无机及分析化学

合集下载

无机及分析化学

无机及分析化学

绪论化学是21世纪的中心学科波义耳把化学确立为科学,明确提出“化学的对象和任务就是寻找和认识物质的组成和性质”; 1777年,拉瓦锡提出燃烧的氧化学说;1811年,阿伏伽德罗提出分子假说;1807年,道尔顿建立原子论,合理地解释定组成定律和倍比定律,为化学新理论的诞生奠定基础;1869年,门捷列夫提出元素周期律,形成较为完整的化学体系;1913年,丹麦科学家玻尔把量子概念引入原子结构理论,量子力学的建立开辟了现代原子结构理论发展的新历程;化学与化学的分支学科化学可分为四大分支学科:无机化学、有机化学、物理化学和分析化学;无机化学是化学学科中发展最早的一个分支学科;有机化学是最大的化学分支学科; 学习无机及分析化学的预备知识分压定律科学上常用理想气体状态方程式描述气体的行为:PV=nRT式中:R 为摩尔气体常量,R=mol -1K -1一定温度下,某组分气体占据与混合气体相同体积时所具有的压力称为该组分气体的分压;混合气体总压力是由各组分共同产生的; P 总= PA+ PB+ PC+…式中:P 总为混合气体的总压;PA 、PB 、PC 分别为混和气体中A 、B 、C 组分气体的分压;该式就是道尔顿分压定律的数学表达式;它表明“一定温度、一定体积条件下,混合气体的总压等于各组分气体分压之和”;)()总()()总()(B x n B n P B p == 式中:XB 为B 组分气体的摩尔分数,则PB=P 总 xB 定温条件下,某组分气体的分压与混合理想气体总压相同时,其单独占据的体积称为该组分气体的分体积;混合气体的总体积是各组分气体分体积的加和,称为分体积定律;V 总=VA+VB+VC+… V 总=RT P n )总( VB=RT PB n )(=XB V 总 VB=XB V 总 有效数字对数数值的有效数字位数只取决于小数部分的位数,整数部分代表该数为10的多少次方,起定位作用;例如,PH=,只有两位有效数字,表示cH+=×10-5molL -1;化学计算中的自然数、倍数、分数、系数等,非测量所得,可视为无误差数字,其有效数字的位数是无限的;有效数字的修约规则是“四舍六入五留双”;当尾数≤4时则舍;当尾数≥6时则入;当尾数等于5时,若“5”前面为偶数包括零则舍,为奇数则入,总之保留偶数;当几个数相加减时,保留有效数字的位数以绝对误差最大或以小数点后位数最少的那个数为标准;当几个数相乘除时,保留有效数字的位数以相对误差最大或通常以有效数字位数最少的那个数为标准;应当指出,当几个数相乘或相除时,如果位数最少的数的首位是8或9,则有效数字位数可多算一位;例如,×,可将看成两位有效数字,因为与两位有效数字的相对误差相近,因此×=;对于高含量组分10%的测定,化学分析中用到的分析天平和滴定管等仪器测定结果一般有四位有效数字,则要求分析结果有四位有效数字如%;对于中含量组分1%~10%的测定,一般要求三位有效数字如%,对于微量组分<1%的测定,一般要求两位有效数字如%;此外,在表示误差时,一般只取一位有效数字,最多取两位有效数字;第1章 分散体系溶液均相:在体系内部物理性质和化学性质完全相同且均匀的部分称为相;基本单元时系统组成物质的基本组合,用符号“B ”表示,B 既可以时分子、原子、离子、电子及其他粒子,也可以是这些粒子的特定组合;溶液中溶质B 的物质的量除以溶剂的质量为溶质B 的质量摩尔浓度,用“bB ”表示,即 bB=)()(A m B n =)()()(A m B M B m 式中:bB 的SI 单位为molkg -1 质量摩尔浓度bB 的数值不随温度变化;溶剂是水的稀溶液,bB 与cB 的数值近似相等;溶液中溶质B 的物质的量与混合物的物质的量之比称为组分B 的摩尔分数,用“xB ”表示,其量纲为1,即xB=nB n )(;若溶液由A 和B 两种组分组成,溶质物质的量为nB,溶剂的物质的量为nA 则xA=)()()(B n A n A n + xB=)()()(B n A n B n + 显然,溶液各组分物质的摩尔分数之和等于1,即xA+XB=1;若溶液由多种组分组成,则∑xi=1.稀溶液的依数性溶液的性质有两类:一类是由溶质的本性决定的,如密度、颜色、导电性、酸碱性等;另一类性质是由溶质粒子数目的多少决定的,如溶液的蒸气压下降、溶液的沸点升高、溶液的凝固点下降和溶液的渗透压等;这些性质均与溶质粒子数目多少有关,而与溶质的本性无关,称为依数性;任何纯液体在一定温度下都有确定的蒸气压,且随温度的升高而增大;当纯溶剂溶解一定量难挥发溶质如蔗糖溶于水中,萘溶于苯中时,在同一温度下,溶液的蒸气压总是低于纯溶剂的蒸气压;这种现象称为溶液的蒸气压下降,即△p=p -p式中:△p 为溶液的蒸气压下降值;p 为纯溶剂的蒸气压;p 为溶液的蒸气压;显然,这里所说的溶液的蒸气压,实际是指溶液中溶剂的蒸气压因为溶质是难挥发的;溶液蒸气压下降的原因是溶质分子占据着一部分溶剂分子的表面,在单位时间内逸出液面的溶剂分子数目相对减少;因此达到平衡时,溶液的蒸气压必定低于纯溶剂的蒸气压,且浓度越大,蒸气压下降越多;拉乌尔定律:在一定温度下,难挥发非电解质稀溶液的蒸气压下降与溶质B的摩尔分数成正比,即△p=p-xB △p=KbB,K= pMA所以拉乌尔定律又可以表述为,在一定温度下,难挥发电解质稀溶液的蒸气压下降,近似地与溶质B的质量摩尔浓度成正比,而与溶质的本性无关;当溶质是挥发性的物质时如乙醇加入水中,△p=KbB仍适用,只是△p代表的是溶剂的蒸气压下降,不能表示溶液蒸气压的变化因乙醇也易于蒸发,所以整个溶液的蒸气压等于水的蒸气压与乙醇蒸气压之和;当溶质是电解质时,溶液的蒸气压也下降,但不遵循该式;液的沸点总是高于纯溶剂的沸点;溶液的沸点升高△Tb等于溶液的沸点Tb之差: △Tb= Tb-Tb溶液沸点升高的根本原因是溶液的蒸气压下降;溶液越浓,蒸气压越低,沸点升高越多;△Tb= KbbB 式中:Kb称为沸点升高常数,这个数值只取决于溶剂,而与溶质无关;不同的溶剂有不同的Kb值;溶液的凝固点Tf总是低于纯溶剂的凝固点Tf,这种现象称为溶液的凝固点下降,即有△Tf= Tf -Tf;溶液的凝固点下降的原因也是溶液的蒸气压下降;溶液越浓,溶液的蒸气压下降越多,凝固点下降越大;非电解质稀溶液的凝固点下降近似地与溶质B的质量摩尔浓度成正比即△Tf= KfbB 式中:Kf称为凝固点下降常数;Kb和Kf的数值均不是在bB=1molkg-1时测定的,因为许多物质当其质量摩尔浓度远未达到1molkg-1时,拉乌尔定律已不适用;此外,还有许多物质的溶解度很小,根本不能形成1molkg-1的溶液;用途:植物体内细胞中具有多种可溶物氨基酸、糖等,这些可溶物的存在,使细胞的蒸气压下降,凝固点降低,从而使植物表现出一定的抗旱性和耐寒性;根据凝固点下降的原理,人们常用冰盐混合物作冷冻剂;汽车的水箱中加入甘油或乙二醇等物质,可防止水箱在冬天结冰而胀裂;半透膜一种溶剂分子可通过、溶质分子不能通过;为了维持渗透平衡而向溶液上方施加的最小压力称为溶液的渗透压;如果半透膜两侧溶液的浓度相等,则渗透压相等,这种溶液称为等渗溶液;如果半透膜的两侧溶液的浓度不相等,其渗透压不等,则渗透压高的称为高渗溶液,渗透压低的称为低渗溶液;范特霍夫指出在一定温度下,难挥发非电解质稀溶液的渗透压与溶质B的物质的量浓度成正比,即Πv=nBRT Π=CBRT 式中:π为渗透压,单位为kpa;当水溶液很稀时,则有Π=bBRT渗透作用的应用:人体内血管输液时,应输入等渗溶液;电解质溶液大多数强酸的分子具有很强的极性;电解质稀溶液的各项依数性值,都比根据拉乌尔定律计算的数值大得多,这种现象称为电解质的“反常行为”;电解质稀溶液依数性偏大的原因,是电解质在水溶液中能够全部离解,使同浓度的电解质溶液比非电解质溶液含有更多的溶质粒子数;胶体溶液如果两相中有一个是气相,则这个界面习惯上称为表面;分散质分散得越细,总表面积就越大;分散系的分散度常用比表面表示,比表面越大,分散度越大;比表面是物质所具有的表面积除以体积,即S 0=VA 式中:S 0为比表面;A 为表面积;V 为总体积; 胶体分散系是分散程度很高的体系,具有很大的比表面;在胶体分散系中,分散质颗粒具有很大的总表面积,故相应地具有很大的表面能;活性炭、骨炭和硅胶等都具有吸附能力;吸附是一个放热过程,所放出的热称为吸附热; 固体在溶液中的吸附包括分子吸附、离子吸附和离子交换吸附;分子吸附:一般规律是相似相吸,即极性的吸附剂容易吸附极性溶质或溶剂;非极性的吸附剂容易吸附非极性的溶质或溶剂;吸附剂与溶剂的极性相差越大,而和溶质的极性相差越小,则吸附剂在溶液中对溶剂的吸附量越少,对溶质的吸附量就越大;例如活性炭能脱去水中的色素而不易吸附水;但活性炭不能使苯溶液褪色离子吸附:离子吸附又分为离子选择吸附和离子交换吸附;离子选择吸附:被吸附的是电位离子,而另外一个过量离子则为反离子;离子交换吸附:吸附剂从电解质溶液中吸附某种粒子的同时,将吸附剂表面上的同号离子等电量的置换到溶液中去的过程称为离子交换吸附或离子交换,且离子交换吸附是一个可逆的过程;丁铎尔效应:在与光路垂直的方向可以清楚地看见一条发亮的光柱;丁铎尔效应就是光的散射现象,粗分散系主要发生光的反射;溶胶粒子的布朗运动:溶胶粒子会发生不断改变方向和速度的布朗运动,且溶胶粒子的布朗运动导致它具有扩散作用,虽然扩散较慢;电泳:在外加电场下,溶胶粒子在分散剂中的定向移动称为电泳;同极相斥,异极相吸 电渗:在外加电场下,固相不动,分散剂定向移动的现象称为电渗;同极相吸,异极相斥 溶胶的电泳和电渗统称为电动现象;FeOH 3溶胶带正电荷;As 2S 3溶胶粒子带负电荷; 溶胶粒子带电的原因:1.吸附作用主要、2.离解作用溶胶具有扩散双电子层结构,胶团内部反离子的电荷总数与电位离子的电荷总数相等,故胶团是电中性的;显然,胶粒内部反离子的电荷总数小于电位离子的电荷总数,因此胶粒是带电的,并且电荷符号必定与电位离子相同,而扩散层带相反电荷;布朗运动和扩散作用阻止了胶粒的下沉,说明溶胶具有动力学稳定性;但溶胶是高度分散的多相体系,具有很大的表面能,即溶胶又具有热力学不稳定性;除布朗运动外,溶胶稳定的原因还有两个:一是同种电荷的排斥作用;二是溶剂化作用在溶胶粒子的周围形成了一层溶剂化保护膜,因而既可以降低胶粒的表面能,又可以阻止胶粒之间的接触,从而提高了溶胶的稳定性;双电层越厚,溶胶越稳定;胶核 电位离子 反离子 反离子 吸附层 扩散层胶粒胶团加入电解质是促使溶胶凝结的主要方法;凝结值是指一定量的溶胶在一定时间内开始凝结所需电解质的最低浓度;凝结值越小,凝结能力越大;反之,凝结能力越小;电解质的负离子对正溶胶起凝结作用,正离子对负溶胶起凝结作用;凝结能力随离子价数的升高而显着增大,这一规律称为舒尔策—哈代规则;同价离子的凝结能力相近,但随水化离子半径的增大而减少;同族中同价离子的半径越小,电荷越集中,离子的水化程度越大,即水化半径越大,凝结值越大,凝结能力越小;实验证明,当两种溶胶混合时,胶粒所带电荷的代数和为零,才能完全凝结;否则,只能部分凝结,或者不凝结;第2章 化学热力学基础基本概念广度性质:具有加和性,如体积、质量、热力学能、熵、自由能;强度性质:不具有加和性,如温度、压力、密度、浓度;除热以外,在环境与体系之间以其它形式交换的能量统称为功;功和热是过程量,不是状态函数;经由不同的途径完成同一过程时,热和功的数值可能不同;热力学第一定律能量守恒定律:热力学能旧称内能是体系的一种广度性质,是状态函数;体系热力学能的绝对值无法确定,但体系发生变化时,热力学能的改变量△U 是可以确定的;△U 体=Q 体+W 体热化学ξ=)()(0)(t B v B n B n =)()(△B v B n 式中vB 为反应物或生成物B 的化学计量数,对于反应物它是负数,对于生成物则是正数;ξ的量纲是mol;反应热一般是指反应进度ξ=1mol 时的热; W=-p △V 定容热:△U=Q+W= Qv -p △V= Qv 式中:Qv 为定容热; 物理意义是,在只做体积功的条件下,定容反应热等于体系热力学能的改变量;定容热可以用特制的仪器“弹式热量计”测定;整个仪器系统的热容也称为“水当量”;常用苯甲酸作标准物,其定容燃烧热是; 定压热:△U=Q+W= Qp -p △V 焓,用符号H 表示:H=U+PvQp=U2+Pv2- U1+Pv1=H 2-H 1 其物理意义是:在只做体积功的条件下,定压反应热等于体系焓的改变量;焓的绝对值也无法知晓;在定压条件下:△H=△U+P △v=△U +△nRT Qp =Qv+p △V= Qv +△nRT对于反应物和产物都是固体或液体物质的反应,反应前后体系的体积变化很小,p △V 与△U 和△H 相比可以忽略不计,即△H ≈△U,Qp =Qv;对于有气体参加的反应,p △V 不能忽略; 下标“r ”代表反应;下标m 表示反应进度ξ=1mol ;上标“”表示标准状态;△H=ξ△r H m △r H m 单位为kJmol -1或Jmol -1 △H 的单位为J 或kJ;△r H m 的数值与计量方程有关;某一具体过程的焓变△H 的数值与计量方程无关;标准摩尔生成焓:由元素的稳定单质生成1mol 纯化合物时的反应热称为该化合物的标准摩尔生成焓,用△f H m 表示;下标f 代表生成;热化学规定,在一定温度、标准压力p 下,元素稳定单质的标准摩尔生成焓为零;△f H m =∑vB △f H m B 焓变等于各组分的化学计量数之和;熵吸热反应可自发进行的例子:NH 4NO 3等固体物质在水中溶解;CaCO 3分解;混乱度减少的过程不可能自发进行;熵的大小与体系的微观状态数Ω有关,即S=kln Ω 式中:k 为玻耳兹曼常量,k=×10-23J K -1 熵的单位是J K -1热力学第二定律熵增定律:孤立体系的熵永不减少,这就是熵增加原理;热力学第三定律规定熵:在绝对零度时,任何纯物质的完美晶体,熵值都等于零;“绝对零度是不可能达到的”;△r S m =∑vBS m B1mol 纯物质在标准状态下的熵称为标准摩尔熵,用符号S m 表示,单位是J mol -1K -1;与热力学能、焓等状态函数不同,体系的熵这个状态函数的绝对值是可以知道的;自由能自由能G 的定义是:G=H -TS G 的单位是J 或KJ;体系的自由能与热力学能、焓一样,不可能知道其绝对值;△G=G 2-G 1生成物-反应物△G<0 自发过程 △G=0 平衡状态 △G>0 非自发过程,其逆过程可自发进行;在规定温度,标准压力p 下,稳定单质的生成自由能为零;由稳定单质生成1mol 物质时自由能的变化就是该物质的标准摩尔生成自由能,用△f G m 表示,其单位是k J mol -1;△r G m =∑vB △f G m B 吉布斯—亥姆霍兹方程:△G=△H -T △S当反应体系的温度改变不太大时,△r H m 和△r S m 变化不大,可近似认为是常数:△r G m =△r H m T -T △r S m T第3章 化学反应速率和化学平衡化学反应速率引入反应进度对时间的变化率来度量化学反应速率,由反应进度定义的化学反应速率称为转换速率ξ’即ξ’=dtξd mols -1 v 的单位molm -3s -1,通常用molLs -1; 实验证明,有些反应从反应物转化为生成物是一步反应的,这样的反应称为基元反应;大多数反应是多步完成的,这些反应称为非基元反应或复杂反应;化学反应所经历的途径称为反应机理;质量作用定律基元反应的速率方程:对于基元反应,在一定温度下,反应速率与反应物浓度系数次方的乘积成正比;aA+dD=gG+Hh vB=kc a Ac d D K 称为速率常数,在数值上等于反应物浓度均为1 molL -1时的反应速率;K 的大小由反应物的本性决定,与反应物的浓度无关;改变温度或使用催化剂,会使k 的数值发生改变;在不同级数的速率方程中,速率常数k 的单位不一样,一般为mol 1-n L n -1s -1;温度对化学反应速率的影响范特霍夫规则:温度每上升10℃,反应速率提高2—4倍;阿仑尼乌斯公式:阿仑尼乌斯总结温度与反应速率的关系,提出一个经验公式:或 式中:A 为常数,称为指前因子;C=lnA;或改变温度对活化能较大的反应影响较大,温度升高时,活化能较大的反应速率增加的倍数比活化能较小的反应要大得多;六次甲基四胺CH 26N 4可以作为负催化剂,降低钢铁在酸性溶液中腐蚀的反应速率,也称为缓蚀剂;催化剂不会使△r G m 发生改变;可逆反应与化学平衡可逆反应又被称作对峙反应;化学平衡是一种动态平衡,体系达到平衡以后,其自由能G 不再变化,△r G m 等于零;标准平衡常数:K;K 值越大,表示反应达到平衡时的产物浓度或分压越大,则反应进行完全的程度越大;对于非水溶液中的反应,若有水参加,H20的浓度不能视为常数,应书写在标准平衡常数表示式中;多重平衡规则:当几个反应相加得到一总反应时,则总反应的标准平衡常数等于各反应的标准平衡常数之积;范特霍夫等温式:△r G m=△r G m +RTlnQ Q:生成物与反应物相对分压之比称为“反应商”; 平衡时:△r G m =-RTlnK 该式表示反应的标准摩尔自由能变化与标准平衡常数间的关系;△r G m 越负,K 值越大,则表示反应进行得越完全;△r G m =-RTlnK +RTlnQ=RTln θ K Q =θK Q 它表明了在定温定压条件下,化学反应的摩尔自由能变化△r G m 与反应的标准平衡常数K 及参加反应的各物质分压或浓度之间的关系; 当Q< K ,△r G m <0,平衡正向移动;当Q<=K ,△r G m =0,反应达平衡状态;当Q> K ,△r G m >0,平衡逆向移动;注意:有R 和△r G m 同时在式中时,要注意单位的换算;化学平衡的移动改变浓度或压力只能改变Q 