for them.For both weekly-aged B2.6and B2.8,largeflocs of∼500m are formed as well as pure Al13(B2.46)does at lower dosage(10−6mol/L).Moreover,thepro-Fig.6.Coagulation results as a function of aluminum concentration using different coagulants.(a)Weekly-aged coagulants;(b)6months aged coagulants;(silica suspension concentration:0.5g/L; :−45±5mV;pH6.5).X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–7977Fig.7.Volume based size distribution offlocs at the end of slow mixing for all the coagulants.At the optimum concentration for B2.46and B2.6.([Al]T=10−6mol/L).portions of larger sizefloc for aggregates are greater than that of pure Al13,owing to their larger size and branched structure (Figs.2and3).However,without enough positive polycations to destabilize negative silica particles,particle aggregation induced by B2.8is retarded,resulting in a lower turbidity removal at dosage of10−6mol/L(Fig.6).On the other side,floc size decreases and pri-mary silica particles dominate for the B2.46at dosage of10−5mol/L, contrary to the great proportions of largerflocs for Al13aggregates, especially the B2.8(Fig.8).Obviously,this can be attributed to their different speciation associated with charge properties,size distribution,etc.For B2.46,high content Al13(99%)induced strong repulsion between coated particles(zeta=31.2mV)and prevented particle aggregation subsequently.For B2.6and B2.8,portions of larger polymers like[Al13]n(part of Al b and Al c)catalyzed particle aggregation in terms of bridge aggregation or sweepfloccula-tion forming largerflocs.With sol–gel or precipitates formed for 6-month-aged B2.8(no Al13and higher Alc),voluminousflocs (D50>1000m)turn to be the predominant and lower turbidity maintains at higher dosages as Fig.6b shows.4.DiscussionsThe performance of inorganic polymerflocculants(IPFs),such as PACl,has shown to be efficient in water treatment[6,7,28].On addition to water,such inorganic coagulant may undergo hydrolysis reactions and alter the original speciation,yet the species formation has not been well understood due to the difficult determination in the condition of water treatment.However,Keggin-Al13is generally thought to be stable,though the aggregation of Al13occurs in nat-ural and artificial environment.For the aluminum solutions with high basicities of2.46,2.6and2.8,Keggin-Al13and Al13aggregates are the predominant species for weekly-aged coagulants.Conse-quently,Al13and[Al13]n are assumed to be the active species, and their coagulation behaviors are distinct correspondingly.Com-Fig.8.Volume based size distribution offlocs at the end of slow mixing for all the coagulants.At the optimum concentration for B2.8([Al]T=10−5mol/L).78X.Wu et al./Colloids and Surfaces A:Physicochem.Eng.Aspects330(2008)72–79Fig.9.Schematic representation of species transformation of aluminum polycations and the performed corresponding main coagulation mechanisms.pared with Al13aggregates,highly positive Al137+adsorbed on the negative particles rapidly and covered the surfaces as scattered patches.The particle destabilization and aggregation were carried out simultaneously through charge neutralization and electro-patch coagulation.Moreover,[Al13]n can be formed in situ after the addition of Al13and bridge aggregation may also involved at higher dosage.However,for Al13aggregates,more particles were destabi-lized and agglomerated with bigger units and longer chain structure of[Al13]n(Figs.2and3),including preformed and in situ formed. Upon aging,part of[Al13]n may transform into amorphous hydrox-ides,as shown by Ferron assay(higher Al c for6-month-aged B2.8, Table1).In addition,the particle size measurement by dynamic light scattering indicated strong intensity for monthly-aged B2.8 and hundred nm colloidal Al species were observed.Therefore, bridge aggregation and sweepflocculation dominated the parti-cle and cluster interactions along the coagulation course.It should be noted that charge neutralization is the pre-requisite for efficient particle removal.As Fig.6b shows,relatively higher residual turbid-ity is observed for B2.8at lower dosages([Al]T<10−5mol/L)despite larger sizeflocs formed then(Fig.7),owing to the negative zeta-potential values( ∼−30mV).Without sufficient destabilization, the residual less aggregated particles would be lower down the coagulation efficiency consequently.Previous studies indicated that pre-hydrolyzed coagulants are often more effective than traditional coagulants due to their sub-stantial component of tridecamer Al13[6,14,28].Because of their various specie distributions,coagulants with different ages and basicities interact with particles through various pathways.With high content Al13,B2.46exhibited strong adsorption ability and formed relatively small and compactflocs(Figs.7and8).For the Al coagulants with high basicities,particle–coagulants interac-tions evolved from adsorption to co-precipitation,corresponding to the coagulation mechanisms as charge neutralization,electro-patch coagulation and sweepflocculation.Although precipitate was involved during the process for these coagulants,its nature and performance was distinct from that of the traditional alum which had already been demonstrated by Van Benschoten and Edzwald[29].This kind of precipitate or sol–gel remains active and can be disassembled or decomposed upon stirring and proton-promotion.In fact,it is the[Al13]n that plays a major role in the coagulation process,and its transformation pathways based on the experimental conditions will determine the coagulation behavior ultimately.Fig.9shows the possible transformation pathways of Al13accompanied with corresponding coagulation mechanisms. For each coagulant containing various portions of Al13,[Al13]n and Al(OH)3(am)(based on Table1),different coagulation mechanisms predominate the particle interactions thereby and result in distinct coagulation behaviors(Fig.6).5.ConclusionsAluminum solutions with high basicities experienced species transformation upon aging,and thefinal phases formed depend on the exact conditions of hydrolysis(e.g.solution pH).Character-ization of such aluminum solutions showed that tridecamer Al13 and aggregated[Al13]n were the dominant species,and distinct structures were observed corresponding with the formed species. The species transformation was demonstrated with coagulation behaviors of different aluminum polycations,and different coag-ulation mechanisms were assigned accordingly.Although these experimental results do not exactly define the species transforma-tion,enough evidence is provided for speculation.With increasing use of PACl,further work is needed to investigate the nature of the formed aluminum polycations such as Al13during coagula-tion.Consequently,better understanding can be obtained on the improved performance of these coagulants.AcknowledgementThe authors would like to thank the National Natural Sci-ence Foundation of China(NSFC)in support of this project(No. 20537020,No.50678167and No.20677073).References[1]W.Stumm,J.J.Morgan,Chemical aspects of coagulation,J.Am.Water WorksAssoc.54(1962)971–994.[2]S.K.Dentel,Application of the precipitation-charge neutralization model ofcoagulation,Environ.Sci.Technol.22(1988)825–832.[3]R.D.Letterman,D.R.Iyer,Modeling the effects of hydrolyzed aluminum andsolution chemistry onflocculation kinetics,Environ.Sci.Technol.19(1985) 673–681.[4]D.S.Wang,H.Liu,C.Li,H.X.Tang,Removal of humic acid by coagulation withnano-Al13,J.Water Supply6(2006)59–67.[5]rtiges,J.Y.Bottero,L.S.Derrendinger,B.Humbert,P.Tekely,H.Suty,Floc-culation of colloidal silica with hydrolyzed aluminum:an27Al solid state NMR investigation,Langmuir13(1997)147–152.[6]S.Sinha,Y.Yoon,G.Amy,J.Yoon,Determining the effectiveness of conven-tional and alternative coagulants through effective characterization schemes, Chemosphere57(2004)1115–1122.[7]H.X.Tang,Theory of Inorganic Polymer Flocculation and Flocculants,ChinaArchitecture press,Beijing,2006.[8]V.Kazpard,rtiges,C.Frochot,J.B.D.de la Caillerie,M.L.Viriot,J.M.Portal,T.Gorner,J.L.Bersillon,Fate of coagulant species and conformational effects during the aggregation of a model of a humic substance with Al13polycations, Water Res.40(2006)1965–1974.[9]A.Masion,A.Vilge-Ritter,J.Rose,W.E.E.Stone,B.J.Teppen,D.Rybacki,J.Y.Bottero,Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates,Environ.Sci.Technol.34(2000) 3242–3246.[10]J.Y.Bottero,D.Tchoubar,M.A.V.Axelos,P.Quienne,F.Fiessinger,Flocculationof silica colloids with hydroxy aluminum polycations.Relation betweenfloc structure and aggregation mechanisms,Langmuir6(1990)596–602.[11]D.S.Wang,H.X.Tang,Quantitative model of coagulation with inorganic poly-merflocculant PACI:application of the PCNM,J.Envir.Eng.-ASCE132(2006) 434–441.[12]A.Amirbahman,M.Gfeller,G.Furrer,Kinetics and mechanism of ligand-promoted decomposition of the Keggin Al-13polymer,Geochim.Cosmochim.Ac.64(2000)911–919.[13]E.Molis,F.Thomas,J.Y.Bottero,O.Barres,A.Masion,Chemical and structuraltransformation of aggregated Al13polycations,promoted by salicylate ligand, Langmuir12(1996)3195–3200.[14]P.Y.Zhang,H.H.Hahn,E.Hoffmann,G.M.Zeng,Influence of some additivesto aluminium species distribution in aluminium coagulants,Chemosphere57 (2004)1489–1494.[15]W.H.Casey,B.L.Phillips,M.Karlsson,S.Nordin,J.P.Nordin,D.J.Sullivan,S.N.Crawford,Rates and mechanisms of oxygen exchanges between sites in the。
前沿化学期刊封面上的科学之美探析

