2009年广西桂林、百色市中考数学试题(含参考答案和评分标准)
最新广西百色市初三中考数学试卷

广西百色市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.2.(3分)多边形的外角和等于()A.180°B.360°C.720°D.(n﹣2)•180°3.(3分)在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.64.(3分)下列计算正确的是()A.(﹣3x)3=﹣27x3B.(x﹣2)2=x4C.x2÷x﹣2=x2D.x﹣1•x﹣2=x25.(3分)如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAM C.∠BAM=2∠CAM D.2∠CAM=∠BAC6.(3分)5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×1087.(3分)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③ B.②①③C.③①②D.①③②8.(3分)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.1219.(3分)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60°C.72°D.120°10.(3分)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.30011.(3分)以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O相交,则b的取值范围是()A.0≤b<2 B.﹣2C.﹣22D.﹣2<b<212.(3分)关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若分式有意义,则x的取值范围为.14.(3分)一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.15.(3分)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有(填序号)16.(3分)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为.17.(3分)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是.18.(3分)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= .三、解答题(本大题共8小题,共66分)19.(6分)计算:+()﹣1﹣(3﹣π)0﹣|1﹣4cos30°|20.(6分)已知a=b+,求代数式•÷的值.21.(6分)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.22.(8分)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.23.(8分)甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:S甲(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b= ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a、b的所有可能取值,并说明理由.24.(10分)某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?25.(10分)已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.26.(12分)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(•百色)化简:|﹣15|等于()A.15 B.﹣15 C.±15 D.【解答】解:∵负数的绝对值是它的相反数,∴|﹣15|等于15,故选A.2.(3分)(•百色)多边形的外角和等于()A.180°B.360°C.720°D.(n﹣2)•180°【解答】解:多边形的外角和是360°,故选:B.3.(3分)(•百色)在以下一列数3,3,5,6,7,8中,中位数是()A.3 B.5 C.5.5 D.6【解答】解:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.4.(3分)(•百色)下列计算正确的是()A.(﹣3x)3=﹣27x3B.(x﹣2)2=x4C.x2÷x﹣2=x2D.x﹣1•x﹣2=x2【解答】解:A、积的乘方等于乘方的积,故A符合题意;B、幂的乘方底数不变指数相乘,故B不符合题意;C、同底数幂的除法底数不变指数相减,故C不符合题意;D、同底数幂的乘法底数不变指数相加,故D不符合题意;故选:A.5.(3分)(•百色)如图,AM为∠BAC的平分线,下列等式错误的是()A.∠BAC=∠BAM B.∠BAM=∠CAM C.∠BAM=2∠CAM D.2∠CAM=∠BAC【解答】解:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选:C.6.(3分)(•百色)5月14﹣15日“一带一路”论坛峰会在北京隆重召开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人数约为44亿人,44亿这个数用科学记数法表示为()A.4.4×108B.4.4×109C.4×109D.44×108【解答】解:44亿这个数用科学记数法表示为4.4×109,故选:B.7.(3分)(•百色)如图所示的正三棱柱,它的主视图、俯视图、左视图的顺序是()A.①②③ B.②①③C.③①②D.①③②【解答】解:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选:D.8.(3分)(•百色)观察以下一列数的特点:0,1,﹣4,9,﹣16,25,…,则第11个数是()A.﹣121 B.﹣100 C.100 D.121【解答】解:0=﹣(1﹣1)2,1=(2﹣1)2,﹣4=﹣(3﹣1)2,9=(4﹣1)2,﹣16=﹣(5﹣1)2,∴第11个数是﹣(11﹣1)2=﹣100,故选B.9.(3分)(•百色)九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中,第一小组对应的圆心角度数是()A.45°B.60°C.72°D.120°【解答】解:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.10.(3分)(•百色)如图,在距离铁轨200米的B处,观察由南宁开往百色的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上;10秒钟后,动车车头到达C处,恰好位于B处的西北方向上,则这时段动车的平均速度是()米/秒.A.20(+1)B.20(﹣1)C.200 D.300【解答】解:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD=200(米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选A.11.(3分)(•百色)以坐标原点O为圆心,作半径为2的圆,若直线y=﹣x+b与⊙O 相交,则b的取值范围是()A.0≤b<2 B.﹣2C.﹣22D.﹣2<b<2【解答】解:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.在y=﹣x+b中,令x=0时,y=b,则与y轴的交点是(0,b),当y=0时,x=b,则A的交点是(b,0),则OA=OB,即△OAB是等腰直角三角形.连接圆心O和切点C.则OC=2.则OB=OC=2.即b=2;同理,当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时,b=﹣2.则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣2<b<2.故选D.12.(3分)(•百色)关于x的不等式组的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C.1 D.【解答】解:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(•百色)若分式有意义,则x的取值范围为x≠2 .【解答】解:由题意,得x﹣2≠0.解得x≠2,故答案为:x≠2.14.(3分)(•百色)一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.【解答】解:∵共有5个数字,奇数有3个,∴随机抽取一张,抽中标号为奇数的卡片的概率是.故答案是.15.(3分)(•百色)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有②(填序号)【解答】解:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故假命题有②,故答案为:②.16.(3分)(•百色)如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC沿着OB方向平移OB个单位,则点C的对应点坐标为(1,3).【解答】解:∵在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),∴OC=OA=2,C(0,2),∵将正方形OABC沿着OB方向平移OB个单位,即将正方形OABC沿先向右平移1个单位,再向上平移1个单位,∴点C的对应点坐标是(1,3).故答案为(1,3).17.(3分)(•百色)经过A(4,0),B(﹣2,0),C(0,3)三点的抛物线解析式是y=﹣x2+x+3 .【解答】解:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+3,故答案为y=﹣x2+x+3.18.(3分)(•百色)阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.(1)二次项系数2=1×2;(2)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;1×3+2×(﹣1)=1 1×(﹣1)+2×3=5 1×(﹣3)+2×1=﹣1 1×1+2×(﹣3)=﹣5(3)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12= (x+3)(3x﹣4).【解答】解:3x2+5x﹣12=(x+3)(3x﹣4).故答案为:(x+3)(3x﹣4)三、解答题(本大题共8小题,共66分)19.(6分)(•百色)计算:+()﹣1﹣(3﹣π)0﹣|1﹣4cos30°|【解答】解:原式=2+2﹣1﹣2+1=2.20.(6分)(•百色)已知a=b+,求代数式•÷的值.【解答】解:原式=××(a﹣b)(a+b)=2(a﹣b)∵a=b+,∴原式=2×=403621.(6分)(•百色)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.【解答】解:(1)将B点坐标代入函数解析式,得=2,解得k=6,反比例函数的解析式为y=;(2)由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).=AD•CD=[3﹣(﹣3)]×|﹣2|=6.S△ACD22.(8分)(•百色)矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD 于G、H两点.求证:(1)四边形AFCE是平行四边形;(2)EG=FH.【解答】解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG ≌△BFH (AAS ),∴EG=FH .23.(8分)(•百色)甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是S 甲2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(10﹣9)2+(8﹣9)2]=0.8,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙射击成绩平均数都一样,则a+b= 17 ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出a 、b 的所有可能取值,并说明理由.【解答】解:(1)如图所示:(2)由题意知,=9,∴a+b=17,故答案为:17;(3)∵甲比乙的成绩较稳定,∴S甲2<S乙2,即[(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]<0.8,∵a+b=17,∴b=17﹣a,代入上式整理可得:a2﹣17a+71<0,解得:<a<,∵a、b均为整数,∴a=8时,b=9;a=9时,b=8.24.(10分)(•百色)某校九年级10个班级师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现唱歌类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟,若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【解答】解:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据题意,得:,解得:,答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15<150,解得:a<,由于a为整数,∴a=3,答:参与的小品类节目最多能有3个.25.(10分)(•百色)已知△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,若=,如图1,.(1)判断△ABC的形状,并证明你的结论;(2)设AE与DF相交于点M,如图2,AF=2FC=4,求AM的长.【解答】解:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵=,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴=,∵AE==4,∴AM=4×=.26.(12分)(•百色)以菱形ABCD的对角线交点O为坐标原点,AC所在的直线为x 轴,已知A(﹣4,0),B(0,﹣2),M(0,4),P为折线BCD上一动点,作PE⊥y轴于点E,设点P的纵坐标为a.(1)求BC边所在直线的解析式;(2)设y=MP2+OP2,求y关于a的函数关系式;(3)当△OPM为直角三角形时,求点P的坐标.【解答】解:(1)∵A(﹣4,0),B(0,﹣2),∴OA=4,OB=2,∵四边形ABCD是菱形,∴OC=OA=4,OD=OB=2,∴C(4,0),D(0,2),设直线BC的解析式为y=kx﹣2,∴4k﹣2=0,∴k=,∴直线BC的解析式为y=x﹣2;(2)由(1)知,C(4,0),D(0,2),∴直线CD的解析式为y=﹣x+2,由(1)知,直线BC的解析式为y=x﹣2,当点P在边BC上时,设P(2a+4,a)(﹣2≤a<0),∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48 当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,∵△POM是直角三角形,Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴a=2+(舍)或a=2﹣,∴P(,2﹣),即:当△OPM为直角三角形时,点P的坐标为(,2﹣),(4,0).。
初中数学 广西百色市中考模拟数学考试题考试卷及答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:化简得()A.100 B.10 C.D.±10试题2:下列图形中,是中心对称图形的是()A.B.C.D.试题3:如图,已知AB∥CD,∠1=62°,则∠2的度数是()A.28°B.62°C.108°D.118°试题4:在3月份,某县某一周七天的最高气温(单位:℃)分别为:12,9,10,6,11,12,17,则这组数据的极差是()评卷人得分A.6 B.11 C.12 D.17试题5:下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b2试题6:下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球试题7:已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A.2 B.0 C.0或2 D.0或﹣2试题8:下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2试题9:某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,20试题10:从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米试题11:在下列叙述中:①一组对边相等的四边形是平行四边形;②函数y=中,y随x的增大而减小;③有一组邻边相等的平行四边形是菱形;④有不可能事件A发生的概率为0.0001.正确的叙述有()A.0个B.1个C.2个D.3个试题12:已知点A的坐标为(2,0),点P在直线y=x上运动,当以点P为圆心,PA的长为半径的圆的面积最小时,点P的坐标为()A.(1,﹣1)B.(0,0)C.(1,1)D.(,)试题13:计算:2000﹣2015=试题14:已知甲、乙两组抽样数据的方差:S=95.43,S=5.32,可估计总体数据比较稳定的是组数据.试题15:如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= .试题16:方程组的解为试题17:如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.试题18:观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为试题19:计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.试题20:当a=2014时,求÷(a+)的值.试题21:如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC 沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.试题22:如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.试题23:学习委员统计全班50位同学对语文、数学、英语、体育、音乐五个科目最喜欢情况,所得数据用表格与条形图描述如下:科目语文数学英语体育音乐人数10 a 15 3 2(1)表格中a的值为20 ;(2)补全条形图;(3)小李是最喜欢体育之一,小张是最喜欢音乐之一,计划从最喜欢体育、音乐的人中,每科目各选1人参加学校训练,用列表或树形图表示所有结果,并求小李、小张至少有1人被选上的概率是多少?试题24:有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?试题25:如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.试题26:已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q 两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).试题1答案:B试题2答案:C试题3答案:B试题4答案:B试题5答案:A试题6答案:C试题7答案:A试题8答案:D试题9答案:B试题10答案:A试题11答案:C试题12答案:C解:如图,过点A作AP与直线y=x垂直,垂足为点P,此时PA最小,则以点P为圆心,PA的长为半径的圆的面积最小.过点P作PM与x轴垂直,垂足为点M.在直角△OAP中,∵∠OPA=90°,∠POA=45°,∴∠OAP=45°,∴PO=PA,∵PM⊥x轴于点M,∴OM=MA=OA=1,∴PM=OM=1,∴点P的坐标为(1,1).故选C.试题13答案:﹣15 .试题14答案:乙试题15答案:25°试题16答案:.解:,①+②得:2x=2,即x=1,①﹣②得:2y=﹣2,即y=﹣1,则方程组的解为.故答案为:试题17答案:50解:∵由作图可知,MN是线段AC的垂直平分线,∴CE=AE,∴∠C=∠CAE,∵AC=BC,∠B=70°,∴∠C=40°,∴∠AED=50试题18答案:(2n+1)2﹣(2n﹣1)2=8n .解:通过观察可发现两个连续奇数的平方差是8的倍数,第n个等式为:(2n+1)2﹣(2n﹣1)2=8n.试题19答案:解:原式=1﹣1+﹣1﹣3×=1﹣1+﹣1﹣=﹣1.试题20答案:解:原式=÷=•=,当a=2014时,原式==.试题21答案:解:∵点B关于x轴的对称点是点E,B(﹣2,3),∴点E坐标为(﹣2,﹣3),设过点E的反比例函数解析式为y=,∴k=6,∴过点E的反比例函数解析式为y=,∴第三象限内该反比例函数图象所经过的所有格点的坐标为(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1).试题22答案:(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△CFB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.试题23答案:解:(1)a=50﹣10﹣15﹣3﹣2=20(人)故答案为:20.(2)如图,(3)根据题意画树形图如下:共有6种情况,小李、小张至少有1人被选的有4种,小李、小张至少有1人被选上的概率==.试题24答案:解:(1)每条生产线原先每天最多能组装x台产品,根据题意可得,解得:15<x<17,∵x的值应是整数,∴x最大为17.答:每条生产线原先每天最多能组装17台产品.(2)策略一:增添1条生产线,共要多投资19000元;策略二:520÷19×350×2≈28×350×2=19600元;所以策略一较省费用.试题25答案:(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.试题26答案:解:(1)如图1,∵⊙M与OP相切于点P,∴MP⊥OP,即∠MPO=90°.∵点M(0,4)即OM=4,MP=2,∴OP=2.∵⊙M与OP相切于点P,⊙M与OQ相切于点Q,∴OQ=OP,∠POK=∠QOK.∴OK⊥PQ,QK=PK.∴PK===.∴OK==3.∴点P的坐标为(,3).(2)如图2,设顶点为(0,6)的抛物线的解析式为y=ax2+6,∵点P(,3)在抛物线y=ax2+6上,∴3a+6=3.解得:a=﹣1.则该抛物线的解析式为y=﹣x2+6.(3)当直线y=m与⊙M相切时,则有=2.解得;m1=2,m2=6.①m=2时,如图3,则有OH=2.当y=2时,解方程﹣x2+6=2得:x=±2,则点C(2,2),D(﹣2,2),CD=4.同理可得:AB=2.则S梯形ABCD=(DC+AB)•OH=(4+2)×2=4+2.②m=6时,如图4,此时点C、点D与点N重合.S△ABC=AB•OC=×2×6=6.综上所述:点A、B、C、D围成的多边形的面积为4+2或6.。
2023年广西桂林中考数学真题及答案

2023年广西桂林中考数学真题及答案(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡.......一并交回.一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.若零下2摄氏度记为2C -︒,则零上2摄氏度记为()A.2C -︒B.0C ︒C.2C +︒D.4C +︒2.下列数学经典图形中,是中心对称图形的是()A. B. C. D.3.若分式11x +有意义,则x 的取值范围是()A.1x ≠-B.0x ≠C.1x ≠D.2x ≠4.如图,点A 、B 、C 在O 上,40C ∠=︒,则AOB ∠的度数是()A.50︒B.60︒C.70︒D.80︒5.2x ≤在数轴上表示正确的是()A . B.C.D.6.甲、乙、丙、丁四名同学参加立定跳远训练,他们成绩的平均数相同,方差如下:2 2.1S =甲,2 3.5S =乙,29S =丙,20.7S =丁,则成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,一条公路两次转弯后又回到与原来相同的方向,如果130A ∠=︒,那么B ∠的度数是()A.160︒B.150︒C.140︒D.130︒8.下列计算正确的是()A.347a a a += B.347a a a ⋅= C.437a a a ÷= D.()437a a =9.将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是()A.2(3)4y x =-+ B.2(3)4y x =++C.2(3)4y x =+- D.2(3)4y x =--10.赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m11.据国家统计局发布的《2022年国民经济和社会发展统计公报》显示,2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x ,依题意可列方程为()A.23.2(1) 3.7x -= B.23.2(1) 3.7x +=C.23.7(1) 3.2x -= D.23.7(1) 3.2x +=12.如图,过(0)k y x x =>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=-的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为()A.4B.3C.2D.1二、填空题(本大题共6小题,每小题2分,共12分.)13.=______.14.分解因式:a 2+5a =________________.15.函数3y kx =+的图象经过点()2,5,则k =______.16.某班开展“梦想未来、青春有我”主题班会,第一小组有2位男同学和3位女同学,现从中随机抽取1位同学分享个人感悟,则抽到男同学的概率是______.17.如图,焊接一个钢架,包括底角为37︒的等腰三角形外框和3m 高的支柱,则共需钢材约______m(结果取整数).(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)18.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为______.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.计算:2(1)(4)2(75)-⨯-+÷-.20.解分式方程:211x x=-.21.如图,在ABC 中,30A ∠=︒,90B Ð=°.(1)在斜边AC 上求作线段AO ,使AO BC =,连接OB ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)若2OB =,求AB 的长.22.4月24日是中国航天日,为激发青少年崇尚科学、探索未知的热情,航阳中学开展了“航空航天”知识问答系列活动.为了解活动效果,从七、八年级学生的知识问答成绩中,各随机抽取20名学生的成绩进行统计分析(6分及6分以上为合格),数据整理如下:学生成绩统计表七年级八年级平均数7.557.55中位数8c 众数a 7合格率b85%根据以上信息,解答下列问题:(1)写出统计表中a ,b ,c 的值;(2)若该校八年级有600名学生,请估计该校八年级学生成绩合格的人数;(3)从中位数和众数中任选其一,说明其在本题中的实际意义.23.如图,PO 平分APD ∠,PA 与O 相切于点A ,延长AO 交PD 于点C ,过点O 作OB PD ⊥,垂足为B .(1)求证:PB 是O 的切线;(2)若O 的半径为4,5OC =,求PA 的长.24.如图,ABC 是边长为4的等边三角形,点D ,E ,F 分别在边AB ,BC ,CA 上运动,满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x ,DEF 的面积为y ,求y 关于x 的函数解析式;(3)结合(2)所得的函数,描述DEF 的面积随AD 的增大如何变化.25.【综合与实践】有言道:“杆秤一头称起人间生计,一头称起天地良心”.某兴趣小组将利用物理学中杠杆原理制作简易杆秤.小组先设计方案,然后动手制作,再结合实际进行调试,请完成下列方案设计中的任务.【知识背景】如图,称重物时,移动秤砣可使杆秤平衡,根据杠杆原理推导得:()0()m m l M a y +⋅=⋅+.其中秤盘质量0m 克,重物质量m 克,秤砣质量M 克,秤纽与秤盘的水平距离为l 厘米,秤纽与零刻线的水平距离为a 厘米,秤砣与零刻线的水平距离为y 厘米.【方案设计】目标:设计简易杆秤.设定010m =,50M =,最大可称重物质量为1000克,零刻线与末刻线的距离定为50厘米.任务一:确定l 和a 的值.(1)当秤盘不放重物,秤砣在零刻线时,杆秤平衡,请列出关于l ,a 的方程;(2)当秤盘放入质量为1000克的重物,秤砣从零刻线移至末刻线时,杆秤平衡,请列出关于l ,a 的方程;(3)根据(1)和(2)所列方程,求出l 和a 的值.任务二:确定刻线的位置.(4)根据任务一,求y 关于m 的函数解析式;(5)从零刻线开始,每隔100克在秤杆上找到对应刻线,请写出相邻刻线间的距离.26.【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD 对折,使AD 与BC 重合,展平纸片,得到折痕EF ;折叠纸片,使点B 落在EF 上,并使折痕经过点A ,得到折痕AM ,点B ,E 的对应点分别为B ',E ',展平纸片,连接AB ',BB ',BE '.请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系....;(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片ABCD 的边AD 上的一点,连接BN ,在AB 上取一点P ,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ',P ',展平纸片,连接,P B ''.请完成:∠的一条三等分线.(3)证明BB'是NBC参考答案一、单项选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)【1题答案】【答案】C【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】A【10题答案】【答案】B【11题答案】【答案】B【12题答案】【答案】C二、填空题(本大题共6小题,每小题2分,共12分.)【13题答案】【答案】3【14题答案】【答案】a (a+5)【15题答案】【答案】1【16题答案】【答案】25##0.4【17题答案】【答案】21【18题答案】【答案】三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)【19题答案】【答案】6【20题答案】【答案】=1x -【21题答案】【答案】(1)图见详解(2)AB =【22题答案】【答案】(1)8a =,80%b =,7.5c =(2)510人(3)用中位数的特征可知七,八年级学生成绩的集中趋势,表示了七,八年级学生成绩数据的中等水平.【23题答案】【答案】(1)见解析(2)12AP =【24题答案】【答案】(1)见详解(2)24y x =-+(3)当24x <<时,DEF 的面积随AD 的增大而增大,当02x <<时,DEF 的面积随AD 的增大而减小【25题答案】【答案】(1)5l a=(2)1015250l a -=(3) 2.5,0.5l a ==(4)120y m =(5)相邻刻线间的距离为5厘米【26题答案】【答案】(1)123∠=∠=∠(2)见详解(3)见详解。
(精品中考卷)广西百色市中考数学真题(解析版)

2022年百色市初中学业水平考试试卷数学(考试用时:120分钟;满分:120分)注意事项:1.答题前,请认真阅读试卷和答题卡上的注意事项.2.本试卷分第1卷(选择题)和第I卷(非选择题)两部分,答第I卷时,用2B铅笔把答题卡上对应题目的答案标号涂黑;答第Ⅱ卷时,用直径0.5mm黑色子迹冬字笔将答案写在答题卡上,在本试卷上作答无效3.考试结束后,将本试卷和答题卡一并交回第I卷(选择题)一、选择題(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合要求的)1. ﹣2023的绝对值等于()A. ﹣2023B. 2023C. 土2023D. 2022 【答案】B【解析】【分析】利用绝对值的代数意义,正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数,据此直接计算即可.【详解】解:根据绝对值的定义可得-2023=2023;故选:B【点睛】本题考查绝对值的代数意义,掌握绝对值的意义是解题的关键.2. 35的倒数是( )A. 53B.35C.35- D.53【答案】A【解析】【分析】根据倒数的概念作答即可.【详解】35的倒数是53,故选:A.【点睛】本题考查了倒数的概念,即乘积为1的两个数互为倒数,熟练掌握知识点是解题3. 篮球裁判员通常用抛掷硬币的方式来确定哪一方先选场地,那么抛掷一枚均匀的硬币一次,正面朝上的概率是()A. 1B. 12C.14D.16【答案】B【解析】【分析】根据概率的公式计算即可.【详解】解:抛掷一枚均匀的硬币一次,可能出现两种可能的结果,正面朝上,反面朝上,∴正面朝上的概率为:1 2故选:B【点睛】本题是求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.4. 方程3x=2x+7的解是()A. x=4B. x=﹣4C. x=7D. x=﹣7 【答案】C【解析】【分析】先移项再合并同类项即可得结果;【详解】解:3x=2x+7移项得,3x-2x=7;合并同类项得,x=7;故选:C.【点睛】本题主要考查解一元一次方程,掌握一元一次方程的求解步骤是解题的关键.5. 下列几何体中,主视图为矩形的是()A. B. C. D.【解析】【分析】根据常见几何体的主视图,依次判断即可.【详解】A.该三棱锥的主视图为中间有条线段的三角形,故不符合题意;B.该圆锥的主视图为三角形,故不符合题意;C.该圆柱的主视图为矩形,故符合题意;D.该圆台的主视图为梯形,故不符合题意;故选:C.【点睛】本题考查常见几何体的三视图,掌握常见几何体的三视图是解答本题的关键.6. 已知△ABC与△A1B1C1是位似图形,位似比是1:3,则△ABC与△A1B1C1的面积比()A. 1:3B. 1:6C. 1:9D. 3:1 【答案】C【解析】【分析】根据位似图形的面积比等于位似比的平方,即可得到答案.【详解】∵△ABC与△A1B1C1是位似图形,位似比是1:3,∴△ABC与△A1B1C1的面积比为1:9,故选:C.【点睛】本题主要考查位似图形的性质,熟练掌握位似图形的面积比等于位似比的平方是解题的关键.7. 某班一合作学习小组有5人,某次数学测试成绩数据分别为65、78、86、91、85,则这组数据的中位数是()A. 78B. 85C. 86D. 91 【答案】B【解析】【分析】根据中位数的定义,找到这组数据的中位数即可.【详解】解:∵这组数据从小到大排列为:65、78、85、86、91,∴中位数为第三个数据85,故选∶B.【点睛】本题考查中位数的定义,中位数为一组数据从小到大(从大到小)排列,最中间的数,奇数个数据是最中间的一个数,偶数个数据是最中间两个数的平均数,掌握中位数的定义是解答本题的关键.8. 下列图形中,既是中心对称图形又是轴对称图形的是()A. 平行四边形B. 等腰梯形C. 正三角形D. 圆【答案】D【解析】【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.【详解】A.平行四边形是中心对称图形,不是轴对称图形,故本选项错误;B.等腰梯形不是中心对称图形,是轴对称图形,故本选项错误;C.正三角形不是中心对称图形,是轴对称图形,故本选项错误;D.圆是中心对称图形,也是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.9. 如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A. ∠B=45°B. AE=EBC. AC=BCD.AB⊥CD【答案】A【分析】根据中点的作图,可知CD垂直平分AB,再根据线段垂直平分线的性质进行作答即可.【详解】由题意得,CD垂直平分AB,∴==⊥,AE BE AC BC AB CD,,则B、C、D选项均成立,故选:A.【点睛】本题考查了线段中点作图及线段垂直平分线的性质,熟练掌握知识点是解题的关键.10. 如图,在△ABC中,点A(3,1),B(1,2),将△ABC向左平移2个单位,再向上平移1个单位,则点B的对应点B′的坐标为()A. (3,-3)B. (3,3)C. (-1,1)D. (-1,3)【答案】D【解析】【分析】根据图形的平移性质求解.【详解】解:根据图形平移的性质,B′(1-2,2+1),即B′(-1,3);【点睛】本题主要考查图形平移的点坐标求解,掌握图形平移的性质是解题的关键. 11. 如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A. 222()2a b a ab b +=++B. 222()2a b a ab b -=-+C. 22()()a b a b a b +-=-D. 222()ab a b =【答案】A【解析】 【分析】根据大正方形的面积=边长为a 的正方形的面积+两个长为a ,宽为b 的长方形的面积+边长为b 的正方形的面积,即可解答.【详解】根据题意得:(a +b )2=a 2+2ab +b 2,故选:A .【点睛】本题考查了完全平方公式的几何背景,用整体和部分两种方法表示面积是解题的关键.12. 活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等,如己知△ABC 中,∠A =30°, AC =3,∠A 有两个(我们发现其中如图的△ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A. B. 3- C. D.或3【答案】C【解析】【分析】分情况讨论,当△ABC 是一个直角三角形时,当△AB 1C 是一个钝角三角形时,根据含30°的直角三角形的性质及勾股定理求解即可.【详解】如图,当△ABC 是一个直角三角形时,即90C ∠=︒,30,A BC ∠=︒= ,2∴==AB BC如图,当△AB 1C 是一个钝角三角形时,过点C 作CD ⊥AB 1,90CDA CDB ∴∠=︒=∠,1CB CB = ,1BD B D ∴=,30,3A AC ∠=︒= ,1322CD AC ∴==,BC = ,1B D BD ∴===,1BB ∴=,11AB AB BB ∴=-=,综上,满足已知条件的三角形的第三边长为故选:C .【点睛】本题考查了根据已知条件作三角形,涉及含30°的直角三角形的性质及勾股定理,熟练掌握知识点是解题的关键.第 Ⅱ 卷(非选择题)二、填空题(本大题共6小题,每小题3分,共18分13. 负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走了5米,记作+5米,那么向西走5米,可记作______米.【答案】5-【解析】【分析】根据用正负数表示两种具有相反意义的量,如果向东走了5米,记作+5米,那么向西走5米,可记作5-米.【详解】解:∵向东走了5米,记作+5米,∴向西走5米,可记作5-米,故答案为:5-.【点睛】本题考查用正负数表示两种具有相反意义的量,熟练掌握用正负数表示两种具有相反意义的量是解答本题的关键.相反意义的量:按照指定方向的标准来划分,规定指定方向为正方向的数用正数表示,则向指定方向的相反的方向变化用负数表示,正与负是相对的.14. 因式分解:ax ay +=___________.【答案】()a x y +【解析】【分析】原式直接提取a 即可.【详解】解:ax ay +=()a x y +.故答案为:()a x y +.【点睛】本题主要考查了分解因式,正确确定公因式是解答本题的关键.15. 如图摆放一副三角板,直角顶点重合,直角边所在直线分别重合,那么∠BAC 的大小为______【答案】135°##135度【解析】【分析】根据三角板及其摆放位置可得180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒,求解即可.【详解】180,45BAO BAC OAC OAC ∠=︒=∠+∠∠=︒ ,18045135BAC ∴∠=︒-︒=︒,故答案为:135°.【点睛】本题考查了求一个角的补角,即两个角的和为180度时,这两个角互为补角,熟练掌握知识点是解题的关键.16. 数学兴趣小组通过测量旗杆的影长来求旗杆的高度,他们在某一时刻测得高为2米的标杆影长为1.2米,此时旗杆影长为7.2米,则旗杆的高度为______米.【答案】12【解析】【分析】根据同时、同地物高和影长的比不变,构造相似三角形,然后根据相似三角形的性质解答.【详解】解:设旗杆为AB ,如图所示:根据题意得:ABC DEF ∆∆ , ∴DE EF AB BC= ∵2DE =米, 1.2EF =米,7.2BC =米, ∴2 1.2=7.2AB 解得:AB =12米.故答案:12.【点睛】本题考查了中心投影、相似三角形性质的应用,解题时关键是找出相似的三角为形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.的17. 小韦同学周末红色之旅,坐爸爸的车去百色起义纪念馆,从家里行驶7千米后,进入高速公路,在高速公路上保持匀速行驶,小韦记录高速公路上行驶的时间(和路程)数据如下表,按照这个速度行驶了2小时进入高速路出口匝道,再行驶5千米抵达纪念馆,则小韦家到纪念馆的路程是______千米.t小时0.2 0.6 0.8s千米20 60 80【答案】212【解析】【分析】根据路程÷时间=速度,求出在高速公路上行驶的速度,再根据路程=速度×时间求出子高速公路行驶的路程,再和其它两段路程相加即可求解.【详解】解:在高速公路上行驶的速度为平均每小时:20÷0.2=100(千米)在高速公路上行驶的路程为:100×2=200(千米)所以小韦家到纪念馆的路程是:7+200+5=212(千米).【点睛】本题主要考查了根据题意求行程的问题,解题的关键是读懂题意,弄清速度,时间,路程三者之间的关系.18. 为落实立德树人,发展素质教育,加强美育,需要招聘两位艺术老师,从学历、笔试、上课和现场答辩四个项目进行测试,以最终得分择优录取,甲、乙、丙三位应聘者的测试成绩(10分制)如表所示,如果四项得分按照“1:1:1:1”比例确定每人的最终得分,丙得分最高,甲与乙得分相同,分不出谁将被淘汰;鉴于教师行业应在“上课“项目上权重大一些(其他项目比例相同),为此设计了新的计分比例,你认为三位应聘者中______(填:甲、乙或丙)将被淘汰.成绩应聘者甲乙丙学历9 8 9笔试8 7 9上课7 8 8现场答辩8 9 8【答案】甲【解析】【分析】设新的计分比例为1:1:x :1(x 1>),再分别计算出三人的总分进行比较即可得到结论.【详解】解:设新的计分比例为1:1:x :1(x 1>),则: 甲的得分为:11149878781+1+11+1+11+1+11+1+13x x x x x x ⨯+⨯+⨯+⨯=+<+++++(分); 乙的得分为:111878981+1+11+1+11+1+11+1+1x x x x x ⨯+⨯+⨯+⨯=++++(分); 丙的得分为:111299888+81+1+11+1+11+1+11+1+13x x x x x x ⨯+⨯+⨯+⨯=>+++++(分);所以,甲将被淘汰,故答案为:甲.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.三、解答题(本大題共8小题,共66分,解答应写出文字说明、证明过程戏演算步骤) 19. 计算:()023217+--【答案】7-【解析】【分析】根据有理数的乘方、零指数幂进行化简,再进行有理数的加减运算即可.【详解】原式9117=+- 7=-.【点睛】本题考查了有理数的混合运算,涉及有理数的乘方、零指数幂,熟练掌握运算法则是解题的关键.20. 解不等式2x +3≥-5,并把解集在数轴上表示出来.【答案】原不等式的解集为4x ≥-;见解析【解析】【分析】通过移项,合并同类项及不等式的两边同时除以2,进行求解并把解集在数轴上表示出来即可.【详解】移项,得253x ≥--,合并同类项,得28x ≥-,不等式的两边同时除以2,得4x ≥-,所以,原不等式的解集为4x ≥-.如图所示:.【点睛】本题考查了解一元一次不等式,及将解集在数轴上表示出来,熟练掌握解一元一次不等式的步骤是解题的关键.21. 已知:点 A (1,3)是反比例函数1k y x=(k ≠0)的图象与直线2y mx =( m ≠0)的一个交点.(1)求k 、m 的值:(2)在第一象限内,当21>y y 时,请直接写出x 的取值范围【答案】(1)3,3k m ==(2)1x >【解析】【分析】(1)把点A (1,3)分别代入1k y x =和2y mx =,求解即可; (2)直接根据图象作答即可.【小问1详解】点A (1,3)是反比例函数1k y x=(k ≠0)的图象与直线2y mx =(m ≠0)的一个交点, ∴把点A (1,3)分别代入1k y x =和2y mx =, 得3,311k m ==⨯, 3,3k m ∴==;【小问2详解】在第一象限内,21>y y ,∴由图像得1x >.【点睛】本题考查了待定系数法求反比例函数和正比例函数解析式,图象法解不等式,熟练掌握知识点并能够运用数形结合的思想是解题的关键.22. 校园内有一块四边形的草坪造型,课外活动小组实地测量,并记录数据,根据造型画如图的四边形ABCD ,其中 AB =CD =2米,AD =BC =3米,∠B =30°(1)求证:△ABC ≌△CDA ;(2)求草坪造型的面积.【答案】(1)见解析(2)草坪造型的面积为23m 【解析】分析】(1)根据“SSS ”直接证明三角形全等即可; (2)过点A 作AE ⊥BC 于点E ,利用含30°的直角三角形的性质求出AE 的长度,继而求出ABC 的面积,再由全等三角形面积相等得出32ABC CDA S S ==,即可求出草坪造型的面积.【小问1详解】在ABC 和CDA 中,AB CD AC CA BC AD =⎧⎪=⎨⎪=⎩, ()ABC CDA SSS ∴≅ ;【小问2详解】过点A 作AE ⊥BC 于点E ,90AEB ∴∠=︒,30,2m B AB ∠=︒= ,11m 2AE AB ∴==, 3m BC = ,【211331m 222ABC S BC AE ∴=⋅=⨯⨯= , ABC CDA ≅ , 23m 2ABC CDA S S ∴==, ∴草坪造型的面积23m ABC CDA S S =+= ,所以,草坪造型的面积为23m .【点睛】本题考查了全等三角形的判定和性质,含30°的直角三角形的性质,熟练掌握知识点是解题的关键.23. 学校举行“爱我中华,明诵经典”班级朗诵比赛,黄老师收集了所有参赛班级的成绩后,把成绩x (满分100分)分成四个等级(A :90≤x ≤100,B :80≤x <90,C :70≤x <80,D :60≤x <70)进行统计,并绘制成如下不完整的条形统计图和扇形统计图.根据信息作答:(1)参赛班级总数有 个;m =(2)补全条形统计图:(3)统计发现D 等级中七年级、八年级各有两个班,为了提高D 等级班级的朗诵水平,语文组老师计划从D 等级班级中任选两个班进行首轮培训,求选中两个班恰好是同一个年级的概率(用画树状图或列表法把所有可能结果表示出来).【答案】(1)40;30(2)见详解(3)13【解析】【分析】(1)结合条形统计图和扇形统计图信息即可求解;(2)根据(1)中数据补全条形统计图即可;(3)应用树状图或列表法求解概率即可;【小问1详解】解:参赛班级总数为:820%40÷=(个);成绩在C 等级的班级数量:()40816412-++=(个);12%100%30%40m =⨯=; 【小问2详解】根据(1)中数据补充条形统计图如下:【小问3详解】P (两个班恰好是同一个年级)=41123=. 【点睛】本题主要考查条形统计图和扇形统计图、应用树状图或列表法求概率,掌握相关知识并正确计算是解题的关键.24. 金鷹酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲,乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“縁色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度:据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时,若电费0.8元/度,请你估计该酒店毎天所有客房空调所用电费 W (单位:元)的范围?【答案】(1)甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务(2)9601344W ≤≤【解析】【分析】(1)设乙工程队每天安装x 台空调,则甲工程队每天安装(5)x +台空调,根据甲队的安装任务除以甲队的速度等于乙队的安装任务除以乙队的速度,可列分式方程,求解并检验即可;(2)设每天有m 间客房有旅客住宿,先根据题意表示出W ,再根据100140m ≤≤,即可确定W 的范围.【小问1详解】解:设乙工程队每天安装x 台空调,则甲工程队每天安装(5)x +台空调, 由题意得80140805x x-=+, 解得15x =,经检验,15x =是所列方程解,且符合题意,520x ∴+=(台), 所以,甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务;【小问2详解】解:设每天有m 间客房有旅客住宿,由题意得 1.580.89.6W m m =⨯⨯=,9.60> ,W ∴随m 的增大而增大,100140m ≤≤ ,∴当100m =时,960W =;当140m =时,1344W =;9601344W ∴≤≤.【点睛】本题考查了列分式方程解决实际问题,列函数解析式,不等式的应用,准确理解题意,熟练掌握知识点是解题的关键.25. 如图,AB 为圆的直径, C 是⊙O 上一点,过点C 的直线交AB 的延长线于点M .作AD ⊥MC ,垂足为D ,已知AC 平分∠MAD .的(1)求证:MC 是⊙O 的切线:(2)若 AB =BM =4,求 tan ∠MAC 的值【答案】(1)见解析(2 【解析】【分析】(1)连接,OC 得∠,OCA OAC =∠由AC 平分∠MAD 得∠,OAC DAC =∠可知∠,OCA DAC =∠故得,OC AD ∥由AD MC ⊥得,OC MC ⊥从而可得结论;(2)证明△~,MBC MCA ∆可求出MC =过点B 作,BN MC ⊥得△,MBN MOC ∆ 得2,3MB BN MN MO OC MC ===从而求出4,3BN NC ==进一步可求出tan tan BN MAC BCN NC ∠=∠=⋅ 【小问1详解】连接,OC 如图,∴,OC OA =∴∠,OCA OAC =∠∵AC 平分∠MAD ,∴∠,OAC DAC =∠∴∠,OCA DAC =∠∴AD //OC ,∴∠OCM =∠ADC ,∵AD MC ⊥,∴∠ADC =90°,∴∠OCM =90°,∴,OC MC ⊥∵OC 是⊙O 的半径,∴MC 是⊙O 的切线【小问2详解】∵,OC MC ⊥∴∠90,MCO ︒=∴∠90,BCM BCO ︒+∠=∵AB 是⊙O 的直径,∴∠90,ACB ︒=∵∠90,ACO BCO ︒+∠=∴∠,ACO BCM =∠∵∠,ACO OAC =∠∴∠OAC BCM =∠,又∠M M =∠,∴△~.MBC MCA ∆ ∴,MB MC MC AC= ∵4,AB BM == ∴18,2,2MA AB MB OC OB AB =+==== ∴4,8MC MC = ∴232,MC =∴MC = (负值舍去)过B 作BN MC ⊥于点.N∵,OC MC ⊥∴,BN OC ∥∴△,MBN MOC ∆ ∴,MB BN MN MO OC MC==∴4422BN ==+∴4,3BN MN ==∴NC MC MN =-=-=∴tan tan BN MAC BCN NC ∠=∠=== 【点睛】本题考查了切线的判定,半径所对的圆周角是直角,相似三角形的判定与性质,求锐角的正切值,正确作出辅助线是解答本题的关键.26. 已知抛物线经过A (-1,0)、B (0、3)、 C (3,0)三点,O 为坐标原点,抛物线交正方形OBDC 的边BD 于点E ,点M 为射线BD 上一动点,连接OM ,交BC 于点F(1)求抛物线的表达式;(2)求证:∠BOF =∠BDF :(3)是否存在点M 使△MDF 为等腰三角形?若不存在,请说明理由;若存在,求ME 的长【答案】(1)2y x 2x 3=-++(2)见解析(3)存在,2或2【解析】【分析】(1)设抛物线的表达式为2(0)y ax bx c a =++≠,将A (-1,0)、B (0、3)、C (3,0)代入,直接利用待定系数法求解即可;(2)由正方形的性质可得,BO BD OBC DBC =∠=∠,即可证明()OBF DBF SAS ≅ ,根据全等三角形的性质即可求证;(3)分别讨论:当点M 在线段BD 的延长线上时,当点M 在线段BD 上时,依次用代数法和几何法求解即可.【小问1详解】设抛物线的表达式为2(0)y ax bx c a =++≠,将A (-1,0)、B (0、3)、C (3,0)代入, 得03093a b c c a b c =-+⎧⎪=⎨⎪=++⎩,解得123a b c =-⎧⎪=⎨⎪=⎩,∴抛物线的表达式为2y x 2x 3=-++;【小问2详解】四边形OBDC 是正方形,,BO BD OBC DBC ∴=∠=∠,BF BF = ,()OBF DBF SAS ∴≅ ,BOF BDF ∴∠=∠;【小问3详解】存在,理由如下:当点M 在线段BD 的延长线上时,此时90FDM ∠>︒, ∴ DF DM =,设(,3)M m ,设直线OM 的解析式为(0)y kx k =≠,3km ∴=, 解得3k m=, ∴直线OM 的解析式为3y x m =, 设直线BC 的解析式为11(0)y k x b k =+≠,把B (0、3)、 C (3,0)代入,得1303b k b =⎧⎨=+⎩, 解得131b k =⎧⎨=-⎩, ∴直线BC 的解析式为3y x =-+, 令33x x m =-+,解得33m x m =+,则93y m =+, 39(,)33m F m m ∴++, 四边形OBDC 是正方形,3BO BD OC CD ∴====,(3,3)D \,222222239981(3)(3,(3)33(3)m m DF DM m m m m +∴=-+-==-+++, 222981(3)(3)m m m +∴=-+, 222981(9)m m ∴+=-,解得0m =或m =m =-点M 射线BD 上一动点,0m ∴>,m ∴=BM ∴=,当2323y x x ==-++时,解得0x =或2x =,2BE ∴=,2ME BM BE ∴=-=.当点M 在线段BD 上时,此时,90DMF ∠>︒,MF DM ∴=,MFD MDF ∴∠=∠,2BMO MFD MDF MDF ∴∠=∠+∠=∠,由(2)得BOF BDF ∠=∠,四边形OBDC 是正方形,90OBD ∴∠=︒,90BOM BMO ∴∠+∠=︒,390BOM ∴∠=︒,为30∴∠=︒,BOMOB=,3∴=∠⋅==,tan3BM BOM OB==,BE BD2,3∴,DE=1∴=--=-=-;312ME BD BM DE-或2.综上,ME的长为2【点睛】本题考查了待定系数法求二次函数解析式,求一次函数解析式,正方形的性质,全等三角形的判定和性质,解直角三角形等,熟练掌握知识点是解题的关键。
初中数学广西百色市中考模拟数学考试题考试卷及答案Word

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:化简得()A.100 B.10 C.D.±10试题2:下列图形中,是中心对称图形的是()A.B.C.D.试题3:如图,已知AB∥CD,∠1=62°,则∠2的度数是()A.28°B.62°C.108°D.118°试题4:在3月份,某县某一周七天的最高气温(单位:℃)分别为:12,9,10,6,11,12,17,则这组数据的极差是()评卷人得分A.6 B.11 C.12 D.17试题5:下列式子正确的是()A.(a﹣b)2=a2﹣2ab+b2B.(a﹣b)2=a2﹣b2C.(a﹣b)2=a2+2ab+b2D.(a﹣b)2=a2﹣ab+b2试题6:下列几何体中,同一个几何体的主视图与俯视图不同的是()A.圆柱B.正方体C.圆锥D.球试题7:已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为()A.2 B.0 C.0或2 D.0或﹣2试题8:下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2试题9:某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,20试题10:从一栋二层楼的楼顶点A处看对面的教学楼,探测器显示,看到教学楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的水平距离为6米,则教学楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米试题11:在下列叙述中:①一组对边相等的四边形是平行四边形;②函数y=中,y随x的增大而减小;③有一组邻边相等的平行四边形是菱形;④有不可能事件A发生的概率为0.0001.正确的叙述有()A.0个B.1个C.2个D.3个试题12:已知点A的坐标为(2,0),点P在直线y=x上运动,当以点P为圆心,PA的长为半径的圆的面积最小时,点P的坐标为()A.(1,﹣1)B.(0,0)C.(1,1)D.(,)试题13:计算:2000﹣2015= .试题14:已知甲、乙两组抽样数据的方差:S=95.43,S=5.32,可估计总体数据比较稳定的是组数据.试题15:如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= °.试题16:方程组的解为.试题17:如图,在△ABC中,AC=BC,∠B=70°,分别以点A、C为圆心,大于AC的长为半径作弧,两弧相交于点M、N,作直线MN,分别交AC、BC于点D、E,连结AE,则∠AED的度数是°.试题18:观察以下等式:32﹣12=8,52﹣12=24,72﹣12=48,92﹣12=80,…由以上规律可以得出第n个等式为= .试题19:计算:(π﹣3.14)0+(﹣1)2015+|1﹣|﹣3tan30°.试题20:当a=2014时,求÷(a+)的值.试题21:如图,在边为的1正方形组成的网格中,建立平面直角坐标系,若A(﹣4,2)、B(﹣2,3)、C(﹣1,1),将△ABC 沿着x轴翻折后,得到△DEF,点B的对称点是点E,求过点E的反比例函数解析式,并写出第三象限内该反比例函数图象所经过的所有格点的坐标.试题22:如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.试题23:学习委员统计全班50位同学对语文、数学、英语、体育、音乐五个科目最喜欢情况,所得数据用表格与条形图描述如下:科目语文数学英语体育音乐人数10 a 15 3 2(1)表格中a的值为20 ;(2)补全条形图;(3)小李是最喜欢体育之一,小张是最喜欢音乐之一,计划从最喜欢体育、音乐的人中,每科目各选1人参加学校训练,用列表或树形图表示所有结果,并求小李、小张至少有1人被选上的概率是多少?试题24:有2条生产线计划在一个月(30天)内组装520台产品(每天产品的产量相同),按原先的组装速度,不能完成任务;若加班生产,每条生产线每天多组装2台产品,能提前完成任务.(1)每条生产线原先每天最多能组装多少台产品?(2)要按计划完成任务,策略一:增添1条生产线,共要多投资19000元;策略二:按每天能组装最多台数加班生产,每条生产线每天共要多花费350元;选哪一个策略较省费用?试题25:如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.试题26:已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q 两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).试题1答案:B试题2答案:C试题3答案:B试题4答案:B.试题5答案:A试题6答案:C试题7答案:A试题8答案:D试题9答案:B试题10答案:A.试题11答案:C试题12答案:C.试题13答案:﹣15.试题14答案:乙试题15答案:25°试题16答案:试题17答案:50.试题18答案:(2n+1)2﹣(2n﹣1)2=8n.试题19答案:解:原式=1﹣1+﹣1﹣3×=1﹣1+﹣1﹣=﹣1.试题20答案:解:原式=÷=•=,当a=2014时,原式==.试题21答案:解:∵点B关于x轴的对称点是点E,B(﹣2,3),∴点E坐标为(﹣2,﹣3),设过点E的反比例函数解析式为y=,∴k=6,∴过点E的反比例函数解析式为y=,∴第三象限内该反比例函数图象所经过的所有格点的坐标为(﹣1,﹣6),(﹣2,﹣3),(﹣3,﹣2),(﹣6,﹣1).试题22答案::(1)证明:∵DE∥BF,∴∠E=∠F,在△AED和△CFB中,,∴△AED≌△CFB(AAS);(2)解:四边形ABCD是矩形.理由如下:∵△AED≌△CFB,∴AD=BC,∠DAE=∠BCF,∴∠DAC=∠BCA,∴AD∥BC,∴四边形ABCD是平行四边形,又∵AD⊥CD,∴四边形ABCD是矩形.试题23答案:20.试题24答案::解:(1)每条生产线原先每天最多能组装x台产品,根据题意可得,解得:15<x<17,∵x的值应是整数,∴x最大为17.答:每条生产线原先每天最多能组装17台产品.(2)策略一:增添1条生产线,共要多投资19000元;策略二:520÷19×350×2≈28×350×2=19600元;所以策略一较省费用.试题25答案::(1)解:∵点E、F分别是BC、CD的中点,∴EC=DF=×4=2,由勾股定理得,DE==2,∵点F是CD的中点,点N为DE的中点,∴DN=DE=×2=,NF=EC=×2=1,∴△DNF的周长=1++2=3+;在Rt△ADF中,由勾股定理得,AF===2,所以,sin∠DAF===;(2)证明:在△ADF和△DCE中,,∴△ADF≌△DCE(SAS),∴AF=DE,∠DAF=∠CDE,∵∠DAF+∠AFD=90°,∴∠CDE+∠AFD=90°,∴AF⊥DE,∵点E、F分别是BC、CD的中点,∴NF是△CDE的中位线,∴DF=EC=2NF,∵cos∠DAF==,cos∠CDE==,∴=,∴2AD•NF=DE•DM.试题26答案:解:(1)如图1,∵⊙M与OP相切于点P,∴MP⊥OP,即∠MPO=90°.∵点M(0,4)即OM=4,MP=2,∴OP=2.∵⊙M与OP相切于点P,⊙M与OQ相切于点Q,∴OQ=OP,∠POK=∠QOK.∴OK⊥PQ,QK=PK.∴PK===.∴OK==3.∴点P的坐标为(,3).(2)如图2,设顶点为(0,6)的抛物线的解析式为y=ax2+6,∵点P(,3)在抛物线y=ax2+6上,∴3a+6=3.解得:a=﹣1.则该抛物线的解析式为y=﹣x2+6.(3)当直线y=m与⊙M相切时,则有=2.解得;m1=2,m2=6.①m=2时,如图3,则有OH=2.当y=2时,解方程﹣x2+6=2得:x=±2,则点C(2,2),D(﹣2,2),CD=4.同理可得:AB=2.则S梯形ABCD=(DC+AB)•OH=(4+2)×2=4+2.②m=6时,如图4,此时点C、点D与点N重合.S△ABC=AB•OC=×2×6=6.综上所述:点A、B、C、D围成的多边形的面积为4+2或6.。
广西百色市中考数学试卷

广西百色市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共计30分) (共10题;共30分)1. (3分)(2016·深圳模拟) 计算|﹣2|的结果是()A . 2B .C . ﹣D . ﹣22. (3分)下列计算中,正确的是A .B .C .D .3. (3分)(2017·平房模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (3分)如图,一个由5个大小相同、棱长为1的正方体搭成的几何体,下列关于这个几何体的说法正确的是()A . 主视图的面积为5B . 左视图的面积为3C . 俯视图的面积为5D . 俯视图的面积为35. (3分)如图,在△ABC中,AB=3,AC=2.当∠B最大时,BC的长是()A . 1B .C .D . 56. (3分)与抛物线y=x2-4x-2关于x轴对称的图象表示为()A . y=-x2+4x-10B . y=x2+4x-2C . y=x2-4x+2D . y=ax2-4x-27. (3分) (2019九上·南山期末) 某县为做大旅游产业,在2015年投入资金3.2亿元,预计2017年投入资金6亿元,设旅游产业投资的年平均增长率为x,则可列方程为()A . 3.2+x=6B . 3.2x=6C . 3.2(1+x)=6D . 3.2(1+x)2=68. (3分)方程的解是()A . x=﹣1B . x=0C . x=1D . x=29. (3分)(2011·玉林) 如图,是反比例函数y= 和y= (k1<k2)在第一象限的图象,直线AB∥x 轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k2﹣k1的值是()A . 1B . 2C . 4D . 810. (3分)如图,⊙O的直径AB=6,点C为⊙0外一点,CA、CB分别交⊙O于E、F,cos∠C=,则EF的长为()A . 3B . 2C . 1.5D . 4二、填空题(每小题3分,共计30分) (共10题;共30分)11. (3分)(2017·萍乡模拟) 餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为________.12. (3分)函数y=中,自变量x的取值范围是________13. (3分)(2018·惠山模拟) 因式分解:a3-4a=________.14. (3分)(2018·道外模拟) 不等式组的解集为________.15. (3分)(2017·广州) 当x=________时,二次函数y=x2﹣2x+6有最小值________.16. (3分)(2018·溧水模拟) 如图,已知直角三角形ABC中,∠C=90°,将△ABC绕点A逆时针旋转至△AED,使点C的对应点D恰好落在边AB上,E为点B的对应点.设∠BAC=α,则∠BED=________.(用含α的代数式表示)17. (3分)(2018·秀洲模拟) 如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.18. (3分) (2019九下·江苏月考) 如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35º,则∠DBC=________.19. (3分) (2016九上·重庆期中) 从﹣2,﹣,,1,3五个数中任选1个数,记为a,它的倒数记为b,将a,b代入不等式组中,能使不等式组至少有两个整数解的概率是________.20. (3分)如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC 的中点,联结FB,那么tan∠FBC的值为________三、解答题(其中21~22题各7分,23-24题各8分,25~2 (共7题;共60分)21. (7分)(2017·青浦模拟) 计算:20170+()﹣1+6cos30°﹣|2﹣ |.22. (7.0分) (2016八上·重庆期中) 已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)23. (8.0分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:(1)补全条形统计图;(2)求扇形统计图扇形D的圆心角的度数;(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?24. (8分) (2017八下·汇川期中) 如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.(1)试判断四边形OCED的形状,并说明理由;(2)若AB=6,BC=8,求四边形OCED的面积.25. (10分) (2017七下·汶上期末) 某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.26. (10.0分)(2017·开江模拟) 如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D 作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.(1)求证:DF是⊙O的切线;(2)求证:OC2=OE•OP;(3)求线段EG的长.27. (10.0分)(2011·绍兴) 抛物线y=﹣(x﹣1)2+3与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.(1)如图1.求点A的坐标及线段OC的长;(2)点P在抛物线上,直线PQ∥BC交x轴于点Q,连接BQ.①若含45°角的直角三角板如图2所示放置.其中,一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上.求直线BQ的函数解析式;②若含30°角的直角三角板一个顶点与点C重合,直角顶点D在直线BQ上,另一个顶点E在PQ上,求点P 的坐标.参考答案一、选择题(每小题3分,共计30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每小题3分,共计30分) (共10题;共30分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题(其中21~22题各7分,23-24题各8分,25~2 (共7题;共60分)21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、。
初中数学广西百色市中考模拟数学考试卷及答案解析(word版)
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:三角形的内角和等于()A.90° B.180° C.300° D.360°试题2:计算:23=()A.5 B.6 C.8 D.9试题3:如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∠1=∠6 B.∠2=∠6 C.∠1=∠3 D.∠5=∠7试题4:在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A.B.C.D.评卷人得分试题5:今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A.3.89×102B.389×102C.3.89×104D.3.89×105试题6:如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12试题7:分解因式:16﹣x2=()A.(4﹣x)(4+x) B.(x﹣4)(x+4) C.(8+x)(8﹣x) D.(4﹣x)2试题8:下列关系式正确的是()A.35.5°=35°5′ B.35.5°=35°50′ C.35.5°<35°5′ D.35.5°>35°5′试题9:为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)0 1 2 3 4人数(单位:人) 1 4 6 2 2A.中位数是2 B.平均数是2 C.众数是2 D.极差是2试题10:直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤0试题11:A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=30试题12:如图,正△ABC的边长为2,过点B的直线l⊥AB,且△ABC与△A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD 的最小值是()A.4 B.3C.2D.2+试题13:的倒数是.试题14:若点A(x,2)在第二象限,则x的取值范围是.试题15:如图,⊙O的直径AB过弦CD的中点E,若∠C=25°,则∠D= .试题16:某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.试题17:一组数据2,4,a,7,7的平均数=5,则方差S2= .试题18:观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)= .试题19:计算:+2sin60°+|3﹣|﹣(﹣π)0.试题20:解方程组:.试题21:△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.试题22:已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.试题23:.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<7 2二7≤m<8 7三8≤m<9 a四9≤m≤10 2(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).试题24:在直角墙角AOB(OA⊥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?试题25:如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.试题26:正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.试题1答案:B【考点】三角形内角和定理.【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题【解答】解:因为三角形的内角和为180度.所以B正确.故选B.试题2答案:C【考点】有理数的乘方.【分析】根据立方的计算法则计算即可求解.【解答】解:23=8.故选:C.试题3答案:B【考点】平行线的判定.【分析】利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a∥b(同位角相等,两直线平行),则能使a∥b的条件是∠2=∠6,故选B试题4答案:C【考点】概率公式.【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【解答】解:∵共有5个球,其中红球有3个,∴P(摸到红球)=,故选C.试题5答案:C【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将38900用科学记数法表示为3.89×104.故选C.试题6答案:A【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.试题7答案:A【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案.【解答】解:16﹣x2=(4﹣x)(4+x).故选:A.试题8答案:D【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:A、35.5°=35°30′,35°30′>35°5′,故A错误;B、35.5°=35°30′,35°30′<35°50′,故B错误;C、35.5°=35°30′,35°30′>35°5′,故C错误;D、35.5°=35°30′,35°30′>35°5′,故D正确;故选:D.试题9答案:D【考点】极差;加权平均数;中位数;众数.【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A、B、C正确,D错误.故选D.试题10答案:A【考点】一次函数与一元一次不等式.【分析】首先把点A(2,1)代入y=kx+3中,可得k的值,再解不等式kx+3≥0即可.【解答】解:∵y=kx+3经过点A(2,1),∴1=2k+3,解得:k=﹣1,∴一次函数解析式为:y=﹣x+3,﹣x+3≥0,解得:x≤3.故选A.试题11答案:B【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得,﹣=.故选B.试题12答案:C【考点】轴对称-最短路线问题;等边三角形的性质.【分析】连接CC′,连接A′C交y轴于点D,连接AD,此时AD+CD的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C的长度,从而得出结论.【解答】解:连接CC′,连接A′C交l于点D,连接AD,此时AD+CD的值最小,如图所示.∵△ABC与△A′BC′为正三角形,且△ABC与△A′BC′关于直线l对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°,∴A′C=2×A′B=2.故选C.试题13答案:3 .【考点】倒数.【分析】直接根据倒数的定义进行解答即可.【解答】解:∵×3=1,∴的倒数是3.故答案为:3.试题14答案:x<0 .【考点】点的坐标.【分析】根据第二象限内点的横坐标小于零,可得答案.【解答】解:由点A(x,2)在第二象限,得x<0,故答案为:x<0.试题15答案:65°.【考点】圆周角定理.【分析】先根据圆周角定理求出∠A的度数,再由垂径定理求出∠AED的度数,进而可得出结论.【解答】解:∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°﹣25°=65°.故答案为:65°.试题16答案:5 .【考点】由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故答案为:5.试题17答案:3.6 .【考点】方差;算术平均数.【分析】根据平均数的计算公式:=,先求出a的值,再代入方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2]进行计算即可.【解答】解:∵数据2,4,a,7,7的平均数=5,∴2+4+a+7+7=25,解得a=5,∴方差s2=[(2﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(7﹣5)2]=3.6;故答案为:3.6.试题18答案:a2017﹣b2017.【考点】平方差公式;多项式乘多项式.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017试题19答案:【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及二次根式化简、特殊角的三角函数值、绝对值、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+2sin60°+|3﹣|﹣(﹣π)0=3+2×+3﹣﹣1=3++3﹣﹣1=5.试题20答案:【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.试题21答案:【考点】待定系数法求反比例函数解析式;坐标与图形变化-旋转.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∴k=3×1=3,∴过点B′的反比例函数解析式为y=.(2)∵C(﹣1,2),∴OC==,∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,∴OC′=OC=,∴CC′==.试题22答案:【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,证出∠AFB=∠1,由AAS证明△ABF ≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)解:由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.试题23答案:【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)根基被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.试题24答案:【考点】一元二次方程的应用.【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;(2)分别计算出每一规格的地板砖所需的费用,然后比较即可.【解答】(1)设这地面矩形的长是xm,则依题意得:x(20﹣x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).因为8250<7680,所以采用规格为1.00×1.00所需的费用较少.试题25答案:【考点】切线的性质.【分析】(1)由AB为⊙O的直径,AC为⊙O的切线,易证得∠CAD=∠BDO,继而证得结论;(2)由(1)易证得△CAD∽△CDE,然后由相似三角形的对应边成比例,求得CD的长,再利用勾股定理,求得答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.试题26答案:【考点】二次函数综合题.【分析】(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O、P、A三点的坐标;②设抛物线L的解析式为y=ax2+bx+c,结合点O、P、A的坐标利用待定系数法即可求出抛物线的解析式;(2)由点E为正方形内的抛物线上的动点,设出点E的坐标,结合三角形的面积公式找出S△OAE+S OCE关于m的函数解析式,根据二次函数的性质即可得出结论.【解答】解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∵正方形OABC的边长为4,对角线相交于点P,∴点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∵抛物线L经过O、P、A三点,∴有,解得:,∴抛物线L的解析式为y=﹣+2x.(2)∵点E是正方形内的抛物线上的动点,∴设点E的坐标为(m,﹣+2m)(0<m<4),∴S△OAE+S OCE=OA•y E+OC•x E=﹣m2+4m+2m=﹣(m﹣3)2+9,∴当m=3时,△OAE与△OCE面积之和最大,最大值为9.。
广西桂林市2021年中考数学试题真题(Word版,含答案与解析)
广西桂林市2021年中考数学试卷一、单选题1.(2021·桂林)有理数3,1,﹣2,4中,小于0的数是()A. 3B. 1C. ﹣2D. 4【答案】C【考点】有理数大小比较【解析】【解答】解:∵4>3>1>0,-2 <0,∴小于0的数是-2.故答案为:C.【分析】把这组数按分别跟零比较即可解答.2.(2021·桂林)如图,直线a,b相交于点O,∠1=110°,则∠2的度数是()A. 70°B. 90°C. 110°D. 130°【答案】C【考点】对顶角及其性质【解析】【解答】∵直线a,b相交于点O,∠1=110°,∴∠2=∠1=110°故答案为:C.【分析】根据对顶角相等的性质即可解答.3.(2021·桂林)下列图形中,是轴对称图形的是()A. B. C. D.【答案】B【考点】轴对称图形【解析】【解答】解:A.不是轴对称图形,不符合题意;B.是轴对称图形,符合题意;C.不是轴对称图形,不符合题意;D.不是轴对称图形,不符合题意.故答案为:B.【分析】根据轴对称图形特点分别分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,关键是找到对称轴.4.(2021·桂林)某班5名同学参加学校“感党恩,跟党走”主题演讲比赛,他们的成绩(单位:分)分别是8,6,8,7,9,这组数据的中位数是()A. 6B. 7C. 8D. 9【答案】C【考点】中位数【解析】【解答】把数据排列为6,7,8,8,9故中位数是8故答案为:C.【分析】先把这5名同学的成绩从小到大排列,然后根据中位数的定义计算即可.5.(2021·桂林)若分式x−2x+3的值等于0,则x的值是()A. 2B. ﹣2C. 3D. ﹣3【答案】A【考点】分式的值为零的条件【解析】【解答】由题意可得:x−2=0且x+3≠0,解得x=2,x≠−3.故答案为:A.【分析】分式的值等于零的条件是,分子等于0,分母不等于0,据此列式求解即可.6.(2021·桂林)细菌的个体十分微小,大约10亿个细菌堆积起来才有一颗小米粒那么大.某种细菌的直径是0.0000025米,用科学记数法表示这种细菌的直径是()A. 25×10﹣5米B. 25×10﹣6米C. 2.5×10﹣5米D. 2.5×10﹣6米【答案】 D【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10-6.故答案为:D.【分析】用科学记数法表示绝对值小于1的数,一般表示为a×10-n的形式,其中1≤|a|<10,n等于从小数点开始数,一直数到第一个不为零为止时的位数.7.(2021·桂林)将不等式组{x>−2x≤3的解集在数轴上表示出来,正确的是()A.B.C.D.【答案】B【考点】在数轴上表示不等式组的解集【解析】【解答】不等式组{x>−2x≤3的解集在数轴上表示出来为故答案为:B.【分析】先分别在数轴上表示出x>-2和x≤3的范围,然后找出它们的公共部分并表示出来即可. 8.(2021·桂林)若点A(1,3)在反比例函数y =kx的图象上,则k的值是()A. 1B. 2C. 3D. 4【答案】C【考点】待定系数法求反比例函数解析式【解析】【解答】解:把(1,3)代入反比例函数y=kx得:k1=3,解得:k=3,故答案为:C.【分析】利用待定系数法求反比例函数k即可.9.(2021·桂林)如图,AB是⊙O的直径,点C是⊙O上一点,连接AC,BC,则∠C的度数是()A. 60°B. 90°C. 120°D. 150°【答案】 B【考点】圆周角定理【解析】【解答】解:∵AB 是⊙O 的直径,点C 是⊙O 上一点,∴∠C=90°故答案为:B【分析】根据圆周角的定理解答,由圆周角的定理可得直径所对的圆周角为直角.10.(2021·桂林)下列根式中,是最简二次根式的是( )A. √19B. √4C. √a 2D. √a +b 【答案】 D【考点】最简二次根式【解析】【解答】A 、 √19 被开方数不是整数,不是最简二次根式,故本选项不符合题意; B 、 √4=2 是有理数,不是最简二次根式,故本选项不符合题意;C 、 √a 2=|a | ,不是最简二次根式,故本选项不符合题意;D 、符合最简二次根式的定义,是最简二次根式,故本选项正确.故答案为:D.【分析】最简二次根式就是被开方数不含分母,并且不含有开方开的尽的因数或因式的二次根式,根据以上条件分别判断即可.11.(2021·桂林)如图,在平面直角坐标系内有一点P (3,4),连接OP ,则OP 与x 轴正方向所夹锐角α的正弦值是( )A. 34B. 43C. 35D. 45【答案】 D【考点】点的坐标,勾股定理,锐角三角函数的定义【解析】【解答】解:作PM ⊥x 轴于点M ,∵P (3,4),∴PM=4,OM=3,由勾股定理得:OP=5,∴sinα=PMOP =45,故答案为:D【分析】作PM⊥x轴于点M,根据勾股定理求出OP,然后根据正弦三角函数定义计算即可.12.(2021·桂林)为执行国家药品降价政策,给人民群众带来实惠,某药品经过两次降价,每盒零售价由16元降为9元,设平均每次降价的百分率是x,则根据题意,下列方程正确的是()A. 16(1﹣x)2=9B. 9(1+x)2=16C. 16(1﹣2x)=9D. 9(1+2x)=16【答案】A【考点】一元二次方程的实际应用-百分率问题【解析】【解答】解:依题意得:16(1-x)2=9.故答案为:A.【分析】设平均每次降价的百分率是x,经过一次降价为16(1-x),经过两次降价为16(1-x)2,结合每盒零售价降为9元列方程即可.二、填空题13.(2021·桂林)计算:3×(−2)=________.【答案】-6【考点】有理数的乘法【解析】【解答】解:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.3×(−2)=-6.【分析】根据有理数的乘法法则计算即可.14.(2021·桂林)如图,直线a,b被直线c所截,当∠1 ________∠2时,a//b.(用“>”,“<”或“=”填空)【答案】=【考点】平行线的判定【解析】【解答】解:∵直线a,b被直线c所截,∠1与∠2是同位角,∴当∠1 =∠2,a//b.故答案为=.【分析】根据同位角相等两直线平行即可解答.15.(2020八下·潮阳期末)如图,在△ABC中,D、E分别是AB、AC的中点,若DE=4,则BC是________.【答案】8【考点】三角形的中位线定理【解析】【解答】解:∵D、E分别是AB和AC上的中点,∴BC=2DE=8,故答案为8.【分析】根据中点求出BC=2DE=8,进行作答即可。
2020年广西桂林市中考数学试卷 (word版,含答案)
2020年广西桂林市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.有理数2,1,﹣1,0中,最小的数是()A.2B.1C.﹣1D.02.如图,直线a,b被直线c所截,a∥b,∠1=50°,则∠2的度数是()A.40°B.50°C.60°D.70°3.下列调查中,最适宜采用全面调查(普查)的是()A.调查一批灯泡的使用寿命B.调查漓江流域水质情况C.调查桂林电视台某栏目的收视率D.调查全班同学的身高4.下面四个几何体中,左视图为圆的是()A.B.C.D.5.若=0,则x的值是()A.﹣1B.0C.1D.26.因式分解a2﹣4的结果是()A.(a+2)(a﹣2)B.(a﹣2)2C.(a+2)2D.a(a﹣2)7.(3分)下列计算正确的是()A.x•x=2x B.x+x=2x C.(x3)3=x6D.(2x)2=2x2 8.直线y=kx+2过点(﹣1,4),则k的值是()A.﹣2B.﹣1C.1D.29.不等式组的整数解共有()A.1个B.2个C.3个D.4个10.如图,AB是⊙O的弦,AC与⊙O相切于点A,连接OA,OB,若∠O=130°,则∠BAC 的度数是()A.60°B.65°C.70°D.75°11.参加足球联赛的每两支球队之间都要进行两场比赛,共要比赛110场,设参加比赛的球队有x支,根据题意,下面列出的方程正确的是()A.x(x+1)=110B.x(x﹣1)=110C.x(x+1)=110D.x(x﹣1)=11012.如图,已知的半径为5,所对的弦AB长为8,点P是的中点,将绕点A逆时针旋转90°后得到,则在该旋转过程中,点P的运动路径长是()A.πB.πC.2πD.2π二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上)13.2020的相反数是.14.计算:ab•(a+1)=.15.如图,在Rt△ABC中,∠C=90°,AB=13,AC=5,则cos A的值是.16.一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.17.反比例函数y=(x<0)的图象如图所示,下列关于该函数图象的四个结论:①k>0;②当x<0时,y随x的增大而增大;③该函数图象关于直线y=﹣x对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有个.18.如图,在Rt△ABC中,AB=AC=4,点E,F分别是AB,AC的中点,点P是扇形AEF 的上任意一点,连接BP,CP,则BP+CP的最小值是.三、解答题(本大题共8小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.20.(6分)解二元一次方程组:.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别是A(1,3),B(4,4),C(2,1).(1)把△ABC向左平移4个单位后得到对应的△A1B1C1,请画出平移后的△A1B1C1;(2)把△ABC绕原点O旋转180°后得到对应的△A2B2C2,请画出旋转后的△A2B2C2;(3)观察图形可知,△A1B1C1与△A2B2C2关于点(,)中心对称.22.(8分)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.23.(8分)如图,在菱形ABCD中,点E,F分别是边AD,AB的中点.(1)求证:△ABE≌△ADF;(2)若BE=,∠C=60°,求菱形ABCD的面积.24.(8分)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.(1)求每副围棋和象棋各是多少元?(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?25.(10分)如图,将一副斜边相等的直角三角板按斜边重合摆放在同一平面内,其中∠CAB =30°,∠DAB=45°,点O为斜边AB的中点,连接CD交AB于点E.(1)求证:A,B,C,D四个点在以点O为圆心的同一个圆上;(2)求证:CD平分∠ACB;(3)过点D作DF∥BC交AB于点F,求证:BO2+OF2=EF•BF.26.(12分)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A和点B (点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;(3)点P是抛物线上的动点,连接PC,PE,将△PCE沿CE所在的直线对折,点P落在坐标平面内的点P′处.求当点P′恰好落在直线AD上时点P的横坐标.参考答案一、CBDDC ABACB DB二、13.﹣202014.a2b+ab15.16.17.318.三、19.解:原式=1+4+﹣=5.20.解:①+②得:6x=6,解得:x=1,把x=1代入①得:y=﹣1,则方程组的解为.21.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)﹣2,0.22.解:(1)由材料1中的统计图可得:2018年,全国快递业务量是507.1亿件,比2017年增长了26.6%;(2)由材料1中的统计图可得:2015﹣2019年,全国快递业务量增长速度的中位数是28%;(3)不赞同,理由:由图1中的信息可得,2016﹣2019年全国快递业务量增长速度逐年放缓,但是快递业务量却逐年增加;(4)635.2×(1+50%)=852.82,答:2020年的快递业务量为852.82亿件.23.(1)证明:∵四边形ABCD是菱形,∴AB=AD,∵点E,F分别是边AD,AB的中点,∴AF=AE,在△ABE和△ADF中,,∴△ABE≌△ADF(SAS);(2)解:连接BD,如图:∵四边形ABCD是菱形,∴AB=AD,∠A=∠C=60°,∴△ABD是等边三角形,∵点E是边AD的中点,∴BE⊥AD,∴∠ABE=30°,∴AE=BE=1,AB=2AE=2,∴AD=AB=2,∴菱形ABCD的面积=AD×BE=2×=2.24.解:(1)设每副围棋x元,则每副象棋(x﹣8)元,根据题意,得=.解得x=18.经检验x=18是所列方程的根.所以x﹣8=10.答:每副围棋18元,则每副象棋10元;(2)设购买围棋m副,则购买象棋(40﹣m)副,根据题意,得18m+10(40﹣m)≤600.解得m≤25.故m最大值是25.答:该校最多可再购买25副围棋.25.证明:(1)如图,连接OD,OC,在Rt△ABC中,∠ACB=90°,点O是AB的中点,∴OC=OA=OB,在Rt△ABD中,∠ADB=90°,点O是AB的中点,∴OD=OA=OB,∴OA=OB=OC=OD,∴A,B,C,D四个点在以点O为圆心的同一个圆上;(2)连接OC,OD,由(1)知,OA=OC=OD,∴∠OCD=∠ODC,在Rt△ABC中,∠BAC=30°,∴∠ABC=∠BOC=60°,在Rt△ABD中,∠DAB=45°,∴∠ABD=45°=∠DAB,∴AD=BD,∵点O是AB的中点,∴OD⊥AB,∴∠BOD=90°,∠ODB=∠ADB=45°,∴∠COD=150°,∴∠OCD=∠ODC=15°,∴∠BDC=∠ODB﹣∠ODC=30°,∵∠CBD=∠ABC+∠ABD=105°,∴∠BCD=180°﹣∠CBD﹣∠BDC=45°,∴∠ACD=90°﹣∠BCD=45°=∠BCD,∴CD平分∠ACB;(3)由(2)知,∠BCD=45°,∵∠ABC=60°,∴∠BEC=75°,∴∠AED=75°,∵DF∥BC,∴∠BFD=∠ABC=60°,∵∠ABD=45°,∴∠BDF=180°﹣∠BFD﹣∠ABD=75°=∠AED,∵∠DFE=∠BFD,∴△DEF∽△BDF,∴,∴DF2=BF•EF,连接OD,则∠BOD=90°,OB=OD,在Rt△DOF中,根据勾股定理得,OD2+OF2=DF2,∴OB2+OF2=BF•EF,即BO2+OF2=EF•BF.26.解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),∴2=a(0+6)(0﹣2),∴a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴抛物线的对称轴为直线x=﹣2;(2)如图1,由(1)知,抛物线的对称轴为x=﹣2,∴E(﹣2,0),∵C(0,2),∴OC=OE=2,∴CE=OC=2,∠CED=45°,∵△CME是等腰三角形,∴①当ME=MC时,∴∠ECM=∠CED=45°,∴∠CME=90°,∴M(﹣2,2),②当CE=CM时,∴MM1=CM=2,∴EM1=4,∴M1(﹣2,4),③当EM=CE时,∴EM2=EM3=2,∴M2(﹣2,﹣2),M3(﹣2,2),即满足条件的点M的坐标为(﹣2,﹣2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);(3)如图2,由(1)知,抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴D(﹣2,),令y=0,则(x+6)(x﹣2)=0,∴x=﹣6或x=2,∴点A(﹣6,0),∴直线AD的解析式为y=x+4,过点P作PQ⊥x轴于Q,过点P'作P'Q'⊥DE于Q',∴∠EQ'P'=∠EQP=90°,由(2)知,∠CED=∠CEB=45°,由折叠知,EP'=EP,∠CEP'=∠CEP,∴△PQE≌△P'Q'E(AAS),∴PQ=P'Q',EQ=EQ',设点P(m,n),∴OQ=m,PQ=n,∴P'Q'=n,EQ'=QE=m+2,∴点P'(n﹣2,2+m),∵点P'在直线AD上,∴2+m=(n﹣2)+4①,∵点P在抛物线上,∴n=﹣(m+6)(m﹣2)②,联立①②解得,m=(舍)或m=,即点P的横坐标为.。
(历年中考)广西省百色市中考数学试题含答案
1 2016年广西百色市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2016•百色)三角形的内角和等于()A .90°B .180°C .300°D .360°2.(3分)(2016•百色)计算:23=()A .5 B .6 C .8 D .9 3.(3分)(2016•百色)如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是()A .∠1=∠6 B .∠2=∠6 C .∠1=∠3 D .∠5=∠7 4.(3分)(2016•百色)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A .B .C .D .5.(3分)(2016•百色)今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A .3.89×102 B .389×102C .3.89×104 D .3.89×1056.(3分)(2016•百色)如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=()A .6 B .6C .6D .12 7.(3分)(2016•百色)分解因式:16﹣x 2=()A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )28.(3分)(2016•百色)下列关系式正确的是()A .35.5°=35°5′B .35.5°=35°50′C .35.5°<35°5′D .35.5°>35°5′9.(3分)(2016•百色)为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量阅读量(单位:本(单位:本/周)0 1 2 3 4 人数(单位:人)1 4 6 2 2 A .中位数是2 B .平均数是2 C .众数是2 2 D D .极差是2 10.(3分)(2016•百色)直线y=kx +3经过点A (2,1),则不等式kx +3≥0的解集是()A .x ≤3 B .x ≥3 C .x ≥﹣3 D .x ≤0 11.(3分)(2016•百色)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是()A .﹣=30 B .﹣= C .﹣= D .+=30 12.(3分)(20162016••百色)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD +CD 的最小值是(的最小值是( ) A .4 B .3 C .2D .2+二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2016•百色)的倒数是的倒数是 .14.(3分)(2016•百色)若点A (x ,2)在第二象限,则x 的取值范围是的取值范围是 . 15.(3分)(2016•百色)如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C=25°,则∠D= . 16.(3分)(2016•百色)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 .17.(3分)(2016•百色)一组数据2,4,a ,7,7的平均数=5,则方差S 2= . 18.(3分)(2016•百色)观察下列各式的规律:百色)观察下列各式的规律: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3 (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4…可得到(a ﹣b )(a 2016+a 2015b +…+ab 2015+b 2016)= .三、解答题(本大题共8小题,共66分)19.(6分)(2016•百色)计算:+2sin60°+|3﹣|﹣(﹣π)0. 20.(6分)(2016•百色)解方程组:.21.(6分)(2016•百色)△ABC 的顶点坐标为A (﹣2,3)、B (﹣3,1)、C (﹣1,2),以坐标原点O 为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B 、C 的对应点.应点.(1)求过点B′的反比例函数解析式;的反比例函数解析式;(2)求线段CC′的长.的长.22.(8分)(2016•百色)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.的大小.23.(8分)(2016•百色)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:进行分组统计,结果如表所示:组号组号 分组分组 频数频数一6≤m <7 2 二7≤m <8 7 三8≤m <9 a 四9≤m ≤10 2 (1)求a 的值;的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;内所对应的扇形图的圆心角大小; (3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).24.(10分)(2016•百色)在直角墙角AOB (OA ⊥OB ,且OA 、OB 长度不限)中,要砌20m 长的墙,长的墙,与直角墙角与直角墙角AOB 围成地面为矩形的储仓,围成地面为矩形的储仓,且地面矩形且地面矩形AOBC 的面积为96m 2. (1)求这地面矩形的长;)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m )的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?板砖费用较少?25.(10分)(2016•百色)如图,已知AB 为⊙O 的直径,AC 为⊙O 的切线,OC 交⊙O 于点D ,BD 的延长线交AC 于点E .(1)求证:∠1=∠CAD ;(2)若AE=EC=2,求⊙O 的半径.的半径.26.(12分)(2016•百色)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,)建立适当的平面直角坐标系,①直接写出O 、P 、A 三点坐标;三点坐标;②求抛物线L 的解析式;的解析式;(2)求△OAE 与△OCE 面积之和的最大值.面积之和的最大值.2016年广西百色市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)(2016•百色)三角形的内角和等于(百色)三角形的内角和等于( )A .90°B .180°C .300°D .360°【分析】利用三角形的内角和定理:三角形的内角和为180°即可解本题即可解本题【解答】解:因为三角形的内角和为180度.度.所以B 正确.正确.故选B .【点评】此题主要考查了三角形的内角和定理:三角形的内角和为180°.2.(3分)(2016•百色)计算:23=( )A .5 B .6 C .8 D .9 【分析】根据立方的计算法则计算即可求解.根据立方的计算法则计算即可求解. 【解答】解:23=8.故选:C .【点评】考查了有理数的乘方,乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.3.(3分)(2016•百色)如图,直线a 、b 被直线c 所截,下列条件能使a ∥b 的是(的是( )A .∠1=∠6 B .∠2=∠6 C .∠1=∠3 D .∠5=∠7 【分析】利用平行线的判定方法判断即可.利用平行线的判定方法判断即可.【解答】解:∵∠2=∠6(已知),∴a ∥b (同位角相等,两直线平行),则能使a ∥b 的条件是∠2=∠6,故选B 【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.4.(3分)(2016•百色)在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是(个,随机抽取一个小球是红球的概率是( )A .B .C .D .【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.用红球的个数除以所有球的个数即可求得抽到红球的概率.【解答】解:∵共有5个球,其中红球有3个,个,∴P (摸到红球)=,故选C .【点评】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.之比.5.(3分)(2016•百色)今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为(记数法表示为( )A .3.89×102 B .389×102C .3.89×104 D .3.89×105【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.是负数. 【解答】解:将38900用科学记数法表示为3.89×104.故选C . 【点评】此题考查科学记数法的表示方法.此题考查科学记数法的表示方法.科学记数法的表示形式为科学记数法的表示形式为a ×10n的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.的值.6.(3分)(2016•百色)如图,△ABC 中,∠C=90°,∠A=30°,AB=12,则BC=( )A .6 B .6C .6D .12 【分析】根据30°所对的直角边等于斜边的一半求解.所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°BC=12sin30°=12=12×=6, 故答选A .【点评】本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.本题考查解直角三角形,解题的关键是正确的利用合适的边角关系.7.(3分)(2016•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )2【分析】直接利用平方差公式分解因式得出答案.直接利用平方差公式分解因式得出答案. 【解答】解:16﹣x 2=(4﹣x )(4+x ).故选:A .【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.8.(3分)(2016•百色)下列关系式正确的是(百色)下列关系式正确的是( )A .35.5°=35°5′B .35.5°=35°50′C .35.5°<35°5′D .35.5°>35°5′【分析】根据大单位化小单位乘以进率,可得答案.根据大单位化小单位乘以进率,可得答案.【解答】解:A 、35.5°=35°30′,35°30′>35°5′,故A 错误;错误;B 、35.5°=35°30′,35°30′<35°50′,故B 错误;错误;C 、35.5°=35°30′,35°30′>35°5′,故C 错误;错误;D 、35.5°=35°30′,35°30′>35°5′,故D 正确;正确;故选:D .【点评】本题考查了度分秒的换算,大单位化成效单位乘以进率是解题关键.本题考查了度分秒的换算,大单位化成效单位乘以进率是解题关键.9.(3分)(2016•百色)为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是(查,统计如表,则下列说法错误的是( )阅读量阅读量(单位:本(单位:本/周)0 1 2 3 4 人数(单位:人)人数(单位:人)1 4 6 2 2 A .中位数是2 B .平均数是2 C .众数是2 2 D D .极差是2 【分析】根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.根据表格中的数据,求出中位数,平均数,众数,极差,即可做出判断.【解答】解:15名同学一周的课外阅读量为0,1,1,1,1,2,2,2,2,2,2,3,3,4,4,中位数为2;平均数为(0×1+1×4+2×6+3×2+4×2)÷15=2;众数为2;极差为4﹣0=4;所以A 、B 、C 正确,D 错误.错误.故选D . 【点评】此题考查了极差,平均数,中位数,众数,熟练掌握各自的求法是解本题的关键.10.(3分)(2016•百色)直线y=kx +3经过点A (2,1),则不等式kx +3≥0的解集是( ) A .x ≤3 B .x ≥3 C .x ≥﹣3 D .x ≤0 【分析】首先把点A (2,1)代入y=kx +3中,可得k 的值,再解不等式kx +3≥0即可.即可.【解答】解:∵y=kx +3经过点A (2,1),∴1=2k +3,解得:k=﹣1,∴一次函数解析式为:y=﹣x +3,﹣x +3≥0,解得:x ≤3.故选A .【点评】此题主要考查了一次函数与一元一次不等式,关键是掌握待定系数法计算出k 的值.11.(3分)(2016•百色)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是(小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣=D .+=30 【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,小时, 根据题意得,﹣=. 故选B .【点评】本题考查由实际问题抽象出分式方程,本题考查由实际问题抽象出分式方程,关键是设出速度,关键是设出速度,关键是设出速度,以时间做为等量关系列方以时间做为等量关系列方程.程.12.(3分)(2016•百色)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD +CD 的最小值是(的最小值是( )A .4 B .3C .2D .2+【分析】作点A 关于直线BC′的对称点A 1,连接A 1C 交直线BC 与点D ,由图象可知点D 在C′B 的延长线上,的延长线上,由此可得出当点由此可得出当点D 与点B 重合时,AD +CD 的值最小,由此即可得出结论,再根据等边三角形的性质算出AB +CB 的长度即可.的长度即可.【解答】解:作点A 关于直线BC′的对称点A 1,连接A 1C 交直线BC 与点D ,如图所示.,如图所示.由图象可知当点D 在C′B 的延长线上时,AD +CD 最小,最小,而点D 为线段BC′上一动点,上一动点,∴当点D 与点B 重合时AD +CD 值最小,值最小,此时AD +CD=AB +CB=2+2=4.故选A .【点评】本题考查了轴对称中的最短线路问题以及等边三角形的性质,本题考查了轴对称中的最短线路问题以及等边三角形的性质,解题的关键是找出点解题的关键是找出点D 的位置.本题属于基础题,难度不大,解决该题型题目时,找出一点的对称点,连接对称点与另一点与对称轴交于一点,由此即可得出结论.点与另一点与对称轴交于一点,由此即可得出结论.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2016•百色)的倒数是的倒数是 3 .【分析】直接根据倒数的定义进行解答即可.直接根据倒数的定义进行解答即可.【解答】解:∵×3=1,∴的倒数是3.故答案为:3.【点评】本题考查的是倒数的定义,即乘积是1的两数互为倒数.的两数互为倒数.14.(3分)(2016•百色)若点A (x ,2)在第二象限,则x 的取值范围是的取值范围是 x <0 . 【分析】根据第二象限内点的横坐标小于零,可得答案.根据第二象限内点的横坐标小于零,可得答案.【解答】解:由点A (x ,2)在第二象限,得)在第二象限,得x <0,故答案为:x <0.【点评】本题考查了点的坐标,熟记点的坐标特征是解题关键.本题考查了点的坐标,熟记点的坐标特征是解题关键.15.(3分)(2016•百色)如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C=25°,则∠D= 65° .【分析】先根据圆周角定理求出∠A 的度数,再由垂径定理求出∠AED 的度数,进而可得出结论.出结论.【解答】解:∵∠C=25°,∴∠A=∠C=25°.∵⊙O 的直径AB 过弦CD 的中点E ,∴AB ⊥CD ,∴∠AED=90°,∴∠D=90°﹣25°25°=65°=65°. 故答案为:65°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.都等于这条弧所对的圆心角的一半是解答此题的关键.16.(3分)(2016•百色)某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .【分析】根据三视图,根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;个;故答案为:5.【点评】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.17.(3分)(2016•百色)一组数据2,4,a ,7,7的平均数=5,则方差S 2= 3.6 .【分析】根据平均数的计算公式:=,先求出a 的值,再代入方差公式S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2]进行计算即可.进行计算即可.【解答】解:∵数据2,4,a ,7,7的平均数=5,∴2+4+a +7+7=25,解得a=5,∴方差s 2=[(2﹣5)2+(4﹣5)2+(5﹣5)2+(7﹣5)2+(7﹣5)2]=3.6;故答案为:3.6.【点评】本题主要考查的是平均数和方差的求法,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2].18.(3分)(2016•百色)观察下列各式的规律:百色)观察下列各式的规律: (a ﹣b )(a +b )=a 2﹣b 2 (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3 (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4… 可得到(a ﹣b )(a 2016+a 2015b +…+ab 2015+b 2016)= a 2017﹣b 2017. 【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可. 【解答】解:(a ﹣b )(a +b )=a 2﹣b 2; (a ﹣b )(a 2+ab +b 2)=a 3﹣b 3; (a ﹣b )(a 3+a 2b +ab 2+b 3)=a 4﹣b 4;…可得到(a ﹣b )(a 2016+a 2015b +…+ab 2015+b 2016)=a 2017﹣b 2017, 故答案为:a 2017﹣b 2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.三、解答题(本大题共8小题,共66分) 19.(6分)(2016•百色)计算:+2sin60°+|3﹣|﹣(﹣π)0.【分析】本题涉及二次根式化简、特殊角的三角函数值、绝对值、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果. 【解答】解:+2sin60°+|3﹣|﹣(﹣π)0=3+2×+3﹣﹣1 =3++3﹣﹣1 =5.【点评】本题主要考查了实数的综合运算能力,本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.是各地中考题中常见的计算题型.是各地中考题中常见的计算题型.解决此类解决此类题目的关键是熟练掌握二次根式化简、题目的关键是熟练掌握二次根式化简、特殊角的三角函数值、特殊角的三角函数值、特殊角的三角函数值、绝对值、绝对值、绝对值、负整数指数幂等考点负整数指数幂等考点的运算.的运算.20.(6分)(2016•百色)解方程组:.【分析】方程组利用加减消元法求出解即可.方程组利用加减消元法求出解即可.【解答】解:, ①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.加减消元法.21.(6分)(2016•百色)△ABC 的顶点坐标为A (﹣2,3)、B (﹣3,1)、C (﹣1,2),以坐标原点O 为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B 、C 的对应点.应点.(1)求过点B′的反比例函数解析式;的反比例函数解析式;(2)求线段CC′的长.的长.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.求出解.(2)根据勾股定理求得OC ,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B 点的坐标为(﹣3,1),根据旋转中心O ,旋转方向顺时针,旋转角度90°,点B 的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∴k=3×1=3,∴过点B′的反比例函数解析式为y=.(2)∵C (﹣1,2),∴OC==,∵△ABC 以坐标原点O 为旋转中心,顺时针旋转90°,∴OC′=OC=,∴CC′==.【点评】本题考查了图形的旋转、勾股定理的应用以及待定系数法求反比例函数的解析式,抓住旋转的三要素:旋转中心,旋转方向,旋转角度是解题关键.抓住旋转的三要素:旋转中心,旋转方向,旋转角度是解题关键.22.(8分)(2016•百色)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.的大小.【分析】(1)由平行四边形的性质得出AB=CD ,AD ∥BC ,∠B=∠D ,得出∠1=∠DCE ,证出∠AFB=∠1,由AAS 证明△ABF ≌△CDE 即可;即可;(2)由(1)得∠1=∠DCE=65°,由平行四边形的性质和三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD 是平行四边形,是平行四边形,∴AB=CD ,AD ∥BC ,∠B=∠D ,∴∠1=∠DCE ,∵AF ∥CE ,∴∠AFB=∠ECB ,∵CE 平分∠BCD ,∴∠DCE=∠ECB ,∴∠AFB=∠1,在△ABF 和△CDE 中,,∴△ABF ≌△CDE (AAS );(2)解:由(1)得:∠1=∠ECB ,∠DCE=∠ECB ,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°65°=50°=50°. 【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.23.(8分)(2016•百色)某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m 进行分组统计,结果如表所示:进行分组统计,结果如表所示:组号组号 分组分组 频数频数一6≤m <7 2 二7≤m <8 7 三8≤m <9 a 四9≤m ≤10 2 (1)求a 的值;的值;(2)若用扇形图来描述,求分数在8≤m <9内所对应的扇形图的圆心角大小;内所对应的扇形图的圆心角大小; (3)将在第一组内的两名选手记为:A 1、A 2,在第四组内的两名选手记为:B 1、B 2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【分析】(1)根基被调查人数为20和表格中的数据可以求得a 的值;的值;(2)根据表格中的数据可以得到分数在8≤m <9内所对应的扇形图的圆心角大;内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,)由题意可得,a=20﹣2﹣7﹣2=9,即a 的值是9;(2)由题意可得,)由题意可得,分数在8≤m <9内所对应的扇形图的圆心角为:360°×=162°;(3)由题意可得,所有的可能性如下图所示,)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.【点评】本题考查列表法与树状图法、频数分布表、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件.找出所求问题需要的条件.24.(10分)(2016•百色)在直角墙角AOB (OA ⊥OB ,且OA 、OB 长度不限)中,要砌20m 长的墙,长的墙,与直角墙角与直角墙角AOB 围成地面为矩形的储仓,围成地面为矩形的储仓,且地面矩形且地面矩形AOBC 的面积为96m 2. (1)求这地面矩形的长;)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m )的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?板砖费用较少?【分析】(1)根据题意表示出长方形的长,进而利用长×宽=面积,求出即可;面积,求出即可; (2)分别计算出每一规格的地板砖所需的费用,然后比较即可.)分别计算出每一规格的地板砖所需的费用,然后比较即可.【解答】(1)设这地面矩形的长是xm ,则依题意得:,则依题意得:x (20﹣x )=96,解得x 1=12,x 2=8(舍去),答:这地面矩形的长是12米;米;(2)规格为0.80×0.80所需的费用:96÷(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96÷(1.00×1.00)×80=7680(元).因为8250>7680,所以采用规格为1.00×1.00所需的费用较少.所需的费用较少.【点评】此题主要考查了一元二次方程的应用,此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,解题关键是要读懂题目的意思,解题关键是要读懂题目的意思,根据题目给根据题目给出的条件,找出合适的等量关系,列出方程,再求解.出的条件,找出合适的等量关系,列出方程,再求解.25.(10分)(2016•百色)如图,已知AB 为⊙O 的直径,AC 为⊙O 的切线,OC 交⊙O 于点D ,BD 的延长线交AC 于点E .(1)求证:∠1=∠CAD ;(2)若AE=EC=2,求⊙O 的半径.的半径.【分析】(1)由AB 为⊙O 的直径,AC 为⊙O 的切线,易证得∠CAD=∠BDO ,继而证得结论;结论;(2)由(1)易证得△CAD ∽△CDE ,然后由相似三角形的对应边成比例,求得CD 的长,再利用勾股定理,求得答案.再利用勾股定理,求得答案.【解答】(1)证明:∵AB 为⊙O 的直径,的直径,∴∠ADB=90°,∴∠ADO +∠BDO=90°,∵AC 为⊙O 的切线,的切线,∴OA ⊥AC ,∴∠OAD +∠CAD=90°,∵OA=OD ,∴∠OAD=∠ODA ,∵∠1=∠BDO ,∴∠1=∠CAD ;(2)解:∵∠1=∠CAD ,∠C=∠C ,∴△CAD ∽△CDE ,∴CD :CA=CE :CD , ∴CD 2=CA•CE ,∵AE=EC=2,∴AC=AE +EC=4,∴CD=2,设⊙O 的半径为x ,则OA=OD=x , 则Rt △AOC 中,OA 2+AC 2=OC 2, ∴x 2+42=(2+x )2, 解得:x=.∴⊙O 的半径为.【点评】此题考查了切线的性质、圆周角定理以及相似三角形的判定与性质.注意证得△CAD ∽△CDE 是解此题的关键.是解此题的关键.26.(12分)(2016•百色)正方形OABC 的边长为4,对角线相交于点P ,抛物线L 经过O 、P 、A 三点,点E 是正方形内的抛物线上的动点.是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,)建立适当的平面直角坐标系,①直接写出O 、P 、A 三点坐标;三点坐标;②求抛物线L 的解析式;的解析式;(2)求△OAE 与△OCE 面积之和的最大值.面积之和的最大值.【分析】(1)以O 点为原点,点为原点,线段线段OA 所在的直线为x 轴,轴,线段线段OC 所在的直线为y 轴建立直角坐标系.①根据正方形的边长结合正方形的性质即可得出点O 、P 、A 三点的坐标;②设抛物线L 的解析式为y=ax 2+bx +c ,结合点O 、P 、A 的坐标利用待定系数法即可求出抛物线的解析式;线的解析式;(2)由点E 为正方形内的抛物线上的动点,设出点E 的坐标,结合三角形的面积公式找出S △OAE +S OCE 关于m 的函数解析式,根据二次函数的性质即可得出结论.的函数解析式,根据二次函数的性质即可得出结论.【解答】解:(1)以O 点为原点,线段OA 所在的直线为x 轴,线段OC 所在的直线为y 轴建立直角坐标系,如图所示.轴建立直角坐标系,如图所示.①∵正方形OABC 的边长为4,对角线相交于点P ,∴点O 的坐标为(0,0),点A 的坐标为(4,0),点P 的坐标为(2,2).②设抛物线L 的解析式为y=ax 2+bx +c ,∵抛物线L 经过O 、P 、A 三点,三点,∴有,解得:,∴抛物线L 的解析式为y=﹣+2x .(2)∵点E 是正方形内的抛物线上的动点,是正方形内的抛物线上的动点,∴设点E 的坐标为(m ,﹣+2m )(0<m <4),∴S △OAE +S OCE =OA•y E +OC•x E =﹣m 2+4m +2m=﹣(m ﹣3)2+9,∴当m=3时,△OAE 与△OCE 面积之和最大,最大值为9.【点评】本题考查了待定系数法求函数解析式、本题考查了待定系数法求函数解析式、正方形的性质、正方形的性质、正方形的性质、三角形的面积公式以及二次三角形的面积公式以及二次函数的性质,解题的关键是:(1)建立直角坐标系.①根据正方形的性质找出点的坐标;②利用待定系数法求函数解析式;(2)利用二次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,建立直角坐标系,找出点的坐标,再结合点的坐标利用待定系数法求出函数解析式是关键.系数法求出函数解析式是关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 7 页 桂林市 百色市2009年初中毕业暨升学考试数学试卷 一、选择题(每题3分,共36分) 1、-8的相反数是( )
A、-8 B、8 C、18 D、18 2、下面几个有理数最大的是( ) 11A2 B C 3 D 35、 、 、、
3、如图,在所标识的角中,同位角是( ) A、∠1和∠2 B、∠1和∠3 C、∠1和∠4 D、∠2和∠3 4、右图是一正四棱锥,它是俯视图是( )
5、下列运算正确的是( ) A22Babab22222242、 、(-ab)=ab C、aa=2a D、aa=2
AB、 2 、1 6、二次函数y=(x+1)2 +2的最小值是( )
7、右图是一张卡通图,图中两圆的位置关系是( ) A、相交 B、外离 C、内切 D、内含
8、已知21xy是二元一次方程组71axbyaxby的解, 则ab的值为( ) A、 1 B、-1 C、2 D、3 9、有20张背面完全一样的卡片,其中8张正面印有桂林山水,7张正面印有百色风光,5张正面印有北海海景,把这些卡片的背面朝上搅匀,从中随机抽出一张卡片,抽中正面是桂林山水卡片的概率是( ) 1BCD4A725、 、 、 、
2058
10、如图,在平行四边形ABCD中,AC、BD为对角线,BC=6, BC边上的高为4,则图中阴影部分的面积为( ) A、3 B、6 C、12 D、24
11、如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90度,得到△A/B/O,则点A/的坐标为( ) 第 2 页 共 7 页
A、(3 , 1) B、(3 , 2) C、(2 , 3) D、(1 , 3) 12、如图,正方形ABCD的边长为2, 将长为2的线段QR的两端放在正方形的相邻的两边上同时滑动。如果点Q从点A出发,沿图中所示方向按A→B→C→D→A 滑动到A止,同时点R从点B出发,沿图中所示方向按B→C→D→A→B滑动到B止,在这个过程中,线段QR的中点M所经过的路线围成的图形的面积为( ) A、2 B、4- C、 D、1
二、填空题(每题3分,共18分) 13、因式分解:x2 +3x = . 14、据统计,去年我国粮食产量达10570亿斤,用科学记数法表示为 亿斤。 15、如图,在一次数学课外活动中,测得电线杆底部B与钢缆固定点C的距离为4米,钢缆与地面的夹角为60度,则这条钢缆在电线杆上的固定点A到地面的距离AB是 米(结果保留根号)。
16、在函数21yx中,自变量x的取值范围是 。 17、如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 。 18、如图,在△ABC中,∠A=,∠ABC的平分线与∠ACD的平分线交于点A1 得∠A1 ,∠A1BC的平分线与∠A1CD的平分线交于点A2 , 得∠A2 , „„,∠A2008BC的平分线与∠A2008CD的平分线交于点A2009 ,得∠A2009 ,则∠A2009= 。
三、解答题 19、(本题6分)计算: 1001200934sin3022-() 第 3 页 共 7 页
20、(本题6分)先化简,再求值: 2211()22xyxyxxyx , 其中 x=2 , y=3 21、(本题8分)如图,在等腰梯形ABCD中,AD∥BC, 对角线AC、BD相交于点O。 (1)图中共有 对全等三角形。 (2)写出你认为全等的一对三角形,并证明
22、(本题8分)2008年11月28日,为扩大内需,国务院决定在全国实施“家电下乡”政策。第一批列入家电下乡的产品为彩电、冰箱、洗衣机和手机四种产品,某县一家家电商场,今年一季度对以上四种产品的销售情况进行了统计,绘制了如下的统计图,请你根据统计图中的信息解答下列问题: (1)该商场一季度彩电销售的数量是 台。 (2)请补全条形统计图和扇形统计图。
23、(本题8分)在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种,如果每人分2棵,还剩42棵,如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵)。 (1)设初三(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示)。 (2)初三(1)班至少有多少名同学?最多有多少名同学? 24、(本题8分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成。 (1)乙队单独完成这项工程需要多少天? (2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元。若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?
25、(本题10分)如图,△ABC内接于半圆,AB为直径,过点A 作直线MN, 若∠MAC=∠ABC。 (1) 求证:MN是半圆的切线。 (2) 设D是弧AC的中点,连结BD交AC于G,过D作DE⊥AB于E,交AC于F,求证:FD=FG。 (3) 若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积。 第 4 页 共 7 页
26、(本题12分)如图已知直线L:334yx,它与x轴、y轴的交点分别为A、B两点。 (1)求点A、点B的坐标。 (2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹)。 (3)设92)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式。 (4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B,若存在,求出圆心P的坐标,若不存在,请说明理由。
2009年桂林市、百色市初中毕业升学考试 数学参考答案及评分标准 一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 B A C C B A D B C C D B
二、填空题:
13.(3)xx 14.1.057×104 15.43 16.x≥12
17.22yx或2(1)yx 18.20092 三、解答题: 19.解:原式=2-1+4×12-2 ····································································································· 4分 =1 ························································································································ 6分 第 5 页 共 7 页
20.解:原式111()()22xyxyxyxxyxyx ··················································· 2分 1122xyxx() ······································································································· 3分
()xy ····················································································································· 4分
yx ···························································································································· 5分
把23xy,代入上式,得原式=32 ······························································· 6分 21.解:(1)3 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„3分 (写1对、2对均不给分) (2)△ABC≌△DCB ································································································ 4分 证明:∵四边形ABCD是等腰梯形 ∴AB=DC,∠ABC=∠DCB ······································································ 6分 又BC=CB ