若关于xy的二元一次方程组

合集下载

永州市七年级数学试卷二元一次方程组易错压轴解答题复习题(及答案)

永州市七年级数学试卷二元一次方程组易错压轴解答题复习题(及答案)

永州市七年级数学试卷二元一次方程组易错压轴解答题复习题(及答案)一、二元一次方程组易错压轴解答题1.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.2.在平面直角坐标系中,对于点,若点的坐标为,则称点是点的“ 演化点”.例如,点的“演化点”为,即 .(1)已知点的“ 演化点”是,则的坐标为________;(2)已知点,且点的“ 演化点”是,则的面积为________;(3)己知,,,,且点的“ 演化点”为,当时, ________.3.在平面直角坐标系中,O为坐标原点,点A的坐标为,点B的坐标为,且满足 .(1)若,判断点处于第几象限,给出你的结论并说明理由;(2)若为最小正整数,轴上是否存在一点,使三角形的面积等于10,若存在,求点的坐标;若不存在,请说明理由.(3)点为坐标系内一点,连接,若,且,直接写出点的坐标.4.为了防治“新型冠状病毒”,我市某小区准备用5400元购买医用口罩和洗手液发放给本小区住户.若医用口罩买800个,洗手液买120瓶,则钱还缺200元;若医用口罩买1200个,洗手液买80瓶,则钱恰好用完.(1)求医用口罩和洗手液的单价;(2)由于实际需要,除购买医用口罩和洗手液外,还需增加购买单价为6元的N95口罩.若需购买医用口罩,N95口罩共1200个,其中N95口罩不超过200个,钱恰好全部用完,则有几种购买方案,请列方程计算.5.文雅书店出售A,B两种书籍,已知A书籍单售为每本50元,B书籍单售为每本30元,整套(A,B各一本)出售为每套70元。

(1)小明购买了A,B两种书籍共20本,且购买的B书籍数量比A书籍数量的2倍少4本。

①小明购买了A,B两种书籍各多少本?②小明至少需要花费多少钱?(2)如果小刚花了600元购买A,B两种书籍,其中A书籍购买了8本,那么有哪几种购买方案?其中哪一种方案最划算?6.已知关于x,y的二元一次方程组(a为实数).(1)若方程组的解始终满足y=a+1,求a的值.(2)己知方程组的解也是方程bx+3y=1(b为实数,b≠0且b≠-6)的解.①探究实数a,b满足的关系式.②若a,b都是整数,求b的最大值和最小值.7.某中学组织学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车每日每辆租金为220元,60座客车每日每辆租金为300元.试问:(1)春游学生共多少人,原计划租45座客车多少辆?(2)若租用同一种车,要使每位同学都有座位,怎样租车更合算.8.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P(1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为________;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.9.在直角坐标系中,已知点A,B的坐标是(a,0),(b,0).a,b满足方程组,C为y轴正半轴上一点,且S△ABC=6.(1)求A,B,C三点的坐标;(2)是否存在点P(t,t),使S△PAB= S△ABC?若存在,请求出P点的坐标;若不存在,请说明理由.10.已知为三个非负数,且满足(1)用含的代数式分别表示得(2)若求S的最小值和最大值.11.水果商贩老徐上水果批发市场进货,他了解到草莓的批发价格是每箱60元,苹果的批发价格是每箱40元. 老徐购得草莓和苹果共60箱,刚好花费3100元.(1)问草莓、苹果各购买了多少箱?(2)老徐有甲、乙两家店铺,每售出一箱草莓或苹果,甲店分别获利15元和20元,乙店分别获利12元和16元. 设老徐将购进的60箱水果分配给甲店草莓箱,苹果箱,其余均分配给乙店.由于他口碑良好,两家店都很快卖完了这批水果.①若老徐在甲店获利600元,则他在乙店获利多少元?________②若老徐希望获得总利润为1000元,则 =________.(直接写出答案)12.某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上每人门票价20元17元14元1)班人数较少,不足50人,(2)班人数较多,超过50人,但是不超过100人.如果两个班都以班为单位分别购票,则一共应付1912元;如果两个班联合起来,作为个团体购票,则只需付1456元(1)列方程或方程组求出两个班各有多少学生?(2)若(1)班全员参加,(2)班有20人不参加此次活动,请你设计一种最省钱方式来帮他们买票,并说明理由.(3)你认为是否存在这样的可能:51到100人之间买票的钱数与100人以上买票的钱数相等?如果有,是多少人与多少人买票钱数相等?(直接写结果)【参考答案】***试卷处理标记,请不要删除一、二元一次方程组易错压轴解答题1.(1)∵b=a+1,c=b+1.∴c=a+2,由题意,得3a+a+1=a+2,解得a= 13 ,∴c=a+2= 73 ;(2)当a= 12 时, 12 x+ 32 y= 52 ,解析:(1)∵b=a+1,c=b+1.∴c=a+2,由题意,得3a+a+1=a+2,解得a=,∴c=a+2=;(2)当a=时, x+ y= ,化简得,x+3y=5,∴符合题意的整数解是:,,;(3)由题意,得ax+(a+1)y=a+2,整理得,a(x+y﹣1)=2﹣y①,∵x、y均为正整数,∴x+y﹣1是正整数,∵a是正整数,∴2﹣y是正整数,∴y=1,把y=1代入①得,ax=1,∴a=1,此时,a=1,b=2,c=3,方程的正整数解是 .【解析】【分析】(1)由题意,得3a+a+1=a+2,解得a=,即可求得c=;(2)当a=时,方程为 x+ y= ,即x+3y=5,根据方程即可求得;(3)由题意,得a(x+y﹣1)=2﹣y①,x、y均为正整数,则x+y﹣1是正整数,a是正整数,则2﹣y是正整数,从而求得y=1,把y=1代入①得,ax=1,即可求得a=1,此时方程的正整数解是 .2.(1)(2,14)(2)20(3)【解析】【解答】解:(1)由题意可知:点的“ 演化点”是,即,故答案为:(2,14)(2)设Q点坐标为(x,y),由题意可知: {2解析:(1)(2,14)(2)20(3)【解析】【解答】解:(1)由题意可知:点的“ 演化点”是,即,故答案为:(2,14)(2)设Q点坐标为(x,y),由题意可知:,解得:∴Q点坐标为(0,4)∴故答案为:20;(3)由题意可知:AD=3,OC=5的坐标为,即点的坐标为当点位于y轴正半轴时,,∴或(此情况不合题意,舍去)又∵∴,解得:(舍去)当点位于y轴正半轴时,,∴又∵∴,解得:,即故答案为:.【分析】(1)根据题意a=3,x=-1,y=5时,求点的坐标;(2)根据题意列方程组求点Q的坐标,然后结合坐标系中点的位置,利用割补法求三角形面积;(3)根据题意求出,然后分点在y轴正半轴和负半轴两种情况讨论,利用三角形面积列方程求解.3.(1)解:∵∴ a<0 ,∴,∴点 A 处于第四象限;(2)解:最小正整数为1,即c=1,代入方程组得,,解得,,即,如下图,∴直线AB的解解析式为:解析:(1)解:∵∴,∴,∴点处于第四象限;(2)解:最小正整数为1,即c=1,代入方程组得,,解得,,即,如下图,∴直线AB的解解析式为:,与x轴的交点坐标为N ,设点P的坐标为,由题意得,解得:或即点P的坐标为或;(3)解:根据题意可画图如下:由(2)可知,∵,且,∴四边形,四边形是平行四边形,当点C位于第二象限时,根据平移的规律可得:,即当点C位于第四象限时,根据平移的规律可得:,即综上所述点C的坐标为或 .【解析】【分析】(1)根据-a,a的符号和每一象限内点的坐标的性质进行判断;(2)最小正整数为1,即c=1,代入方程组求出a,b的值,即可确定A、B点的坐标,设点P坐标为,再根据三角形面积列式计算即可;(3)根据题意画出示意图,根据图示解题即可.4.(1)解:设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得{800x+120y=56001200x+80y=5400首先将方程化简为①×3-②×2得:5y=150解解析:(1)解:设医用口罩的单价为x元/个,洗手液的单价为y元/瓶,根据题意得首先将方程化简为①×3-②×2得:5y=150解得:y=30y=30将代入①得:20x+90=140解得:x=2.5(2)解:解:设增加购买N95口罩a个,洗手液b瓶,则医用口罩(1200-a)个,根据题意得6a+2.5(1200-a)+30b=5400化简,得 7a+60b=4800∵a,b都为正整数∴a为60的倍数,且a≤200∴∴有三种购买方案.【解析】【分析】(1)本题的数量关系为:医用口罩买800个,洗手液买120瓶,则钱还缺200元,即可得方程800x+120y=5600;医用口罩买1200个,洗手液买80瓶,则钱恰好用完,即可得方程1200x+80y=5400.(2)解本题注意两个条件:一是N95口罩不超过200个,二是:口罩和洗手液的个数为正整数。

七年级数学下册含有待定系数的二元一次方程组的解法

七年级数学下册含有待定系数的二元一次方程组的解法

含有待定系数的二元一次方程组的解法二元一次方程组的解法是初中代数的重要内容,也是中考命题的重要知识点之一。

一般直接给出关于某二个未知数的二元一次方程组或应用题,对这种形式我们非常熟悉。

也有一些以含有待定系数的二元一次方程组的形式给出,但其解法有一定之规。

形式1:系数为待定系数且没有给定范围的二元一次方程组。

常规解法:化为一元一次方程后,对未知数的系数进行讨论。

ax-by=a ①例1、解关于x、y的方程组(ab≠0)bx-ay=b ②解:①×b- ②×a,得(a2-b2)y=0.当a2-b2≠0时,即a≠±b时,有y=0,代入①得x=1,∴x=1y=0当a2-b2=0时,即a=±b,有y为一切有理数。

①当a=b时,x=y+1②当a=-b时,x=1-yy = 一切有理数∴x=1±y形式2:解的和满足某条件,求待定系数的值。

常规解法:把待定系数看成已知,即相当于常数,解出的方程组用这个常数表示未知数,再代入条件即可求得待定字母。

x+2y=5m ①例2、已知关于x、y的方程组的解满足方程x-2y=9m ②3x+2y=19,求m解: ①+②,得x=7m; ①-②,得y=-m∵3x+2y=19,∴21m-2m=19,得m=12x +3y=k 练习2: 已知方程组3x+5y=k+1 的解的和是-12,求k 的值形式3:给出两个方程组同解,求待定系数的值。

常规解法:把二个方程组中不含待定系数的方程组合,求出方程的解,再把方程的解代入含有待定系数的方程中,组成关于待定系数的方程组即可解得。

2x+5y=-6 ① 3x-5y=16 ③例3、已知关于x 、y 的方程组 ax+by=-4 ② 和方程组 bx-ay=-18 ④的解相同,求【21(a-b )】2009 的值. x=2解:由① 、③组成方程组得y=-22a-2b=-4 a=-211 把解代入 ②、④得方程组得 得2b+2a=-18 b=-27 【21(a-b )】2009=【21(-211+27)】2009=【(-2)×21】2009= -1ax-2by=2 3ax-5by=9练习:已知关于x 、y 的两个方程组 和2x-y=7 3x-y=11具有相同的解,求a,b 的值。

第五章:二元一次方程(组)单元测试卷

第五章:二元一次方程(组)单元测试卷

第五章:二元一次方程(组)单元测试卷一.选择题(共10小题)1.(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()2.(2014•台湾)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列4.(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程BD.6.(2014•工业园区一模)若关于x,y的二元一次方程组的解也是二元一次方﹣7.解方程组时,一学生把c看错得,已知方程组的正确解是,8.若方程组有无穷多组解,(x,y为未知数),则()9.若关于x,y的方程组有非负整数解,则正整数m为()10.设m为整数,若方程组的解x,y满足x+y>,则m的最大值是11.(2014•牡丹江二模)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于_________.12.(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有_________种租车方案.13.已知关于x、y的方程组的解是一对异号的数,则k的取值范围是________.14.(2010•栖霞区一模)方程组的解为,则被遮盖的两个数分别为________.15.(2009•本溪一模)某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染,已看不清楚.若设捐款的2元的有x名同学,捐款3元的有y名同学.根据题意,可得方程组_________.16.(2009•德州)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为_________.17.(2009•河东区二模)如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是______cm2.18.(2008•乌兰察布)对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=_________.19.(2012•武侯区一模)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为_________.三.解答题(共8小题)20.(2014•张家口二模)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y0的取值范围.21.(2014•灌南县模拟)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?22.(2013•凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高_________cm,放入一个大球水面升高_________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?23.(2013•嘉兴)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?24.(2006•嘉兴一模)下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;(3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律?25.(2003•茂名)我市某旅游景点,为了吸引更多的游客,特推出集体购票优惠票价的办2)班人数)准备在暑假期间去游该景点.若两班都以班为单位购票,一共要支付570元.(1)如果两班联合起来,作为一个团体购票,那么比以班为单位购票可以节约多少钱?(2)试问两班各有多少名学生?(3)如果初二(1)班有10人因特殊情况不能前往旅游,那么又该如何购票才能最省钱?26.(2009•随州)某工厂从外地连续两次购得A,B两种原料,购买情况如右表:现计划租用甲,乙两种货车共8辆将两次购得的原料一次性运回工厂.(1)A,B两种原料每吨的进价各是多少元?(2)已知一辆甲种货车可装4吨A种原料和1吨B种原料;一辆乙种货车可装A,B两种原料各2吨.如何安排甲,乙两种货车?写出所有可行方案.(3)若甲种货车的运费是每辆400元,乙种货车的运费是每辆350元.设安排甲种货车x 辆,总运费为W元,求W(元)与x(辆)之间的函数关系式;在(2)的前提下,x为何值时,总运费W最小,最小值是多少元?27.(2005•岳阳)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.第五章:二元一次方程(组)单元测试卷参考答案与试题解析一.选择题(共10小题)1.(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()解:将,得:2.(2014•台湾)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列出下列哪一个方程式?()3.(2014•齐齐哈尔)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方方程的整数解为:,,,,4.(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()5.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组BD.6.(2014•工业园区一模)若关于x,y的二元一次方程组的解也是二元一次方﹣解:.7.解方程组时,一学生把c看错得,已知方程组的正确解是,解:把代入把代入方程组,得8.若方程组有无穷多组解,(x,y为未知数),则()9.若关于x,y的方程组有非负整数解,则正整数m为()解:,代入①得,,∴10.设m为整数,若方程组的解x,y满足x+y>,则m的最大值是,根据已知得出﹣﹣解:,﹣,∴>﹣二.填空题(共9小题)11.(2014•牡丹江二模)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于﹣13.x=z x=y+y+z∴12.(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有2种租车方案.13.(2012•成都模拟)已知关于x、y的方程组的解是一对异号的数,则k的取值范围是﹣2<k<1.:计算题.分析:,先由①﹣②得3y=6k﹣6,求出y=2k﹣2,再把y的值代入②可得到异号得到,解:所以方程组的解为∴,14.(2010•栖霞区一模)方程组的解为,则被遮盖的两个数分别为7和3.15.(2009•本溪一模)某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染,已看不清楚.若设捐款的2元的有x名同学,捐款3元的有y名同学.根据题意,可得方程组.列方程组为16.(2009•德州)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为.解:根据题意得,消元得17.(2009•河东区二模)如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是300cm2.则可列方程组解得18.(2008•乌兰察布)对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=2.19.(2012•武侯区一模)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为﹣.解:由题意可得,﹣,,﹣﹣.故本题答案为:﹣三.解答题(共8小题)20.(2014•张家口二模)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y0的取值范围.代入方程)将所以方程组的公共解为:.)因为∴解得:21.(2014•灌南县模拟)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?解得:.22.(2013•凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?解得:,23.(2013•嘉兴)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?解得:24.(2006•嘉兴一模)下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;(3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律?)∴,该方程组为25.(2003•茂名)我市某旅游景点,为了吸引更多的游客,特推出集体购票优惠票价的办2)班人数)准备在暑假期间去游该景点.若两班都以班为单位购票,一共要支付570元.(1)如果两班联合起来,作为一个团体购票,那么比以班为单位购票可以节约多少钱?(2)试问两班各有多少名学生?(3)如果初二(1)班有10人因特殊情况不能前往旅游,那么又该如何购票才能最省钱?26.(2009•随州)某工厂从外地连续两次购得A,B两种原料,购买情况如右表:现计划租用甲,乙两种货车共8辆将两次购得的原料一次性运回工厂.(1)A,B两种原料每吨的进价各是多少元?(2)已知一辆甲种货车可装4吨A种原料和1吨B种原料;一辆乙种货车可装A,B两种原料各2吨.如何安排甲,乙两种货车?写出所有可行方案.(3)若甲种货车的运费是每辆400元,乙种货车的运费是每辆350元.设安排甲种货车x 辆,总运费为W元,求W(元)与x(辆)之间的函数关系式;在(2)的前提下,x为何值时,总运费W最小,最小值是多少元?27.(2005•岳阳)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.。