An Analysis B e au ty of S c i e nc e on the C ove r of L e ad i n g Journal of C h e m i s t r y前沿化学期刊封面上的科学之美探析王国燕 程 曦 杜 进(中国科学技术大学,合肥 230026)Wang Guo y anCheng Xi Du Jin(University of Science and Technology of China ,Hefei 230026)Abstract :Science communication should make contribution for scientific research. Each discipline has a special way whenthey show their own achievements , forming different characteristics. Chemistry , as the basic discipline in the naturalscience , h as been acc ept ed a great attract ion f rom the society. The topic of article aims to find scientific visualization of chemistry characteristics and common ground and show the beauty of chemistry by analyzing the chemical properties of this article and of high impact factor journals of chemistry cover image features. Keyw ords :journa l of chemistry ;cover story ;beauty of scienceCLC Num bers: N4Document Code: AArticle ID: 1673-8357 (2014) 04-0059-07一图胜千言,DNA 的双螺旋结构、原子 的行星模型、薛定谔之猫等视觉形象带动了 人们对科学知识的有效理解和认知。
The Chemistry of Colloids and Interfaces

The Chemistry of Colloids andInterfaces介绍:Colloid和界面化学的基本概念Colloid是一种物质形态,指的是以微米甚至纳米级别的颗粒或胶体为载体的混合物。
而Interface,即“界面”,指的是两个不同物质相互接触时,两侧发生化学、物理性质改变的层面。
这两种概念之间存在着紧密的联系,构成了一个重要的学科领域:Colloids and Interfaces Chemistry。
本文将从微观角度介绍Colloid和Interface 的化学特性。
一、Colloid的性质和制备方法Colloid具有独特的特性,例如,会因增加颗粒质量浓度而发生凝胶化。
但是由于其颗粒级别的大小,传统化学方法无法合成,因此需要特殊制备方法。
制备Colloid的方法很多,可以通过化学方法、物理方法或化学物理方法来实现。
常见制备方法:1. 离子溶胶法。
2. 凝胶化法。
3. 电沉积法。
二、Colloid的稳定性和破坏机制Colloid粒子的稳定性是指其长期存在而不发生凝聚。
Colloid的稳定性机制有很多种,其中最常见的两种分别是静电排斥相互作用和物种排斥作用。
静电排斥相互作用,是指由于Colloid粒子表面带有静电荷,导致表面间相互排斥,从而保持相对稳定。
物种排斥作用,是指由于溶液中含有形成Colloid粒子的物质,但由于互相之间不相容,而形成的稳定状态。
尽管Colloid粒子可以保持稳定,但在某些条件下,它们可能会出现破坏,例如加盐、加热和pH有所变化等。
三、Interface化学Interface是物质相互接触的地方,是物体之间或物质之间的“交界处”。
Interface 化学是无法避免的,因为它在我们生活和生产当中无处不在。
例如,油和水之间的界面化学过程,以及洗涤剂在衣物和水之间的作用。
一般来说,界面化学关注以下几个方面:表面张力、分散系统、润湿性和胶体和晶体之间的界面反应等。
化学顶级期刊发表排名

化学顶级期刊发表排名化学是一门关于物质的组成、结构、性质和变化规律的科学,是自然科学中的一门重要学科。
化学研究的成果需要通过发表在期刊上来与同行分享和交流,而在众多的化学期刊中,顶级期刊的发表排名一直备受关注。
本文将介绍一些化学领域的顶级期刊发表排名,希望能对化学研究人员有所帮助。
1. Journal of the American Chemical Society (JACS)。
《美国化学学会期刊》(JACS)是美国化学学会出版的权威期刊,创刊于1879年,是全球化学领域最具影响力的期刊之一。
JACS发表的文章涵盖了化学的各个领域,包括有机化学、无机化学、物理化学、材料化学等。
JACS期刊以其高质量的研究论文和严格的审稿标准而闻名,因此成为了众多化学研究人员梦寐以求的发表平台。
2. Angewandte Chemie International Edition。
《应用化学国际版》是一份以英文发表的国际性化学期刊,由德国化学学会出版。
该期刊创刊于1962年,以发表化学领域的原创性研究论文和综述而闻名。
《应用化学国际版》的影响因子一直居于化学期刊排名的前列,成为化学研究人员交流最新研究成果的重要平台。
3. Nature Chemistry。
《自然化学》是一份由国际知名科学期刊《自然》出版的专业化学期刊。
该期刊创刊于2009年,以发表化学领域的重要研究成果和新颖观点而著称。
《自然化学》的发表要求极为严格,但一经发表,便能获得全球化学研究人员的高度关注和认可。
4. Chemical Reviews。
《化学评论》是美国化学学会出版的一份综述性化学期刊,创刊于1924年。
该期刊以发表化学领域的综合性综述和前沿性研究成果而著称,被誉为化学领域的“百科全书”。
《化学评论》的影响因子一直居于化学期刊排名的前列,是化学研究人员获取最新研究进展的重要来源。
5. Journal of Organic Chemistry。
胶体与界面化学英文1Colloid and SurfaceInterface Chemistry—Scope and Variables

1
Contents
Chapter 1: Colloid and Surface/Interface Chemistry—Scope and Variables Chapter 2: Sedimentation and Diffusion and Their Equilibrium Chapter 3: Solution Thermodynamics: Osmotic and Donnan Equilibia Chapter 4: The Rheology of Dispersions
Reverse hexagonal liquid crystal
17
The exchange of main structures of aggregation
vesicle
18
4. Impact of Colloid and Surface Chemistry in Science,Engineering and Technology
5
The linear dimension is size range, rather than particle weight or the number of atoms in a particle.
The properties of colloid system and surface phenomena of colloid system depend mainly on the specific surface area of colloid particle, little or lightly on the colloid structure and density of a particle.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
colloids include the metal sols. Lyophilic colloids generally have some chemical similarity to the solvent, such as –OH groups able to form hydrogen bonds.
