模式识别神经网络分类优秀课件

合集下载

第六章神经网络模式识别

第六章神经网络模式识别

梯度下降(gradient decent)法
准则函数: 准则函数: sum squared error, SSE
1 J = sse = 2S
BP 算法
∑ (t
j
S
j
− aj)
2
权值修正: 权值修正: 梯度下降法
∂J ∂J ∂n j ∂ J ( k −1) ∆ w j = −η = −η = −η a ∂w j ∂n j ∂w j ∂n j
§6.6 神经网络模式识别概述
神经网络模式识别方法是近几年的模式识别领域的一个重 要研究方向。由于神经网络的高速并行处理、分布式存储 信息等特性符合人类视觉系统的基本工作原理,且神经网 络具有很强的自学习性、自组织性、容错性、高度非线性、 联想记忆功能和逻辑推理功能等,能够实现目前基于计算 理论层次上的模式识别理论所无法完成的模式信息处理工 作。可以说,神经网络模式识别突破了传统模式识别技术 的束缚,开辟了模式识别发展的新途径。同时,神经网络 模式识别也成为神经网络最成功和最有前途的应用领域之 一。 神经网络模式识别的过程主要有两步:
j j j j j
j j j ji i
i
ij
j
i
ij
ij
ij
4. 径向基函数网络
前馈 网络
径向基函数网络:只有一个隐层,隐层单元采用径 向基函数。隐层把原始的非线性可分的特征空间变 换到另一个空间(通常是高维空间),使之可以线 性可分。 输出为隐层的线性加权求和。采用基函数的加权和 来实现对函数的逼近。 径向基函数(radial basis function, RBF):径向对称 的标量函数k(||x-xc||),最常用的RBF是高斯核函数
前馈 网络
(单层 单层) 2. (单层)感知器

神经网络专题ppt课件

神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。

模式识别详细PPT

模式识别详细PPT
迁移学习在模式识别中广泛应用于目标检测、图像分类等任务,通过将预训练模 型(如ResNet、VGG等)应用于新数据集,可以快速获得较好的分类效果。
无监督学习在模式识别中的应用
无监督学习是一种从无标签数据中提取有用信息的机器学习方法,在模式识别中主要用于聚类和降维 等任务。
无监督学习在模式识别中可以帮助发现数据中的内在结构和规律,例如在图像识别中可以通过聚类算 法将相似的图像分组,或者通过降维算法将高维图像数据降维到低维空间,便于后续的分类和识别。
通过专家知识和经验,手 动选择与目标任务相关的 特征。
自动特征选择
利用算法自动筛选出对目 标任务最相关的特征,提 高模型的泛化能力。
交互式特征选择
结合手动和自动特征选择 的优势,先通过自动方法 筛选出一组候选特征,再 由专家进行筛选和优化。
特征提取算法
主成分分析(PCA)
通过线性变换将原始特征转换为新的特征, 保留主要方差,降低数据维度。
将分类或离散型特征进行编码 ,如独热编码、标签编码等。
特征选择与降维
通过特征选择算法或矩阵分解 等技术,降低特征维度,提高 模型效率和泛化能力。
特征生成与转换
通过生成新的特征或对现有特 征进行组合、转换,丰富特征
表达,提高模型性能。
04
分类器设计
分类器选择
线性分类器
基于线性判别分析,适用于特征线性可 分的情况,如感知器、逻辑回归等。
结构模式识别
总结词
基于结构分析和语法理论的模式识别方法,通过分析输入数据的结构和语法进行分类和 识别。
详细描述
结构模式识别主要关注输入数据的结构和语法,通过分析数据中的结构和语法规则,将 输入数据归类到相应的类别中。这种方法在自然语言处理、化学分子结构解析等领域有

《模式识别课件》课件

《模式识别课件》课件
率和用户体验。
医学诊断
要点一
总结词
医学诊断是利用医学知识和技术对疾病进行诊断的过程, 模式识别技术在医学诊断中发挥着重要作用。
要点二
详细描述
模式识别技术可以辅助医生进行影像学分析、病理学分析 等,提高诊断准确性和效率,为患者提供更好的医疗服务 和治疗效果。
05
模式识别的挑战与未来发 展
数据不平衡问题
《模式识别课件》 ppt课件
xx年xx月xx日
• 模式识别概述 • 模式识别的基本原理 • 常见模式识别方法 • 模式识别的应用实例 • 模式识别的挑战与未来发展
目录
01
模式识别概述
定义与分类
定义
模式识别是对各种信息进行分类和辨 识的科学,通过模式识别技术,计算 机可以识别、分类和解释图像、声音 、文本等数据。
深度学习在模式识别中的应用
总结词
深度学习在模式识别中具有广泛的应用,能够自动提取特征并实现高效分类。
详细描述
深度学习通过构建多层神经网络来学习数据的内在特征。在模式识别中,卷积神经网络和循环神经网络等方法已 被广泛应用于图像识别、语音识别和自然语言处理等领域。
THANKS
感谢观看
人脸识别
总结词
人脸识别是一种基于人脸特征的生物识 别技术,通过采集和比对人脸图像信息 进行身份验证和识别。
VS
详细描述
人脸识别技术广泛应用于安全、门禁、考 勤、移动支付等领域,通过摄像头捕捉人 脸图像,并与数据库中存储的图像信息进 行比对,实现快速的身份验证和识别。
手写数字识别
总结词
手写数字识别是一种利用计算机技术自动识 别手写数字的技术,通过对手写数字图像进 行预处理、特征提取和分类实现识别。

神经网络原理与应用课件.ppt

神经网络原理与应用课件.ppt

f(x) 1

1ex p(x)
f(x)1(1th( x))
2
x0
f(x) +1
0
x
-1
这类曲线可连续取值,反映了神经元 的饱和特性。
2024/11/24
神经网络与模式识别研究室
21
• 3.神经网络的连接方式
神经网络是由大量的神经元以不同的 方式连接而成的大规模复杂系统,不同的 网络模型可能具有不同的连接方式,常用 的连接方式有:
2024/11/24
神经网络与模式识别研究室
2
•从第一台数字计算机问世(1946年),
计算机系统几经更新换代,经历了由电 子管、晶体管、LSI、VLSI,到后来的 奔腾4、双核技术等发展阶段。
•近年来,软件方面也在不断升级更新, 计算机性能越来越优越,应用也越来越 广泛。
•尽管如此,但计算机系统并非万能,它 存在着自身的局限性和物理极限(小型 化),其特点是串行运算,输入输出存 在线性的和确定性的关系。
2024/11/24
神经网络与模式识别研究室
28
• 而另一阶段则是工作期,此时神经网络 已经训练好,连接权值保持不变,即通 过信息的不断传递,使各神经元状态发 生变化,从而使网络最终达到一个稳定 平衡态,这就像人脑寻找记忆的过程, 这一过程相对较快,各神经元的状态也 称之为短期记忆。
2024/11/24
2024/11/24
神经网络与模式识别研究室
13
• NN的问世标志着认知科学、计算机科学 及人工智能的发展又处于一个新的转折 点,它的应用和发展,不但会推动神经 动力学本身,而且将影响新一代计算机 的设计原理,可能为新一代计算机和人 工智能开辟一条崭新的途径,并为信息 科学带来革命性的变化。

常见神经网络模型演示PPT

常见神经网络模型演示PPT

感知器的分类边界是:
n
wixi 0
i1
4.2 常见神经网络模型
•4
一、感知器
在输入样本只有两个分量x1,x2时,则有分类边 界条件: 即 w1x1+w2x2-θ=0
4.2 常见神经网络模型
•5
一、感知器
感知器的学习算法: 感知器的学习算法目的在于找寻恰当的权系数w
=(w1,w2,…,wn),使系统对一个特定的样 本x=(x1,x2,…,xn)能产生期望输出y。当x 分类为A类时,期望值y=1;X为B类时,y=0。
4.2 常见神经网络模型 •27
三、Hopfield网络
•Hopfield网络的一个功能是可用于联想记忆,这是 人类的智能特点之一。人类的所谓“触景生情” 就是见到一些类同过去接触的景物,容易产生对 过去情景的回味和思忆。 •DHNN网络的能量极小状态又称为能量井,为信 息的存储记忆提供了基础。将要记忆的信息与能 量井一一对应,则当输入某一模式时,神经网络 就能通过状态转移实现联想记忆。
X
k i
f
(U
k i
)
U
k i
Wij
X
k 1 j
j
4.2 常见神经网络模型 •14
二、BP网络
BP网络的学习算法:
反向传播算法分二步进行,即输入信号正向传播和误差信号反向传播。 1.输入信号正向传播 输入的样本从输入层经过隐层单元一层一层进行处理,通过所有的隐 层之后,则传向输出层,每一层神经元的状态只对下一层神经元的状 态产生影响。 2.误差信号反向传播 在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望 输出,则进入反向传播过程。误差信号按原来正向传播的通路反向传 回,并对每个隐层的各个神经元的权系数进行修改,以望误差信号趋 向最小。

神经网络基本介绍PPT课件

神经网络基本介绍PPT课件

神经系统的基本构造是神经元(神经细胞 ),它是处理人体内各部分之间相互信息传 递的基本单元。
每个神经元都由一个细胞体,一个连接 其他神经元的轴突和一些向外伸出的其它 较短分支—树突组成。
轴突功能是将本神经元的输出信号(兴奋 )传递给别的神经元,其末端的许多神经末 梢使得兴奋可以同时传送给多个神经元。
将神经网络与专家系统、模糊逻辑、遗传算法 等相结合,可设计新型智能控制系统。
(4) 优化计算 在常规的控制系统中,常遇到求解约束
优化问题,神经网络为这类问题的解决提供 了有效的途径。
常规模型结构的情况下,估计模型的参数。 ② 利用神经网络的线性、非线性特性,可建立线
性、非线性系统的静态、动态、逆动态及预测 模型,实现非线性系统的建模。
(2) 神经网络控制器 神经网络作为实时控制系统的控制器,对不
确定、不确知系统及扰动进行有效的控制,使控 制系统达到所要求的动态、静态特性。 (3) 神经网络与其他算法相结合
4 新连接机制时期(1986-现在) 神经网络从理论走向应用领域,出现
了神经网络芯片和神经计算机。 神经网络主要应用领域有:模式识别
与图象处理(语音、指纹、故障检测和 图象压缩等)、控制与优化、系统辨识 、预测与管理(市场预测、风险分析) 、通信等。
神经网络原理 神经生理学和神经解剖学的研究表 明,人脑极其复杂,由一千多亿个神经 元交织在一起的网状结构构成,其中大 脑 皮 层 约 140 亿 个 神 经 元 , 小 脑 皮 层 约 1000亿个神经元。 人脑能完成智能、思维等高级活动 ,为了能利用数学模型来模拟人脑的活 动,导致了神经网络的研究。
(2) 学习与遗忘:由于神经元结构的可塑 性,突触的传递作用可增强和减弱,因 此神经元具有学习与遗忘的功能。 决定神经网络模型性能三大要素为:

人工神经网络讲稿ppt课件

人工神经网络讲稿ppt课件

举例:2-3岁小孩能够从人群中认出父母、3-4岁能够顺利地穿过十字路 口,但最先进机器人也难以完成这项任务。
因而模仿人类思维方式能够提升机器人能力
人工神经网络讲稿
5/40
1.2 神经细胞与生物神经网络
1. 神经网络
组织形式 大脑中大约有100亿个神经元,它们相互连接,形成一个复杂庞大网络
系统。所以大脑结构是一个神经(元)网络。 依据预计,每个神经元大约与上千个神经元相互连接。 大脑所形成神经网络是由一些小网络连接而成。依据预计,全部神经元
层次结构:神经元联接按层次排列。 模块结构:主要特点是将整个网络按功效划分为不一样模块,每个模块 内部神经元紧密互联,并完成各自特定功效,模块之间再互联以完成整体功 效; 层次模块结构:将模块结构和层次结构结合起来,使之更靠近人脑神经 系统结构,这也是当前为人们广泛注意一个新型网络互联模式。 依据网络中神经元层数不一样,可将神经网络分为单层网络和多层网络; 依据同层网络神经元之间有没有相互联接以及后层神经元与前层神经元有 没有反馈作用不一样,可将神经网络分为以下各种。
Hopfield网络和BP算法出现,使得人工神经研究出现了复兴。因为人 工神经网络在信息处理方面优点,使得大批学者加入到了这一研究领域, 掀起了神经网络研究新高潮。
人工神经网络讲稿
13/40
4. 全方面发展时期(1987-现在) 1987年在美国召开了第一届国际神经网络学术大会,并宣告成立了
国际神经网络学会,与会代表1600多人。这次大会也宣告了神经网络 学科诞生。神经网络研究进入了一个转折点,其范围不停扩大,领域 几乎包含各个方面。神经网络应用使工业技术发生了很大改变,尤其 是在自动控制领域有了新突破。
互制约,从而能够将层内神经元分为几组,让每组作为一个整体来动作。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档