2023年中考数学备考学案+第12课时+《方程与不等式》之一次不等式(组)的解法

2023年中考数学备考学案+第12课时+《方程与不等式》之一次不等式(组)的解法

第12课时 一次不等式(组)的解法学习目标:1.理解一元一次不等式(组)的概念;2.会解一元一次不等式(组).学习过程:一、问题唤醒1.关于x 的不等式x x >-23的解集是 .2.不等式3)1(2+<+y y 的解集为 .3.不等式123≥-x 的最小整数解为 . 4.不等式组⎩⎨⎧>-+>71412x x x 的解集是 . 5.不等式组⎪⎩⎪⎨⎧-<-+≤+385107)1(4x x x x 的所有整数解的和为 . 6.若12=+y x ,且10<<y ,则x 的取值范围为 .二、问题导学问题1:如何解不等式(组),并在数轴上表示解集?例1、解不等式12331+-≥-x x ,并在数轴上表示解集.同质训练:解不等式21312->-x x ,并把它的解集在数轴上表示出来.方法归纳:解不等式的步骤: 用数轴表示解集的方法: 例2、解不等式组,并把解集在数轴上表示出来.⎪⎩⎪⎨⎧<--+≤-4211)1(314x x x x同质训练:解不等式组,并把解集在数轴上表示出来,写出它的所有整数解. ⎪⎩⎪⎨⎧+<-≥-23252)1(3x x x x方法归纳:解不等式组的步骤:问题3:已知解集,如何求参数的值或取值范围?例3、关于x 的一元一次不等式232-≤-x m 的解集为4≥x ,则m 的值为( ) A .14 B .7C .﹣2D .2 同质训练:1.已知关于x 的一元一次不等式01>-ax 的解集是3>x ,则a 的值是 .2.若关于x 的不等式组⎩⎨⎧->+<423a x a x 无解,则a 的取值范围是( )A .a ≤﹣3B .a <﹣3C .a >3D .a ≥3方法归纳:先解不等式,再根据解集情况列出关于参数的方程或不等式,最后求参数的值或范围.问题4:如何利用方程和不等式解的概念,求参数的取值范围?例4、如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为 该一元一次不等式组的关联方程.若方程0131=-x 是关于x 的不等式组 ⎩⎨⎧<-≤-0222x n n x 的关联方程,则n 的取值范围是 .同质训练:已知关于x 的方程24x m x +=-的解为负数,则m 的取值范围是( )A .43m <B .43m > C .4m < D .4m >方法归纳:一般地,先解方程和不等式,再根据条件列出关于参数的不等式,最后求参数范围.三、自主小结四、适度作业A 层1.若n m >,则下列不等式中正确的是( )A .22-<-n mB .n m 2121->- C .0>-m n D .n m 2121-<-2.不等式312>+x 的解集在数轴上表示正确的是( )A .B .C .D . 3.关于x ,y 的方程组⎩⎨⎧=--=-ky x k y x 2322的解中x 与y 的和不小于5,则k 的取值范围为( )A .8≥kB .8>kC .8≤kD .8<k4.定义新运算“⨂”,规定:a ⨂b =a ﹣2b .若关于x 的不等式x ⨂m >3的解集为1->x ,则m 的值是( )A .﹣1B .﹣2C .1D .25.不等式1312-<+-y y 的解集为 .6.不等式组⎩⎨⎧>-≥+36042x x 的所有整数解的和为 . 7.若关于x 、y 的二元一次方程组⎩⎨⎧=++=-55343y x m y x 的解满足0≤+y x ,则m 的取值范围是 .8. 解不等式(组):(1))2(2443-+≤-x x (2)131221≤+-+x x(3)⎩⎨⎧-<+≥--1124)2(3x x x x (4)⎪⎩⎪⎨⎧≥--<-03113)1(23x x x -9.整式)31(3m -的值为P . (1)当m =2时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.10.已知关于x 的不等式12122->-x mx m . (1)当m =1时,求该不等式的解集;(2)若该不等式的解集2>x ,求m 的取值范围.B 层11.按如下程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算,且运算进行4次才停止,则可输入的整数x 的个数是 .12.已知非负实数a ,b ,c 满足cb a -=-=-322413,设c b a S 2++=的最大值为m ,最小值为n ,求mn 的值.。

2.2 二元一次方程组的矩阵解法

2.2 二元一次方程组的矩阵解法

若关于变量x,y的二元一次方程组(线性
ax + by = e, 方程组): cx + dy = f .的系数矩阵A= 可逆,则方程组有唯一解
ab cd
-1
x ab e
=
y cd
f
证明:当A= a b 可逆,由二元一次方
cd ax + by = e, 程组 cx + dy = f . 的矩阵形式:
13
22
x
从线性变换的角度, 解方程组①就是找出向量 y
= 使得它在旋转变换 R30°: x′
y′
3 -1 22 13
x y
作用下的结果为给定的向量 3 1
22
x 即: 向量 y 按逆时针绕原点旋转30°
后得到向量 3 ; 1
x
3
向量 y 可以看成把向量 1 按
顺时针绕原点旋转30°后得到.
即:
x y
∴方程组有唯一解 x =A-1 1
y
2
11
∵A-1= 2
1
-1

3
3
1 -1
1 -2
11
33

x y
=
33 1 -2
11 2 = -1
33
x = 1,
∴原方程组的解是 y =-1.
即: 当2-λμ=0时,方程组有非零解.
∴λμ=2.
2.用逆矩阵解二元一次方程组 2x + y = 1, x-y = 2.
解:二元一次方程组的系数矩阵A= 2 1 1 -1
则该方程组的矩阵形式:
21 x 1 1 -1 y = 2
2
1
1 -1
=
2
×(-1)-1 ×1

二元一次方程组中含参数问题

二元一次方程组中含参数问题

明看错了方程②中的 c,得到的解为 xy==1-. 3,试求 a,b,c 的值.
题型3.错解问题
练习
1.已知方程组 4axx
5y by
15 2

② ,由于甲看错了方程①中的 a
得到方程的解为
x
y
13 1
,乙看错了方程②中的
b
得到方程组的
解为
x
y
5 4
,求
a+b
的值是多少?
题型3.错解问题
题型4 设参数法求比值
例 4.已知 x,y 的值满足等式x+1=y+3=x+y, 245
求式子3x+2y+1的值. x+2y+3
题型4 设参数法求比值
练习 1.已知 x∶y=2∶3,且2x-y-5=x-y, 2 63
求 x,y 的值.
题型4 设参数法求比值小结
一般地,含有连等形式或者比例关系的方程,通常可 以设比例系数为一个参数k,再讲其他未知数都用k表示 求解。
二元一次方程组中含参数问题
题型1 方程组的解满足某一条件问题
例 1:关于 x 与 y 的二元一次方程组
x x
y y
5k 9k
的解也是二元
一次方程 2x 3y 6 的解,则 k =______
题型1 方程组的解满足某一条件问题
x 2y 3m
练习 1.关于 x、y 的方程组 x y 9m 的解是方程 3x+2y=34 的一组解,求 m 的值.
的哪些值,方程组
y
(2k
1) x
4
至少有
一组解?
题型6 方程组解的个数问题
关于
x,y
的方程组
aa12xx
b1 y b2 y

二元一次方程组

一、二元一次方程(组)与二元一次方程解定义1.若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k=.【解答】﹣22.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的立方根是【解答】13.二元一次方程x+2y=3的正整数解是.【解答】4.写出二元一次方程x+2y=8的一组整数解:.【解答】(答案不唯一)5.由方程3x﹣2y﹣12=0可得到用x表示y的式子是.【解答】y=x﹣66.已知x﹣3y=9,请用含x的代数式表示y,则y=.【解答】x﹣37.已知二元一次方程2x﹣3y﹣5=0的一组解为,则6b﹣4a+3=.【解答】﹣78.若方程组是二元一次方程组,则a的值为.【解答】09.试写出一个以为解的二元一次方程组.【解答】.10.若方程组是关于x,y的二元一次方程组,则代数式a+b+c的值是.【解答】﹣2或﹣311.若==1,将原方程组化为的形式为.【解答】12.观察下列方程组:①;②;③;…若第④方程组满足上述方程组的数字规律,则第④方程组为.【解答】13.当m=时,关于x、y的方程组有无穷多解.【解答】414.若方程组的解是,其中y的值看不清楚了,则b的值是.【解答】二、解二元一次方程组与三元一次方程组(1).【解答】(2)【解答】(3);【解答】(4)【解答】(5)【解答】(6)【解答】.(7)【解答】(8)【解答】.(9).【解答】(10)【解答】(11)【解答】(12)【解答】二.含参数方程组1.对有理数x、y规定运算⊕:x⊕y=ax﹣by.已知1⊕7=9,3⊕8=14,求2a+5b的值.【解答】,所以2a+5b=﹣1.2.若关于x,y的方程组的解为正数,当m为整数时,求的值.【解答】∴m=4,∴==5.3.k为正整数,已知关于x,y的二元一次方程组有整数解,求2k+x+y的平方根.【解答】2k+x+y的平方根=±3.4.若实数x、y满足方程组,则代数式2x+2y﹣4的值是.【解答】45.已如是方程的解,则(a+b)(a﹣b)的值为.【解答】45.6.已知是关于x,y的二元一次方程组的一组解,则a+b=.【解答】5.7.已知关于x,y的方程组的解为,则m=.n=.【解答】.8.若二元一次方程组的解为,则a+b的值为【解答】﹣1.9.如果方程组的解是方程7x+my=16的一个解,则m的值为.【解答】2.10.已知关于x,y的二元一次方程组的解互为相反数,则(m﹣5)2019=.【解答】﹣1..已知方程组的解满足12.如果方程组的解中x与y的值相等,那么a的值是.【解答】313.已知关于x、y的二元一次方程组的解满足二元一次方程﹣y=4,则m=.【解答】﹣12.方程组的解适合方程15. 已知方程组⎩⎨⎧=--=+1653652y x y x 和方程组⎩⎨⎧-=+-=-84ay bx by ax 的解相同,求代数式3a +7b 的值.16.已知方程组和方程组的解相同,则b ﹣2a 的值是 .【解答】﹣3.17.若关于x 、y 的二元一次方程组和的解相同,求a 、b 的值.【解答】.18.若方程组与方程组的解相同,分别求a ,b 的值.【解答】a =﹣3,b =2.19.若关于x 、y 的方程组与有相同的解.(1)求这个相同的解; (2)求m 、n 的值.【解答】(1);(2).20.在解关于x 、y 的方程组时,可以用①×2﹣②消去未知数x ,也可以用①×4+②×3消去未知数y ,试求a 、b 的值.【解答】a =6,b =21.在解方程组时,由于粗心,甲看错了方程组中的a ,而得到解为,乙看错了方程组中的b ,而得到解为.(1)求正确的a ,b 的值;(2)求原方程组的解.【解答】(1)b =5a =4(2)22.小明和小红同解同一个方程组时,小红不慎将一滴墨水滴在了题目上使得方程组的系数看不清了,显示如下,同桌的小明说:“我正确的求出这个方程组的解为”,而小红说:“我求出的解是,于是小红检查后发现,这是她看错了方程组中第二个方程中x 的系数所致”,请你根据他们的对话,把原方程组还原出来.【解答】23.在解方程组时,哥哥正确地解得,弟弟因把c 写错而解得.求:(1)a +b +c 的值.(2)弟弟把c 写错成了什么数?【解答】(1)a +b +c =4+5+(﹣2)=7.(2)c =﹣11.24.已知关于x,y的二元一次方程组.(1)若该方程组的解是,那么关于x,y的二元一次方程组的解是多少?(2)若y<0,且m≤n,试求x的最小值.【解答】(1);(2)x的最小值是5.25.阅读下列材料:小明同学遇到下列问题:解方程组,他发现如果直接用代入消元法或加减消元法求解,运算量比较大,也容易出错.如果把方程组中的(2x+3y)看作一个数,把(2x﹣3y)看作一个数,通过换元,可以解决问题.以下是他的解题过程:令m=2x+3y,n=2x﹣3y.这时原方程组化为解得把代入m=2x+3y,n=2x﹣3y.得解得所以,原方程组的解为请你参考小明同学的做法,解决下面的问题:(1)解方程组(2)若方程组的解是,求方程组的解.【解答】(1);(2).26.阅读下列解方程组的方法,然后回答问题.解方程组解:由(1)﹣(2)得2x+2y=2即x+y=1(3)(3)×16得16x+16y=16(4)(2)﹣(4)得x=﹣1,从而可得y=2∴方程组的解是.(1)请你仿上面的解法解方程组.【解答】(1)(2).(2)猜测关于x、y的方程组的解是什么,并利用方程组的解加以验证.27.如下是按一定规律排列的方程组集合和它的解的集合的对应关系,若方程组从左至右依次记作方程组1,方程组2,方程组3,…,方程组n.方程组集合:,,,…对应方程组解的集合:,,,….(1)方程组1的解为;(2)请依据方程组和它的解变化的规律,直接写出方程组n为,方程组n的解;(3)若方程组的解是,求a的值,并判断该方程组是否符合(2)中的规律.【解答】(1),(2)方程组n它的解是;(3)a=5,即原方程组为所以该方程组符合(2)中的规律.28.已知:.(1)用x的代数式表示y;(2)如果x、y为自然数,那么x、y的值分别为多少?(3)如果x、y为整数,求(﹣2)x•4y的值.【解答】(1)y=;(2)当x=1时,y=3;x=3时,y=2;x=5时,y=1;x=7时,y=0;(3)方程组整理得:x+2y=m+2+5﹣m=7,则原式=(﹣2)x+2y=(﹣2)7=﹣128.29.当m,n都是实数,且满足2m=8+n,就称点P(m﹣1,)为“爱心点”.(1)判断点A(5,3),B(4,8)哪个点为“爱心点”,并说明理由;(2)若点A(a,﹣4)、B(4,b)是“爱心点”,请判断A、B两点的中点C在第几象限?并说明理由;(3)已知p,q为有理数,且关于x,y的方程组解为坐标的点B(x,y)是“爱心点”,求p,q的值.【解答】(1)A点为“爱心点”,B点不是“爱心点”;(2)A、B两点的中点C在第四象限(3)P=0,q=﹣.30.当a,b都是实数,且满足2a﹣b=6,就称点P(a﹣1,+1)为完美点.(1)判断点A(2,3)是否为完美点.(2)已知关于x,y的方程组,当m为何值时,以方程组的解为坐标的点B(x,y)是完美点,请说明理由.【解答】(1)A(2,3)不是完美点.(2)点B(x,y)是完美点.31.阅读材料:小明是个爱动脑筋的学生,他在学习了二元一次方程组后遇到了这样一道题目:现有8个大小相同的长方形,可拼成如图1、2所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,求每个小长方形的面积.小明设小长方形的长为x,宽为y,观察图形得出关于x、y的二元一次方程组,解出x、y的值,再根据长方形的面积公式得出每个小长方形的面积.解决问题:(1)请按照小明的思路完成上述问题:求每个小长方形的面积;(2)某周末上午,小明在超市帮妈妈买回一袋纸杯,他把纸杯整齐地叠放在一起,如图3所示.若小明把13个纸杯整齐叠放在一起时,它的高度约是cm;(3)小明进行自主拓展学习时遇到了以下这道题目:如图,长方形ABCD中放置8个形状、大小都相同的小长方形(尺寸如图4),求图中阴影部分的面积,请给出解答过程.【解答】(1)60;(2)20cm.(3)S阴影=19×(7+3×3)﹣8×10×3=64.。

达标测试华东师大版七年级数学下册第7章一次方程组综合测评试卷(含答案解析)

七年级数学下册第7章一次方程组综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若关于x ,y 的方程()716mx m y ++=是二元一次方程,则m 的值为( ) A .﹣1 B .0 C .1 D .22、下列方程组中,属于二元一次方程组的是( )A .659x y xy +=⎧⎨=⎩B .123230x y x y ⎧+=⎪⎨⎪-=⎩C .3511643x y x y =⎧⎪⎨+=⎪⎩D .3826x y y z -=⎧⎨-=⎩3、方程x +y =6的正整数解有( )A .5个B .6个C .7个D .无数个4、已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a b --的值为( ) A .4-B .4C .2-D .2 5、若21x y =-⎧⎨=⎩是方程组17ax by bx ay +=⎧⎨+=⎩的解,则()()a b a b +-的值为( )A .16B .-1C .-16D .16、下列方程是二元一次方程的是( )A .x ﹣xy =1B .x 2﹣y ﹣2x =1C .3x ﹣y =1D .1x﹣2y =1 7、如图,已知长方形ABCD 中,8cm AD =,6cm AB =,点E 为AD 的中点,若点P 在线段AB 上以2cm/s 的速度由点A 向点B 运动.同时,点Q 在线段BC 上由点C 向点B 运动,若AEP △与BPQ 全等,则点Q 的运动速度是( )A .6或83 B .2或6 C .2或23 D .2或838、《孙子算经》记载:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”大致意思是:今有若干人乘车,若每3人共乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9人无车可乘.问共有多少人?有多少辆车?若设有x 人,有y 辆车,根据题意,所列方程组正确的是( )A .()229x x y x y ⎧-=⎨+=⎩B .()3229y x y x ⎧-=⎨+=⎩C .()3229x y y x ⎧-=⎨+=⎩D .()3229y x x y ⎧-=⎨+=⎩ 9、由方程组250x m x y m +=⎧⎨+-=⎩可以得出关于x 和y 的关系式是( ) A .5x y += B .25x y += C .35x y += D .30x y +=10、中国古代人民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人共乘一车,最终剩余2辆车;若每2人共乘一车,最终剩余9个人无车可乘.问有多少人,多少辆车?设共有x 人,y 辆车,可列方程组为( )A .()3229y x x y ⎧-=⎨=-⎩B .()3229y x x y ⎧+=⎨=+⎩C .()3229y x x y ⎧-=⎨=+⎩D .()3229y x x y ⎧+=⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若()232565803x y x y -+++-=,则22x xy y -+的值为______. 2、写出二元一次方程组 310x y += 的所有正整数解________________.3、通过“___________”或“___________”进行消元,把“三元”转化为“___________ ”,使解三元一次方程组转化为解___________,进而再转化为解___________.4、为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文2+a b ,2b c +,22c d +,4d .例如,明文1,2,3,4对应密文5,7,14,16.当接收方收到密文9,9,24,28时,则解密得到的明文为 __.5、使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.如果一个二元一次方程的解中两个未知数的绝对值相等,那么我们把这个解称做这个二元一次方程的等模解.二元一次方程2x ﹣5y =7的等模解是____.三、解答题(5小题,每小题10分,共计50分)1、2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资,某口罩厂现安排A 、B 两组工人共150人加工口罩,A 组工人每小时可加工口罩50个,B 组工人每小时可加工口罩70个,A 、B 两组工人每小时一共可加工口罩9100个,试问:A 、B 两组工人各多少人?2、对于一个四位正整数n ,如果n 满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于12,那称这个数为“幸运数”.例如:n 1=8455,∵8+4+5﹣5=12,∴8455是“幸运数”;n 2=2021,∵2+0+2﹣1=3≠12,∴2021不是“幸运数”.(1)判断3753,1858是否为“幸运数”?请说明理由.(2)若“幸运数”m =1000a +100b +10c +203(4≤a ≤8,1≤b ≤9,1≤c ≤5且a ,b ,c 均为整数),s 是m 截掉其十位数字和个位数字后的一个两位数,t 是m 截掉其千位数字和百位数字后的一个两位数,若s 与t 的和能被7整除,求m 的值.3、养牛场原有30头大牛和15头小牛,1天约需用饲料675 kg ;一周后又购进12头大牛和5头小牛,这时1天约需用饲料940 kg.饲养员李大叔估计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7 ~8 kg.你能否通过计算检验他的估计?解:设平均每头大牛和每头小牛1天各需用饲料为x kg和y kg;根据题意列方程:3015675 4220940x yx y+=⎧⎨+=⎩,解得:___________所以,每只大牛1天约需饲料20kg,每只小牛1天约需饲料5kg,饲养员李大叔对大牛的食量估计正确,对小牛的食量估计偏高.4、某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔20支,共用了1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共60支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔,需支领1322元.”王老师算了一下,说:“如果只买这两种笔,你的帐肯定算错了!”请判断王老师的说法是否正确,并说明理由;②陈老师突然想起,所做的预算中还包括一支签字笔.如果签字笔的单价为不大于10元的整数,请直接写出签字笔的单价5、阅读:一个两位数,若它刚好等于它各位数字之和的整数倍,我们称这个两位数为本原数;把一个本原数的十位数字、个位数字交换后得到一个新的两位数,我们称这个新的两位数为本原数的奇异数.(1)一本原数刚好是组成它的两个数字之和的4倍.请写出符合条件的所有本原数;(2)一本原数刚好等于组成它的数字之和的3倍,它的奇异数刚好是两个数字之和的k倍.请问k的值是多少?(3)一个本原数刚好等于组成它的数字之和的m倍,它的奇异数刚好是这个数的数字之和的n倍,试说明m和n的关系.-参考答案-一、单选题1、C【解析】【分析】 根据二元一次方程的定义得出1m =且10m +≠,再求出答案即可.【详解】解:∵关于x ,y 的方程()716mx m y ++=是二元一次方程, ∴1m =且10m +≠,解得:m =1,故选C .【点睛】本题考查了二元一次方程的定义,能熟记二元一次方程的定义是解此题的关键.2、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即①含有两个二元一次方程,②方程都为整式方程,③未知数的最高次数都为一次.【详解】解:A 、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意; B 、该方程组的第一个方程不是整式方程,不是二元一次方程组,故本选项不符合题意; C 、该方程组符合二元一次方程组的定义,故本选项符合题意;D 、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意;【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.3、A【解析】【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x=进而求得对应y的值即可【详解】解:方程的正整数解有15xy=⎧⎨=⎩,24xy=⎧⎨=⎩,33xy=⎧⎨=⎩,42xy=⎧⎨=⎩,51xy=⎧⎨=⎩共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.4、A【解析】【分析】求出方程组的解得到a与b的值,即可确定出-a-b的值.【详解】解:51234a ba b+=⎧⎨-=⎩①②,①+②×5得:16a=32,即a=2,把a=2代入①得:b=2,故选:A .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5、C【解析】【分析】把x 与y 的值代入方程组,求出a +b 与a -b 的值,代入原式计算即可求出值.【详解】解:把21x y =-⎧⎨=⎩代入方程组得2127a b b a -+=⎧⎨-+=⎩, 两式相加得8a b +=-;两式相差得:2a b -=,∴()()16a b a b +-=-,故选C .【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6、C【解析】【分析】根据二元一次方程的定义逐个判断即可.含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.【详解】解:A、x﹣xy=1含有两个未知数,但未知数的最高次数是2次,∴x﹣xy=1不是二元一次方程;B、x2﹣y﹣2x=1含有两个未知数.未知数的最高次数是2次,∴x2﹣y﹣2x=1不是二元一次方程;C、3x﹣y=1含有两个未知数,未知数的最大次数是1次,∴3x﹣y=1是二元一次方程;D、1x﹣2y=1含有两个未知数,但分母上含有未知数,不是整式方程,∴1x﹣2y=1不是二元一次方程.故选:C.【点睛】此题主要考查了二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.7、A【解析】【分析】设Q运动的速度为x cm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【详解】解:∵ABCD是长方形,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q 的运动速度为x cm/s ,①经过y 秒后,△AEP ≌△BQP ,则AP =BP ,AE =BQ ,26248y y xy -⎧⎨-⎩==, 解得,3283x y ⎧=⎪⎪⎨⎪=⎪⎩, 即点Q 的运动速度83cm/s 时能使两三角形全等.②经过y 秒后,△AEP ≌△BPQ ,则AP =BQ ,AE =BP ,28462y xy y -⎧⎨-⎩==, 解得:61x y ⎧⎨⎩==, 即点Q 的运动速度6cm/s 时能使两三角形全等.综上所述,点Q 的运动速度83或6cm/s 时能使两三角形全等.故选:A .【点睛】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t 和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.8、B【解析】【分析】根据“每3人乘一车,最终剩余2辆空车;若每2人同乘一车,最终剩下9人因无车可乘而步行”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】依题意,得:()3229y x y x ⎨-+⎧⎩== 故选:B【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9、C【解析】【分析】分别用x ,y 表示m ,即可得到结果;【详解】由25x m +=,得到52m x =-,由0x y m +-=,得到m x y =+,∴52x x y -=+,∴35x y +=;故选C .【点睛】本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.10、C【解析】【分析】根据题意,找到关于x 、y 的两组等式关系,即可列出对应的二元一次方程组.【详解】解:由每三人共乘一车,最终剩余2辆车可得:3(2)y x -=.由每2人共乘一车,最终剩余9个人无车可乘可得:29x y =+.∴该二元一次方程组为:()3229y xx y ⎧-=⎨=+⎩.故选:C .【点睛】本题主要是考查了列二元一次方程组,熟练根据题意找到等式关系,这是求解该题的关键.二、填空题1、749##439【解析】【分析】 根据绝对值和平方的非负性,列出方程组,可得132x y ⎧=-⎪⎨⎪=⎩,再代入,即可求解. 【详解】 解:∵()232565803x y x y -+++-=, ∴325036580x y x y -+⎧=⎪⎨⎪+-=⎩ , 解得:132x y ⎧=-⎪⎨⎪=⎩ ,222211127224433939x xy y ⎛⎫⎛⎫=---⨯+=++= ⎪ ⎪⎝⎭⎝⎭-+. 故答案为:749【点睛】本题主要考查了绝对值和平方的非负性,二元一次方程组的应用,求代数式的值,根据绝对值和平方的非负性,列出方程组是解题的关键.2、17x y =⎧⎨=⎩ 24x y =⎧⎨=⎩,, 31x y =⎧⎨=⎩ 【解析】【分析】先把方程3x +y =10变形为 y =10-3x ,再根据整除的特征,逐一尝试即可求解.【详解】解:∵3x +y =10,∴y =10-3x ,∴原方程的所有正整数解是17x y =⎧⎨=⎩,24x y =⎧⎨=⎩,31x y =⎧⎨=⎩, 故答案为:17x y =⎧⎨=⎩,24x y =⎧⎨=⎩,31x y =⎧⎨=⎩. 【点睛】 本题考查了二元一次方程的整数解,求二元一次方程的正整数解,可以先用含一个未知数的代数式表示另一个未知数,再根据整除的特征,逐一尝试即可.3、 代入 加减 二元 二元一次方程组 一元一次方程【解析】略4、5,2,5,7【解析】【分析】设解密得到的明文为a ,b ,c ,d ,加密规则得出方程组,求出a ,b ,c ,d 的值即可.【详解】解:设明文为a ,b ,c ,d ,由题意得:29292224428a b b c c d d +=⎧⎪+=⎪⎨+=⎪⎪=⎩, 解得:5257a b c d =⎧⎪=⎪⎨=⎪⎪=⎩, 则得到的明文为5,2,5,7.故答案为:5,2,5,7.【点睛】本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.5、7373x y ⎧=-⎪⎪⎨⎪=-⎪⎩或11x y =⎧⎨=-⎩ 【解析】【详解】解:根据题意得:257x y x y =⎧⎨-=⎩或257x y x y =-⎧⎨-=⎩,解得:7373xy⎧=-⎪⎪⎨⎪=-⎪⎩或11xy=⎧⎨=-⎩,故答案为:7373xy⎧=-⎪⎪⎨⎪=-⎪⎩或11xy=⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解题的关键是需要分两种情况解方程组,注意不要漏解.三、解答题1、A组工人有70人, B组工人80人.【解析】【分析】设A组工人有x人,B组工人有y人,根据A、B两组工人共150人,每小时可加工口罩9100个,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设A组工人有x人,B组工人有y人,依题意得:150 ********x yx y+=⎧⎨+=⎩,解得:7080xy=⎧⎨=⎩.答:A组工人有70人,B组工人有80人.【点睛】本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.2、 (1)3753是幸运数,1858不是幸运数,见解析(2)m的值为8343,7353【解析】【分析】(1)读懂“幸运数”的意思,再根据定义代入3773和1858进行验证;(2)m是一个四位数,s、t分别是两位数,都是可以用字母a、b、c表示,这样就可以用a、b、c 表示s和t.再根据m是满月数,化简得到a+c=12-b.最后s和t的和能被7整除,再代入求出值.(1)解: 3753是幸运数,1858不是幸运数,理由如下:∵3+7+5﹣3=12,1+8+5﹣8=6,∴3753是幸运数,1858不是幸运数.(2)①当1≤b≤7时,∵m=1000a+100b+10c+203=1000a+100(b+2)+10c+3,∴s=10a+b+2,t=10c+3,∴s+t=10a+10c+b+2+3=10(a+c)+b+5.∵m为“幸运数”,∴a+(b+2)+c﹣3=12,∴a+c=13﹣b,∴10(a+c)+b+5=135﹣9b.∵135﹣9b能被7整除,且1≤b≤9,∴b=1,∴a+c=12.∵4≤a≤8,1≤c≤5,∴当a=8时,c=4,m=8×1000+100×(2+1)+10×4+3=8343;当a=7时,c=5,m=7×1000+100(2+1)+10×5+3=7353.②当8≤b≤9时,m=1000(a+1)+100(b﹣8)+10c+3,∴a+1+b﹣8+c﹣3=12,∴a+b+c=22,当b=8时,a+c=14(舍去);当b=9时,则a+c=13,∴85ac=⎧⎨=⎩,∴m=9153,而91+53=146不能被7整除,答:3764是幸运数,2858不是幸运数;m的值为8343,7353.【点睛】本题主要考查了学生的阅读理解能力,根据题目给的新定义去求解,而找到字母之间的关系,用代入消元和整体法消元是解题的关键.3、205 xy=⎧⎨=⎩【解析】略4、 (1)钢笔的单价为19元,毛笔的单价为25元(2)①王老师的说法是正确的,理由见解析;②2元/支或8元/支【解析】【分析】(1)设钢笔的单价为x元,则毛笔的单价为()6x+元,根据买钢笔30支,毛笔20支,共用了1070元建立方程,求出其解即可;(2)①根据第一问的结论设钢笔为y 支,所以毛笔则为()60y -支,求出方程的解不是整数则说明算错了;②设钢笔为y 支,毛笔则为()60y -支,签字笔的单价为a 元,根据条件建立方程求出其解就可以得出结论.(1)设钢笔的单价为x 元,则毛笔的单价为()6x +元,由题意得:()302061070x x ++=,解得:19x =.625x +=,答:钢笔的单价为19元,毛笔的单价为25元;(2)①王老师的说法是正确的.理由:设钢笔为y 支,所以毛笔则为()60y -支.根据题意,得()1925601322y y +-=, 解得893y =(不符合题意), ∴陈老师肯定算错了;②设钢笔为y 支,签字笔的单价为a 元,则根据题意,得()1925601322y y a +-=-,∴6178y a =+,∵a 、y 都是整数,∴178a +应被6整除,∴a 为偶数,∵a 为小于10元的整数,∴a 可能为2、4、6、8,当2a =时,6180y =,30y =,符合题意;当4a =时,6182y =,913y =,不符合题意; 当6a =时,6184y =,923y =,不符合题意; 当8a =时,6186y =,31y =,符合题意,∴签字笔的单价可能2元或8元.【点睛】本题考查了列二元一次方程解实际问题的运用,列一元一次方程解实际问题的运用,在解答时根据题意等量关系建立方程是关键.5、 (1)12,24,36,48;(2)8k(3)11+=m n【解析】【分析】(1)设这个本原数的十位数字为x ,个位数字为y ,有()104x y x y +=+,得x y ,的关系,进而得到答案.(2)设这个本原数的十位数字为x ,个位数字为y ,有()103x y x y +=+,得x y ,的关系,找出满足条件的数,找出奇异数,进行求解即可.(3)设这个本原数的十位数字为x ,个位数字为y .则由题意可列方程组()()1010x y m x y y x n x y ⎧+=+⎪⎨+=+⎪⎩①②,两式相加求解即可.(1)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()104x y x y +=+解得2y x =∴符合条件的本原数为12,24,36,48;(2)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()103x y x y +=+解得72x y =∴满足条件的数为27,它的奇异数是72 ∴72872k∴8k;(3)解:设这个本原数的十位数字为x ,个位数字为y .由题意知:()()1010x y m x y y x n x y ⎧+=+⎪⎨+=+⎪⎩①② ①+②得()()()11x y m n x y +=++∴11+=m n【点睛】本题考查了二元一次方程组的应用.解题的关键在于依据题意正确的列方程.。

华东师大版数学七年级下册 二元一次方程组和它的解练习(Word版含答案)

7.1二元一次方程组和它的解★含有个未知数,并且含有未知数的项的次数都是的方程叫做二元一次方程.★含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.★二元一次方程的解:使二元一次方程两边的值相等的一组未知数的值,叫做二元一次方程的解.一般情况下,一个二元一次方程有个解.★二元一次方程组中的两个方程的公共解,叫做二元一次方程组的解。

通常情况下,一个二元一次方程组只有一个解,它是一对数值.一.选择题(共7小题)1.有下列方程:①xy=2;②3x=4y;③x+=2;④y2=4x;⑤=3y﹣1;⑥x+y﹣z=1.其中二元一次方程有()A.1个B.2个C.3个D.4个2.下列方程组中,是二元一次方程组的是()A.B.C.D.3.下列方程组的解为的是()A.B.C.D.4.母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A.3种B.4种C.5种D.6种5.二元一次方程x﹣2y=1有无数多个解,下列四组值中不是该方程的解的是()A.B.C.D.6.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x场,负y场,则根据题意,下列方程组中正确的是()A.B.C.D.7.二果问价源于我国古代数学著作《四元玉鉴》“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜果苦果各几个?”设甜果为x个,苦果y个,下列方程组表示正确的是()A.B.C.D.二.填空题(共6小题)8.若(a﹣2)x|a|﹣1+3y=1是关于x、y的二元一次方程,则a的值为.9.已知关于x,y的方程(2a+6)x|b|﹣1+(b﹣2)=﹣8是二元一次方程,则a=,b =.10.若方程2x2m+3+(n+3)y|n|﹣2=4是关于x,y的二元一次方程,则m n=.11.已知关于x,y的二元一次方程组的解满足x+y=0,则m的值为.12.已知等式:①=;②2x=5y﹣x;③3x﹣5y=0;④=,其中可以通过适当变形得到3x=5y的等式是.(填序号)13.若关于x,y的二元一次方程组的解满足x﹣y=2,则m的值为.三.解答题(共7小题)14.已知是方程的解,求﹣5a+2b+1964的值.15.我国古代数学名著《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,意思是:鸡和兔关在一个笼子里,从上面看有35个头,从下面看有94条腿,问笼中鸡或兔各有多少只?16.甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?17.已知关于x、y的二元一次方程组的解是,求(a+b)2﹣(a﹣b)(a+b)的值.18.求方程4x+5y=21的整数解.19.甲、乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为;乙把字母b看错了得到方程组的解为.(1)求a,b的正确值;(2)求原方程组的解.20.若干名游客要乘坐游船,要求每艘游船乘坐的人数相同.如果每艘游船乘坐12人,结果剩下1人未能上船;若有一艘游船空着开走,则所有游客正好能平均分坐到其余游船上.已知每艘游船最多能容纳15人.请你通过计算,说明游客共有多少人?7.1二元一次方程组和它的解参考答案与试题解析★含有_两_个未知数,并且含有未知数的项的次数都是1_的_整式_方程叫做二元一次方程.★含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组.★二元一次方程的解:使二元一次方程两边的值相等的一组未知数的值,叫做二元一次方程的解.一般情况下,一个二元一次方程有无数_个解.★二元一次方程组中的两个方程的公共解,叫做二元一次方程组的解。

嘉黎县中学七年级数学下册第八章【二元一次方程组】知识点总结(含答案解析)

一、选择题 1.若方程组a 2b 43a 2b 8+=⎧⎨+=⎩,则a+b 等于( )A .3B .4C .2D .12.如图1、图2都是由8个一样的小长方形拼(围)成的大矩形,且图2中的阴影部分(小矩形)的面积为21cm .则小长方形的长为( )cm .A .5B .3C .7D .93.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现在仓库里有若干张正方形和若干张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则库存中正方形纸板与长方形纸板之和的值可能是( )A .2018B .2019C .2020D .20214.解方程组232261s t s t +=⎧⎨-=-⎩①②时,①—②,得( )A .31t -= .B .33t -=C .93t =D .91t =5.已知代数式x a ﹣b y 2与xy 2a +b 是同类项,则a 与b 的值分别是( ) A .a =0,b =1B .a =2,b =1C .a =1,b =0D .a =0,b =26.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种7.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( ) A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩8.方程组125x y x y +=⎧⎨+=⎩的解为( )A .12x y =-⎧⎨=⎩B .21x y =⎧⎨=⎩C .43x y =⎧⎨=-⎩D .23x y =-⎧⎨=⎩9.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( ) A .﹣1B .1C .13D .﹣1310.下列各组值中,不是方程21x y -=的解的是( )A .0,12x y =⎧⎪⎨=-⎪⎩B .1,1x y =⎧⎨=⎩C .1,x y =⎧⎨=⎩D .1,1x y =-⎧⎨=-⎩11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩二、填空题12.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.13.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .14.已知x ,y 满足方程组612328x y x y +=⎧⎨-=⎩,则x +y 的值为__.15.设 a 、b 是有理数,且满足等式2322152a b b ++=-,则a+b=___________.16.已知关于x 、y 二元一次方程组31630mx y x ny -=⎧⎨-=⎩的解为53x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组(1)3(1)163(1)(1)0m x y x n y +--=⎧⎨+--=⎩的解是___.17.已知方程组32223x y m x y m +=+⎧⎨+=⎩的解适合8x y +=,则m =_______.18.“九九重阳节, 浓浓敬老情”,今年某花店在重阳节推出“松鹤长春”“欢乐远长”“健康长寿”三种花束.“松鹤长春”花束中有8枝百合,16 枝康乃馨;“欢乐远长”花束中有6枝百合,16枝康乃馨,2枝剑兰;“健康长寿”花束中有4枝百合,12枝康乃馨,2枝剑兰.已知百合花每枝1元,康乃馨每枝34元,剑兰每枝5元,重阳节当天销售这三种花束共2549元,其中百合花的销售额为458元,则剑兰的销售量为________枝.19.设()554325432031x a x a x a x a x a -=++++,则035a a a ++的值为______________ 20.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.21.对于任意有理数a ,b ,c ,d ,我们规定a b ad bc c d=-.已知x ,y 同时满足514x y=-,513yx=-,则xy =________.三、解答题22.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长; (2)若DE =14,求BC 的长23.放学后,小贤和小艺来到学校附近的地摊上购买一种签字笔和卡通笔记本,这种签字笔每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支签字笔、2本笔记本需花12元,小艺要买6支签字笔、1本笔记本需花费15元. (1)求笔记本的单价和单独购买一支签字笔的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,小贤还剩2元钱,小艺还剩1元钱,他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.24.某班举行数学知识竞赛,下面是班长安排小明购买奖品后的对话情景小明:买了两种不同的笔记本共40本,单价分别是5元和8元,我从你处领了300元,现在找回68元 班长:你肯定搞错了小明:哦!我把自己口袋里的13元一起当作找回的钱款了 班长:这就对啦!(1)根据上述信息,求两种笔记本各买了多少本? (2)请你解释,小明为什么不可能找回68元?25.若x ,y 2(2313)0x y +-=,求2x y -的值.一、选择题1.若12xy=⎧⎨=-⎩是方程3x+by=1的解,则b的值为()A.1 B.﹣1 C.﹣2 D.22.如图,天平上放有苹果、香蕉、砝码,且两个天平都平衡,则一个苹果的重量是一个香蕉的重量的()A.23倍B.32倍C.2倍D.3倍3.以方程组21x yy x+=⎧⎨=-⎩的解为坐标的点(x,y)在平面直角坐标系中的位置是()A.第一象限B.第二象限C.第三象限D.第四象限4.已知代数式x a﹣b y2与xy2a+b是同类项,则a与b的值分别是()A.a=0,b=1 B.a=2,b=1 C.a=1,b=0 D.a=0,b=25.关于x、y的方程组53x ayx y+=⎧⎨-=⎩的解是1•xy=⎧⎨=⎩,其中y的值被盖住了,不过仍能求出a,则a的值是()A.2 B.-2 C.1 D.-16.方程组5213310x yx y+=⎧⎨-=⎩的解是()A.31xy=⎧⎨=-⎩B.13xy=-⎧⎨=⎩C.31xy=-⎧⎨=-⎩D.13xy=-⎧⎨=-⎩7.若方程6kx﹣2y=8有一组解32xy=-⎧⎨=⎩,则k的值等于(()A.23-B.23C.16-D.168.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是32=19423x y x y +⎧⎨+=⎩,在图2所示的算筹图所表示的方程组是( )A .2114327x y x y +=⎧⎨+=⎩B .21437x y x y +=⎧⎨+=⎩C .2274311x y x y +=⎧⎨+=⎩D .2114327y x y x +=⎧⎨+=⎩9.下列方程中,是二元一次方程的是( ). A .324x y z -=B .690+=xC .42x y =-D .123y x+= 10.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( ) ya2y 4x -9 2x - 11A .6B .7C .8D .911.方程组320x y x y +=⎧⎨-=⎩的解是( )A .11x y =⎧⎨=⎩B .12x y =⎧⎨=⎩C .21x y =⎧⎨=⎩D .30x y =⎧⎨=⎩二、填空题12.写出方程35x y -=的一组解_________.13.如图,已知∠AOE =100°,∠DOF =80°,OE 平分∠DOC ,OF 平分∠AOC ,求∠EOF 的度数.14.已知37m m n x y +-与653x y 是同类项,则m n -=_______. 15.已知2(2)40x y x y ++--=,则yx的值是_______. 16.如果()2x 2y 1x y 50-+++-=,那么x =______,y =____ 17.甲、乙二人分别从A 、B 两地同时出发,匀速沿同一平直公路相向而行.甲骑的共享电车,乙步行,两人在出发2.5h 时相遇,相遇后0.5h 甲到达B 地,若相遇后乙又走了20千米才到达A 、B 两地的中点,那么乙的速度为______千米/时.18.若方程组23103228a b a b -=⎧⎨+=⎩的解是82a b =⎧⎨=⎩,则方程组()()()()223110322128x y x y ⎧+--=⎪⎨++-=⎪⎩的解是____________.19.若x a y b =⎧⎨=⎩是方程组2155x y x y -=⎧⎨-+=⎩的解,则a+4b =_____.20.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.21.如果关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩,则关于x ,y 的二元一次方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是______.三、解答题22.解方程(组) (1)21332x x x -+-= (2)3450529x y x y -+=⎧⎨+=⎩23.今年11月份,某商场用22200元购进长虹取暖器和格力取暖器共400台,已知长虹取暖器每台进价为50元,售价为70元,格力取暖器每台进价为60元,售价为90元. (1)求11月份两种取暖器各购进多少台?(2)在将11月份购买的两种取暖器从厂家运往商场的过程中,长虹取暖器出现13的损坏(损坏后的产品只能为废品,不能再进行销售),而格力取暖器完好无损,商场决定对这两种取暖器的售价进行调整,使这次购进的取暖器全部售完后,商场可获利35%,已知格力取暖器在原售价基础上提高5%,问长虹取暖器调整后的每台售价比原售价多多少元?(3)今年重庆的天气比往年寒冷了许多,进入12月份,格力取暖器的需求量增大,商场在筹备“双十二”促销活动时,决定去甲、乙两个生产厂家都只购进格力取暖器,甲、乙生产厂家给出了不同的优惠措施:甲生产厂家:格力取暖器出厂价为每台60元,折扣数如下表所示:乙生产厂家:格力取暖器出厂价为每台50元,当出厂总金额达一定数量后还可按下表返现金.已知该商场在甲生产厂家购买格力取暖器共支付8610元,在乙生产厂家购买格力取暖器共支付9700元,若将在两个生产厂家购买格力取暖器的总量改由在乙生产厂家一次性购买,则商场可节约多少元?24.一个电器超市购进A、B两种型号的电风扇进行销售,已知购进2台A型号和3台B型号共用910元,购进3台A型号比购进2台B型号多用260元.(1)求A、B两种型号的电风扇每台进价分别是多少元?(2)超市根据市场需求,决定购进这两种型号的电风扇共30台进行销售,A种型号电风扇每台售价260元,B种型号电风扇每件售价190元,若超市购进的两种电风扇全部售出后,总获利是1400元,求该超市本次购进A、B两种型号的电风扇各多少台?25.解方程组:(1)379x yx y+=⎧⎨=-⎩;(2)5217 345x yx y-=⎧⎨+=⎩.一、选择题 1.如果方程组54356x y kx y -=⎧⎨+=⎩的解中的x 与y 互为相反数,则k 的值为( )A .1B .1或1-C .27-D .5-2.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩3.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,44.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( ) A .6种B .7种C .8种D .9种5.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=6.方程组5213310x y x y +=⎧⎨-=⎩的解是( )A .31x y =⎧⎨=-⎩B .13x y =-⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .13x y =-⎧⎨=-⎩7.若关于x y ,的二元一次方程组232320x y kx y k +=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k 的值为( ) A .34-B .34C .43D .43-8.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种9.已知 xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则 x :y :z 等于( )A .3:2:1B .1:2:3C .4:5:3D .3:4:510.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( ) A .452710320x y x y +=⎧⎨-=⎩ B .452710320x y x y -=⎧⎨+=⎩ C .452710320x y x y +=⎧⎨+=⎩ D .427510203x y x y -=⎧⎨-=⎩11.小亮问老师有多少岁了,老师说:“我像你这么大时,你才4岁,你到我这么大时,我就40岁了.”求小亮和老师的岁数各是多少?若设小亮和老师的岁数分别为x 岁和y 岁,则可列方程组( ) A .440x y x y x y -=-⎧⎨-=-⎩ B .440x y x y -=⎧⎨+=⎩C .440x yy x-=⎧⎨-=⎩D .440x x yy x y -=-⎧⎨-=-⎩二、填空题12.渝北区某学校将开启“阅读节”活动,为了充实学校书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去7690元;语文组购买了A 、B 两种文学书籍若干本,用去8330元,已知A 、B 两种书的数量分别与甲、乙两种书的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同,若甲种书的单价比乙种书的单价多8元,则乙种书籍比甲种书籍多买了______本. 13.已知关于x ,y 的方程组35223x y m x y m +=+⎧⎨+=⎩,给出下列结论:①34x y =⎧⎨=-⎩是方程组的解;②2m =时,x ,y 的值互为相反数;③无论m 的x ,y 都满足的关系式22x y +=;④x ,y 的都为自然数的解有2对,其中正确的为__________.(填正确的序号)14.在长方形ABCD 中放入六个长、宽都相同的小长方形,所标尺寸如图所示,则小长方形的宽CE 为____________cm .15.如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为_______.16.“百鸡问题”译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?__________________________;(至少写出2种结果)17.某商店准备用每千克19元的A 糖果和每千克10元的B 糖果混合成什锦糖果出售,混合后糖果的价格是每千克16元.现在要配制这种什锦糖果150千克,需要两种糖果各多少千克?设A 糖果x 千克,B 糖果y 千克,根据题意可列二元一次方程组:_____. 18.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了40%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_______. 19.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.20.一个两位数,交换个位与十位的数字之后,新得到的两位数比原数小63,则原来的两位数是________________.21.已知x y x x ++=,且490x y ,则5x y -的值为____________.三、解答题22.解方程组(1)310518x y x y +=⎧⎨+=⎩ (2)312491a b a b ⎧+=⎪⎨⎪-=-⎩ 23.解下列方程组(1)362x y y x +=⎧⎨=-⎩ (2)3510236x y x y -=⎧⎨+=-⎩(3)45321x yx y+=⎧⎨-=⎩(4)()31511212x yxy⎧-=+⎪⎨+=-⎪⎩24.若x,y2(2313)0x y+-=,求2x y-的值.25.关于,x y的二元一次方程组325x y kx y k+=⎧⎨-=⎩的解也是二元一次方程211x y+=的解,求k的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档