▪ Surface active agent, surfactant (表面活性剂)
▪ Anionic surfactant
▪ Cationic surfactant ▪ Micelle (胶束) ▪ Surface film ▪ Monomolecular film
▪ Detergent (洗涤剂) ▪ Electrophoresis (电泳) ▪ Electroosmosis (电渗) ▪ Isoelectric point (等电点) ▪ Sol (溶胶) ▪ Aerosol (气溶胶) ▪ Gel (凝胶) ▪ Agar gel (琼脂糖凝胶)
Surfactant molecules or ions can cluster together as micelles, which are colloid-sized clusters of molecules, for their hydrophobic tails tend to congregate, and their hydrophilic heads provide protection. Micelles form only above the critical micelle concentration (CMC) and above the Krafft temperature.
Definition:
A colloid, or disperse phase, is a dispersion of one material in another.
Classification:
A sol is a dispersion of a solid in a liquid or of a solid in a solid.
Two regions of charge must be distinguished.
• First, there is a fairly immobile layer of ions that adhere tightly to the surface of the colloidal particle, and which may include water molecules. The radius of shear is the major factor determining the mobility of the particles. The electric potential at the radius of shear relative to its value in the distant, bulk medium is called the zeta potential, ζ, c potential electrokinetic potential.
▪ Emulsion (乳化) ▪ Water in oil emulsion ▪ Oil in water emulsion ▪ Emulsifying agent, emulsifier (乳化剂) ▪ Emulsifying efficiency ▪ Emulsion breaking (破乳) ▪ Emulsion breaker, demulsifier(破乳剂) ▪ Adsorption (吸附) ▪ Adsorption center (吸附中心) ▪ Adsorption equilibrium ▪ Co-adsorption ▪ Selective adsorption ▪ Adsorption layer ▪ Monomolecular adsorption ▪ Multimolecular adsorption
Colloid Chemistry and Surface Chemistry
(胶体化学和表面化学)
4. Colloid Chemistry and Surface Chemistry
(胶体化学和表面化学)
▪ Disperse system (分散体系) ▪ Disperse phase ▪ Disperse medium ▪ Colloid (胶体) ▪ Colloidal state ▪ Colloidal solution ▪ Aggregation (凝聚) ▪ Dialysis (透析) ▪ Sedimentation (沉降) ▪ Sedimentation boundary ▪ Sedimentation velocity
Second, the charged unit attracts an oppositely charged atmosphere of mobile ions. The inner shell of charge and the outer ionic atmosphere of mobile ions. The inner shell of charge and the outer ionic atmosphere is called the electrical double layer.
The hydrocarbon interior of a micelle is like a droplet of oil. NMR shows that the hydrocarbon tails are mobile, but slightly more restricted than in the bulk.
▪ Diffusion (扩散) ▪ Diffusion coefficient ▪ Light scattering ▪ Electron microscope ▪ Surface (表面) ▪ Curved surface (曲面) ▪ Surface tension (表面张力) ▪ Surface energy ▪ Surface pressure ▪ Interface (界面) ▪ Interfacial tension
• Anuid in a gas or a solid in a gas.
• An emulsion is a dispersion of a liquid in a liquid.
A further classification of colloids is as lyophilic (亲液的), or solvent-attracting, and lyophobic (疏液的),solvent-
A gel is a semirigid (半固的,半硬的) mass of a lyophilic sol in which all the dispersion medium has penetrated into the sol particle.
Micelle formation and the hydrophobic interaction
The electrical double layer
A major source of kinetic stability of colloids is the existence of an electric charge on the surfaces of the particles. On account of this charge, ions of opposite charge tend to cluster nearby, and an ionic atmosphere is formed.
Application: micelles are important in industry and biology on account of their hydrocarbon interiors. For this reason, micellar systems are used as detergents and drug carriers, and for organic synthesis, froth flotation, and petroleum recovery.