值,从而改变平衡状态,但K 值不变;范特霍夫方程:ln )1212(△rHm 12T T T T R K K -=θθθ或lg )1212(303.2△rHm 12T T T T R K K -=θθθ,该式表明温度对化学平衡的影响;对于放热反应△r H m <0,升高温度时,K 2 < K 1;对于吸热反应△r H m >0,升高温度时,K 2 >K 1;第4章 物质结构基础原子结构的近代理论薛定谔:运动规律的量子力学;德布罗意:原子、分子、电子等微观粒子具有波粒二象性;戴维孙、革莫:电子的波动性;测不准原理:海森堡指出同时准确地测定电子在空间的位置和速度是不可能的; Ψx,y,z=Ψr, ,Φ=RrY ,Φ 式中:Rr 部分仅是r 的函数,为Ψ的径向部分,称为径向波函数;Y ,Φ则是角度和Φ的函数,为Ψ的角度部分,称为角度波函数;解上述方程,分别得到决定波函数的3个参数,即n 、l 角量子数、m 磁量子数3个量子数;波函数Ψ是描述核外电子运动状态的数学函数,它是原子轨道的同义词;电子云图像是|Ψ|2随r, ,Φ变化的图像;xy 平面上下的正、负号表示Ypz 的值为正值或负值,并不代表电荷;概率密度与|Ψ|2成正比;令Dr=|Ψ|24πr 2,Dr 称为径向分布函数;Dr 表示电子在半径为r 的球面上单位厚度的球壳夹层内出现的概率,Dr 值越大,表示电子在单位厚度的球壳夹层内出现的概率越大;概率最大不能说明概率密度最大;在原子核附近概率密度最大;主峰越靠外,说明电子离核越远,轨道能量越高;核外电子运动状态主量子数n :是决定核外电子的能量和电子离核平均距离的参数电子所在的电子层和原子轨道的能级,n 值越大,电子离核的距离越远,电子的能量越高;角量子数l :又称副量子数,它确定原子轨道或电子云的形状,并在多电子原子中和n 一起决定电子的能量;n 确定后,角量子数l 可取0~n -1的正整数,即l=0,1,2,3…n -1;L 的每一个数值表示一种形状的原子轨道或电子云,代表一个电子亚层或能层;例如,l=0,表示球形的s 电子层或s 原子轨道;l=1,表示哑铃形的p 电子云或p 原子轨道;l=2,表示花瓣形的d 电子云或d 原子轨道;对于多电子原子来说,同一电子层中的l 值越小,该电子亚层的能级越低;磁量子数m :m 的取值受l 的限制,当l 一定时,m 可取0,±1,±2,…,±l 共2l+1个值;磁量子数决定原子轨道在磁场中的分裂,反映原子轨道在空间伸展的方向;每一个亚层中,m 有几个取值,其亚层就有几个不同伸展方向的同能量原子轨道;磁量子数与轨道能量无关;自旋量子数m s :原子中的电子除了绕核运动外,还可自旋;核外电子排布规律:泡利不相容原理n>l ≥|m|,m s =±21、能量最低原理和洪德规则电子在同一个亚层的等价轨道上排布时,总是尽可能分占不同的轨道,并且自旋方向相同;洪德规则还包含了另一个内容,即在简并轨道中,电子处于全充满p 6、d 10、f 14、半充满p 3、d 5、f 7和全空p 0、d 0、f 0时,原子的能量较低,体系稳定;在多电子原子中,电子间的相互作用造成同层轨道能级分裂;这种能级分裂现象是内层电子对外层电子的屏蔽作用因电子间互相排斥而使核对外层电子的吸引减弱,有效电荷低于实际核电荷而导致的;同一原子内,不同类型的亚层之间有能级交错现象,这是电子的钻孔效应所致;所谓钻孔效应,是在多电子原子中,角量子数较小的轨道上的电子钻到靠核附近的内部的概率较大,能较好地回避其他电子的屏蔽作用,从而起到增加核引力、降低轨道能量的作用;原子电子层结构和元素周期表元素所在的周期数等于最外层主量子数n;电子层结构与区:稀有气体为范德华半径;同一周期,主族元素的原子半径减小的幅度较大;同族副族元素,从上到下原子半径增大幅度较小;由于“镧系收缩”的影响,第五和第六周期的同族元素之间原子半径非常接近;在定温定压下,基态的气态原子失去电子所需要的能量称为元素的电离能,用I表示,单位为k J mol-1;同一院子的各级电离能是不同的,其大小顺序为I1<I2<I3<I4…;因为阳离子电荷数越大,离子半径越小,核对电子的吸引力越大,失去电子所需能量越高;通常只用第一电离能来衡量元素的原子失去电子的难易程度,元素原子的I1越小,表示该元素原子在气态时越容易失去电子,金属性越强;同一周期元素原子的第一电离能从左到右总的趋势是逐渐增大,某些元素原子具有全充满和半充满的电子结构,稳定性高,其第一电离能比左右相邻元素都高;同一族中,元素原子的第一电离能从上到下总的趋势是减小,受镧系收缩的影响,第六周期的副族元素原子的第一电离能比第五周期的略有增加;电负性χ是指元素的原子在分子中吸引电子能力或本领的相对大小;电负性越小,金属性越强,非金属性越弱;电负性的大小可作为原子形成正离子或负离子倾向的量度;鲍林指定氟的电负性为,氟的电负性最大,因而非金属性最强,铯的电负性最小,因而金属性最强;离子键离子键的特点是没有方向性和饱和性;晶格能:衡量离子键的强弱;晶格能是指标准状态下,由气态离子生成1mol晶体放出的能量,用符号U表示;离子的电荷越多,正、负离子的核间距离越短,晶格能越大,离子键越牢固,离子化合物越稳定;价键理论共价化合物:H2、O2、Cl2、HCl、H20;价键理论又称电子配对法,简称VB法:1键合原子双方各自提供自旋相反的单电子彼此配对;2已键合电子不能再形成新的化学键;3原子轨道最大重叠原理及对称性匹配;共价键的特点:饱和性和方向性;共价键的类型:σ键和π键σ键:“头碰头”,特点是原子轨道重叠部分沿键轴呈圆柱形对称且σ键能大且稳定性高;π键:“肩并肩”,特点是原子轨道重叠部分是以通过一个键轴的平面镜面反对称;共价单键一般是σ键,在共价键双键和叁键中,除了σ键外,还有π键;通常π键没有σ键牢固,较易断裂;两原子间以共价单键结合,只能形成σ键;若以共价双键和叁键结合,其中有一个σ键,其余是。

无机及分析化学

无机及分析化学

《无机及分析化学》考试大纲无机与分析化学是一门涵盖溶液理论、化学反应原理(含热力学和动力学)、定量分析基础、四大化学平衡及滴定(酸碱平衡与酸碱滴定、沉淀溶解平衡与沉淀滴定、氧化还原平衡与氧化还原滴定、配位平衡与配位滴定)、物质结构基础的一门学科。

考生应该控制化学反应原理的基础知识和定量分析的普通主意,具有基本的科学思维主意和理论联系实际、自立分析问题解决问题的能力。

一、理论部分基本要求1.控制稀溶液的依数性2.控制化学反应的普通原理。

3.控制定量分析的基本知识。

4.控制四大平衡基本原理及其滴定。

5.控制物质结构的基本知识。

6.控制紫外可见分光光度法的基本原理及其应用。

二、详细内容和要求:第一章物质的聚拢状态1.1凝聚系1.2稀溶液的性质1.3胶体溶液要求:控制稀溶液的依数性,了解胶体溶液的性质。

第二章化学反应的普通原理2.1基本概念2.2热化学2.3化学反应的方向与限度2.4化学平衡2.5化学反应速率第1 页/共4 页2.6化学反应普通原理的应用要求:控制热化学的基本概念;控制热力学第一定律、热力学第二定律、热力学第三定律和盖斯定律;控制熵变判据和吉布斯函数变判据,了解化学平衡与化学反应标准吉布斯函数变的关系,了解化学平衡移动原理;了解基元反应概念,控制质量作用定律,理解和控制化学反应速率理论。

第三章定量分析基础3.1分析化学的任务和作用3.2定量分析主意的分类3.3定量分析的普通过程3.4定量分析中的误差3.5分析结果的数据处理3.6有效数字及其运算3.7滴定分析主意概述要求:了解分析化学的定义、任务和作用;了解定量分析主意的分类;了解分析化学中误差产生的缘故与分类;控制确切度、精密度的定义及其评价指标的定义和相关计算;控制有效数字及其运算规矩;控制分析结果的检验主意;了解滴定分析主意的分类,控制基准物质和标准溶液的定义,控制滴定分析的计算主意。

第四章酸碱平衡与酸碱滴定4.1电解质溶液4.2酸碱理论4.3溶液酸度的计算4.4缓冲溶液4.5弱酸碱溶液各分布型体的分布4.6酸碱滴定法要求:控制酸碱质子理论;了解酸碱溶液中酸碱的分布形式;控制酸碱溶液中酸碱pH的计算;控制酸碱缓冲溶液理论及其计算;了解酸碱指示剂作用原理;控制一元强酸(碱)滴定一元强碱(酸)体系的滴定;控制一元强酸(碱)滴定一元弱碱(酸)体系的滴定;了解多元弱酸(碱)的滴定;了解酸碱滴定法的应用。

无机及分析化学PPT

无机及分析化学PPT

无关; 注: bB 、xB 、wB与T无关; 无关 注意: 1、 CB、n B 、 MB 、bB 必须指明基本单元 注意: 、 2、 C(B) =b C (bB); n(B) =bn (bB) ; M(B)=bM(1/bB); 、 ; 3、 较稀的水溶液:因V≈ m 、 ρ ≈ 1, ∴ CB ≈ bB 、 较稀的水溶液: ≈ 17 4、 计算时注意单位换算 、
bB:与体积无关 与温度无关 常用于稀溶液依数性的研究 与体积无关,与温度无关 与体积无关 与温度无关,常用于稀溶液依数性的研究
nB mB bB = = mA M B mA
12
水中溶解0.580g水中溶解 水中溶解 的摩尔质量M(NaCl)=58.44g·mol-1 解:NaCl的摩尔质量 的摩尔质量 =
饱和溶液10.00cm3,测得其 例1-3 在常温下取 - 在常温下取NaCl饱和溶液 饱和溶液 质量为12.003g,将溶液蒸干,得NaCl固体 固体3.173g.求: 质量为 ,将溶液蒸干, 固体 . (1)物质的量浓度 (2)质量摩尔浓度 (3)饱和溶液中 ) 质量摩尔浓度 饱和溶液中 NaCl和H2O的摩尔分数,( 的摩尔分数,( 和 的摩尔分数,(4)NaCl饱和溶液的质量分 饱和溶液的质量分 质量浓度. 数(5)质量浓度. 质量浓度 解:(1) NaCl饱和溶液的物质的量浓度为: (1) NaCl
mB ρ= V
分析化学中计算某组分质量浓度
14
2.4 摩尔分数
摩尔分数x 混合系统中 某物质i的物质的量 混合系统中,某物质 的物质的量n 摩尔分数 i:混合系统中 某物质 的物质的量 i占混 合系统中总的物质的量n的分数称为该物质 的分数称为该物质i 合系统中总的物质的量 的分数称为该物质 的摩 尔分数, 其量纲为1,表达式为 表达式为: 尔分数 其量纲为 表达式为: ni xi = n 双组分系统溶液:

无机及分析化学(下)智慧树知到答案章节测试2023年中国石油大学(华东)

无机及分析化学(下)智慧树知到答案章节测试2023年中国石油大学(华东)

第一章测试1.配合物K[Pt(NH3)Br2Cl2F]名称是一氨∙一氟∙二氯∙二溴合铂(II)化钾。

()A:对B:错答案:B2.配位滴定用的EDTA常用其二钠盐而不是乙二胺四乙酸。

()A:错B:对答案:B3.EDTA在水溶液中有七种存在形体,其中只有Y4-能与金属离子直接配位。

()A:错B:对答案:B4.金属指示剂与金属离子形成的配合物不够稳定,这种现象称为指示剂的僵化。

()A:对B:错答案:B5.酸效应系数越大,配合物稳定性越大。

()A:对B:错答案:B6.在配离子[CuI2]-中,Cu+离子接受配体孤对电子的杂化轨道是()。

A:spB:sp3C:sp3d2D:dsp2答案:A7.一般情况下,EDTA与金属离子形成的络合物的络合比是()。

A:2:1B:1:3C:1:1D:1:2答案:C8.αM(L) = 1表示()A:M与L没有副反应B:M的副反应较小C:[M]=[L]D:M与L的副反应相当严重答案:A9.EDTA的有效浓度[Y]与酸度有关,它随着溶液pH值增大而A:减小B:增大C:不变D:先增大后减小答案:B10.产生金属指示剂的僵化现象是因为()。

A:K′MIn < K′MYB:MIn溶解度小C:指示剂不稳定D:K′MIn > K′MY答案:D第二章测试1.Ag2CrO4、PbCrO4、BaCrO4均溶于强酸。

()A:对B:错答案:A2.KMnO4在酸中、碱中、受热、见光都不稳定。

()A:错B:对答案:B3.对于锰的各种氧化数的化合物,下列说法中错误的是()。

A:MnO2在碱性溶液中是强氧化剂。

B:Mn2+在酸性溶液中是最稳定的。

C:Mn3+在酸性或碱性溶液中很不稳定。

D:K2MnO4在中性溶液中发生歧化反应。

答案:A4.清洗长期盛放KMnO4的试剂瓶,应选用()。

A:稀HClB:HNO3C:酸性FeSO4 溶液D:浓H2SO4答案:C5.饮用含Cr(Ⅵ)的水会损害人的肠胃,而Cr(Ⅲ)毒性只有Cr(Ⅵ)的0.5%。

无机及分析化学教案

无机及分析化学教案

无机及分析化学教案一、教学目标1. 理解无机化学的基本概念,掌握无机化合物的结构和性质。

2. 学会使用分析化学的方法和技巧,进行物质的定性和定量分析。

3. 培养实验操作能力和科学思维,提高解决实际问题的能力。

二、教学内容1. 无机化学基本概念:原子、离子、分子、键、化合价等。

2. 无机化合物结构与性质:酸、碱、盐、氧化物等。

3. 分析化学方法:重量分析、滴定分析、光谱分析、色谱分析等。

4. 实验技能:实验操作、数据处理、结果分析等。

三、教学方法1. 讲授与讨论相结合:讲解基本概念,引导学生思考和讨论。

2. 实验与实践:进行实验操作,培养学生的实验技能。

3. 案例分析:分析实际问题,提高学生解决实际问题的能力。

四、教学资源1. 教材:无机化学、分析化学等相关教材。

2. 实验器材:显微镜、滴定仪、光谱仪等。

3. 多媒体教学:课件、视频等教学资源。

五、教学评价1. 课堂参与度:评估学生在课堂上的发言和提问。

2. 实验报告:评估学生的实验操作和结果分析。

3. 期末考试:评估学生对无机及分析化学知识的掌握程度。

教案编写要求:1. 每个章节包含教学目标、教学内容、教学方法、教学资源和教学评价五个部分。

2. 教学目标和教学内容要明确具体,教学方法要合理可行。

3. 教学资源和教学评价要充分体现教学目标和要求。

4. 教案要具有可操作性,便于教师教学和学生学习。

六、教学安排1. 课时:本课程共计32课时,其中理论课16课时,实验课16课时。

2. 授课方式:每周2课时,共8周完成教学内容。

七、教学重点与难点1. 教学重点:无机化学的基本概念、无机化合物的结构和性质,分析化学的方法和技巧。

2. 教学难点:无机化合物的结构、分析化学的计算和实验操作。

八、教学过程1. 理论课:通过讲解和讨论,让学生掌握无机化学的基本概念和化合物的性质。

2. 实验课:指导学生进行实验操作,培养学生的实验技能和科学思维。

九、教学进度计划1. 第一周:介绍无机化学的基本概念和化合物的结构。

无机及分析化学教案

无机及分析化学教案

无机及分析化学教案第一章:绪论1.1 课程介绍了解无机及分析化学的概念、范围和重要性。

了解无机及分析化学在科学、工业和日常生活中的应用。

1.2 无机化学的基本概念物质、元素、化合物、同素异形体的定义及分类。

化学方程式、化学反应、化学平衡的基本概念。

1.3 分析化学的基本概念分析化学的定义、目的和任务。

定性分析与定量分析的分类和比较。

第二章:原子结构与元素周期律2.1 原子结构原子核、电子、原子的电子排布。

元素的原子序数、原子量、同位素。

2.2 元素周期律周期表的构成、周期律的规律。

主族元素、过渡元素、镧系和锕系元素的特点。

2.3 元素性质的递变性同一周期、同一族元素性质的递变规律。

元素的位置与性质的关系。

第三章:化学键与化合物的结构3.1 化学键的类型离子键、共价键、金属键、氢键的定义和特点。

化学键的极性和键能。

3.2 化合物的结构离子化合物、共价化合物、金属化合物、氢化物的结构特点。

分子的立体构型、键角、键长。

3.3 晶体结构晶体的定义、分类和性质。

晶体的空间点阵、晶胞参数、晶体的物理性质。

第四章:化学反应速率与化学平衡4.1 化学反应速率反应速率的定义、表达式和影响因素。

零级反应、一级反应、二级反应的特点和计算。

4.2 化学平衡化学平衡的定义、条件和原理。

平衡常数、平衡移动、平衡的判断方法。

4.3 化学动力学化学动力学的定义和研究内容。

反应速率与浓度的关系、反应速率与温度的关系。

第五章:溶液与离子平衡5.1 溶液的性质与制备溶液的定义、分类和特点。

溶液的制备方法、溶液的浓度表示法。

5.2 离子平衡离子的定义、离子的溶解度。

离子平衡的原理、离子平衡的计算。

5.3 沉淀与溶解平衡沉淀与溶解的定义、沉淀的种类。

沉淀溶解平衡的判断、沉淀转化的条件。

第六章:氧化还原反应6.1 氧化还原反应的基本概念氧化还原反应的定义、特点和重要性。

氧化还原反应的基本术语:氧化剂、还原剂、氧化数、电子转移。

6.2 氧化还原反应的电子转移电子转移的类型、方向和数量。

化学实验:无机及分析化学实验

化学实验:无机及分析化学实验

化学实验:无机及分析化学实验实验是化学这门学科最重要的一部分,是化学相关专业的一门重要课程。

而无机化学分析实验,更是化学实验中的基础课程。

学生可以通过无机及分析化学实验掌握化学实验的基本原理,培养自己动手的实践能力,加强对实验设计的理解,培养对学习和科研的兴趣。

现阶段,实验教育的改革已迫在眉睫,教育机构必须改革无机化学分析实验,探索化学实验教育的新方式,以适应现代社会实验教育的发展和新需求,本研究针对此问题,对无机化学分析实验的改革实践作了相关的探讨。

1、无机化学和分析化学实验之间缺乏系统性和综合性在过去的无机化学实验里,制取实验的有关内容就是只要制备出来产品,排序出来有关数据后,那么,这个实验就顺利完成了它的教学任务,也达至了实验的目的。

无机及分析化学实验只是将无机化学和分析化学实验直观地加在一起,共同组成无机分析化学实验的这两个实验都就是相对单一制的,加在一起后它们之间没关联,并使之无法综合至一起回去分析实验过程,也无法更全面地深入探讨实验结果。

2、实验内容重复,实验结构单一分析化学实验课程中,定性分析和定量分析的实验相对较多,而这些较多的实验中,存有很多过程在无机化学实验中我们也必须自学,这就造成了知识点的重复。

比如,某些金属离子的鉴别方法、分析天平的采用和一些电解操作方式技术的实验,它们都在各个环节重复发生,这样不仅浪费了教学课时和药品,还减少了自学效率。

3、实验造成的污染和浪费现象严重现在的实验教学中,很多实验的开支都就是非常大的,很多检验性的实验,大大激化了实验药品的浪费和对环境的污染,学生对于实验药品的`节约没有关意识。

我国环境污染轻微,仅污水灌溉就已对浅层地下水、土壤、作物导致污染和影响,时刻威胁着人类的身心健康和生命,而实验室对水环境的污染不容忽视。

国内实验室通常没废旧意识,实验废弃物通常都未经任何处置而轻易排人上岸,做为教育工作者,我们无法把实验教学变为污染环境的犯罪行为。

无机及分析化学实验内容牵涉至的试剂种类很多,甚至很多种都就是有害的,如果处理不当,后果不堪设想。

无机及分析化学教案

无机及分析化学教案

无机及分析化学教案一、教学目标1. 知识与技能:(1)掌握无机化学的基本概念、原理和常见元素化合物的性质;(2)了解分析化学的基本原理和方法,具备一定的实验操作能力。

2. 过程与方法:(1)通过实验和理论教学相结合,培养学生的观察能力、思维能力和解决问题的能力;(2)学会运用化学知识分析和解决实际问题。

3. 情感态度与价值观:(1)培养学生对化学学科的兴趣和热爱;(2)增强学生的创新意识,培养学生的团队合作精神。

二、教学内容1. 第一章:无机化学基本概念(1)物质的组成与结构(2)化学反应的基本类型(3)溶液及其性质2. 第二章:元素周期律与元素周期表(1)元素周期律的实质(2)元素周期表的结构与特点(3)常见元素的原子结构与性质关系3. 第三章:非金属元素及其化合物(1)氢、氧、氮、卤族元素的基本性质(2)碳族元素及其化合物的性质(3)常见非金属化合物的制备与用途4. 第四章:金属元素及其化合物(1)碱金属与碱土金属的基本性质(2)过渡金属元素的基本性质(3)常见金属化合物的制备与用途5. 第五章:分析化学基本方法(1)滴定分析法(2)重量分析法(3)光谱分析法与色谱分析法三、教学重点与难点1. 教学重点:(1)无机化学基本概念、原理及元素化合物的性质;(2)分析化学的基本方法及其应用。

2. 教学难点:(1)复杂化学反应机理的理解;(2)分析化学方法的原理与操作技巧。

四、教学方法与手段1. 教学方法:(1)采用实验与理论相结合的教学方式;(2)运用案例分析、问题驱动、小组讨论等教学方法;(3)注重启发式教学,培养学生的独立思考能力。

2. 教学手段:(1)利用多媒体课件、网络资源进行教学;(2)实验室实践教学;(3)发放相关教材、辅导资料。

五、教学评价1. 过程性评价:(1)课堂提问、讨论、实验操作;(2)课后作业、小测验;(3)实验报告、课程论文。

2. 终结性评价:(1)期末考试;(2)综合素质评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天 津 科 技 大 学
稳定单质的标准生成焓为0. 稳定单质的标准生成焓为 . 生成焓的负值越大,表明形成该物质时放 生成焓的负值越大, 出的能量越多,对热越稳定. 出的能量越多,对热越稳定.
无机及分析化学教研室
思考: 思考:以下哪些反应的恒压反应热不是生成焓 反应物和生成物都是标准态)? (反应物和生成物都是标准态)? (2) C(石墨) + O 2 (g) = CO2 (g) (1) CO(g) + 1 O 2 ( g ) = CO 2 (g)
无机及分析化学教研室
二. 盖斯定律
例如: 例如 C(石墨)+ )+O (1) C(石墨)+O2 (g) → CO2(g) ΔH1=-393.5kJ/mol 天 津 科 技 大 学 (2) C (石墨)+1/2O2 (g) → CO(g) (石墨 石墨) ΔH2=? (3) CO(g) + 1/2O2(g) → CO2(g) ΔH3=-283.0kJ/mol
无机及分析化学教研室
天 津 科 技 大 学
②状态函数: 状态函数: 状态函数 凡能决定体系状态的一切宏观性质 物理量)都叫做状态函数. (物理量)都叫做状态函数. 特点: 特点: a.体系的一些状态函数是相互联系,相 体系的一些状态函数是相互联系, 体系的一些状态函数是相互联系 互制约的. 互制约的. b.任何状态函数的变化值,只决定于体 任何状态函数的变化值, 任何状态函数的变化值 系的始态和终态. 系的始态和终态.而与变化的途径无 关.
无机及分析化学教研室
3.热化学反应方程式
表示化学反应与其热效应关系的 化学方程式称为热化学反应方程式. 化学方程式称为热化学反应方程式.
天 津 科 技 大 学
无机及分析化学教研室
在化学反应式后用 在化学反应式后用 rHm表示反应的热 效应. 指恒压下的反应热) 效应.(指恒压下的反应热)
要求: 要求: 应注明物质的聚集状态(s (s, ①应注明物质的聚集状态(s,l,g) 应正确写出化学反应计量方程式. ② 应正确写出化学反应计量方程式.(P19)
无机及分析化学教研室
三. 标准摩尔反应焓变 1.摩尔反应焓变(△rHm) 摩尔反应焓变( rHm的定义: 的定义:
天 津 科 技 大 学
某化学反应按所给定的化学计量方 程式反应,当反应进度ξ=1mol时的 程式反应,当反应进度 时的 反应焓变称为摩尔反应焓变. 反应焓变称为摩尔反应焓变. rHm的单位为: J/mol 或 kJ/mol 的单位为:
天 津 科 技 大 学
无机及分析化学教研室
二. 状态和状态函数
状态: ①状态: 由一系列表征系统性质的宏观物理 量(如T,P,V等)所确定下来的系统 , , 等
天 津 科 技 大 学
的存在形式称系统的状态. 的存在形式称系统的状态. 容量性质:与物质的数量有关, 容量性质:与物质的数量有关,具有加和 :m, 热容量) 性,如:m,v,n,Cr(热容量)等. 强度性质:与物质的数量无关, 强度性质:与物质的数量无关,不具有加 和性, 密度) C(比热 比热) 和性,如:T,P,ρ(密度),C(比热)等.
天 津 科 技 大 学
无机及分析化学教研室
NH3(g)+5/4 O2(g)
298.15K 标准态
NO(g)+3/2H2O(g)
rHθm= -226.37kJ/mol
四. 标准摩尔生成焓
(△fHmθ)
在标准状态下, 稳定单质生成 在标准状态下,由稳定单质生成 1mol纯物质 时 反应的焓变称为B标准 1mol纯物质B时,反应的焓变称为 标准 纯物质
天 津 科 技 大 学
作非体积功, 并使 体系终态温度恢复 作非体积功 , 并使体系终态温度恢复 到始态温度, 到始态温度 , 则在这一过程中放出或 吸收的热量称为该反应的反应热. 吸收的热量称为该反应的反应热. 只做体积功时: 只做体积功时:W= - P△V △
无机及分析化学教研室
天 津 科 技 大 学
无机及分析化学教研室
天 津 科 技 大 学
三. 热和功(Heat and Work) 热和功 热和功是系统发生状态变化时与环境 进行能量交换的两种形式. 进行能量交换的两种形式. 热(Q):由于温度不同而造成的能量的传 ) 递. 功(W):除热之外,所有其他形式的能量 ) 除热之外, 传递. 包括体积功和非体积功) 传递.(包括体积功和非体积功)
无机及分析化学教研室
C(石墨) + O2(g) C(石墨 石墨)
△H2 天 津 科 技 大 学
△H1
CO2(g)
△H3
CO(g) + 1/2O2(g)
(2)式 (3)式 ∵(1)式 = (2)式 + (3)式 (1)式 ∴ △H1 = △H2 + △H3 △H2 =△H1 -△H3= -393.5 – (-283.0) △ △ = -110.5 kJ/mol
天 津 科 技 大 学
无机及分析化学教研室
数学表达式: - 数学表达式:U-(Q+W)=0 + ) 即:U=Q+W +
2.2 热化学 (Thermochemistry) )
化学反应的热效应(反应热) 一. 化学反应的热效应(反应热) (Heat of reaction) 定义: 系统发生化学变化时, 定义 : 系统发生化学变化时 , 当系统不
四.热力学能与热力学第一定律 (First law of thermodynamics) )
1.热力学能(U) 热力学能( )
(Thermodynamics Energy) )
天 津 科 技 大 学
无机及分析化学教研室
定义:体系内部能量的总和, 定义:体系内部能量的总和,(包括分 子的动能,势能,键能,核能等) 子的动能,势能,键能,核能等)
天 津 科 技 大 学
无机及分析化学教研室
摩尔生成焓,记作△fHmθ 摩尔生成焓,记作△ 298.15K时的数据可以从手册及教材的 时的数据可以从手册及教材的 附录3中查到. 附录 中查到. 中查到
稳定的单质 如C:石墨 ;Hg:Hg(l) :石墨(s); : 为白磷(s), 等.但P为白磷 ,即P(s,白). 为白磷 (, 由定义可推出: 由定义可推出:
1 C(石墨) + O 2 ( g ) = CO(g) (3) 2
2C(石墨) + O 2 (g) = 2CO (g) (4)
天 津 科Байду номын сангаас技 大 学
无机及分析化学教研室
天 津 科 技 大 学
均为状态函数, ①∵U,P,V均为状态函数,∴H也是 , , 均为状态函数 也是 状态函数. 状态函数. 在恒压不作非体积功的条件下, QP=H2-H1=H 的绝对值也不可测, ② H的绝对值也不可测,但可以通过 的绝对值也不可测 恒压反应热求出: H= QP 恒压反应热求出: ③焓是体系的容量性质,具有加合 性.
无机及分析化学教研室
盖斯定律: 盖斯定律:在整个过程处于恒 定律 容或恒压情况时, 容或恒压情况时,化学反应 的热效应只与始, 的热效应只与始,终状态有 而与变化的途径无关. 关,而与变化的途径无关.
天 津 科 技 大 学
另一种说法: 另一种说法:在恒容或恒压条 件下, 件下,一个化学反应无论是 一步完成, 一步完成,还是分成几步完 成,其总反应的反应热等与 各步反应热之和. 各步反应热之和.(P17)
(1)热力学能是状态函数, 热力学能是状态函数, 的绝对数值是不可求的, (2)U的绝对数值是不可求的,只能测 的绝对数值是不可求的 出反应前后U的变化值 . 出反应前后 的变化值U. 的变化值
天 津 科 技 大 学
无机及分析化学教研室
U=U终-U始 终 始 为容量性质, (3)U为容量性质,具有加和性, 为容量性质 具有加和性, 能量单位: 或 . 能量单位:J或kJ.
思考:同一体系,同一状态时 能有不同的U值.不同体系或同 一体系不同状态时能有相同的U 值.这两句话是否正确?
天 津 科 技 大 学
无机及分析化学教研室
热力学第一定律(能量守恒定律) 2. 热力学第一定律(能量守恒定律)
定律:在任何过程中, 定律:在任何过程中,能量不会自生自 灭 , 只能从一种形式转化为另一种形 转化过程中,能量的总值不变. 式.转化过程中,能量的总值不变.
第二章 化学反应的一般原理
2.1基本概念和术语 2.1基本概念和术语
天 津 科 技 大 学
2.2热化学 2.2热化学 2.3化学反应的方向 2.3化学反应的方向 2.4化学反应速率 2.4化学反应速率 2.5化学平衡及其移动 2.5化学平衡及其移动
无机及分析化学教研室
2.1 基本概念和术语
一.体系和环境 体系和环境 体系—人为选取一定种类 人为选取一定种类, 体系 人为选取一定种类 , 一定数量的 物质作为研究的对象, 物质作为研究的对象 , 这一部分物 质或空间叫做体系. 质或空间叫做体系. 环境:与体系有密切联系的一部分物质或 环境 与体系有密切联系的一部分物质或 空间. 空间.
无机及分析化学教研室
天 津 科 技 大 学
焓变( (2) 焓变(△H) 的符号相同, ①∵H= QP ∴H与Qp 的符号相同, 与 吸热为" ,放热为" . 吸热为"+",放热为"-". 反应的H受温度的影响比较小 受温度的影响比较小, ②反应的 受温度的影响比较小,故可 下的H代替其它温度下的 代替其它温度下的H. 用 298K下的 下的 代替其它温度下的 . ③∵U= Q+W Q=U-W 在恒压及不做非体积功的条件下: 在恒压及不做非体积功的条件下: QP=H=U+PV +
无机及分析化学教研室
相关文档
最新文档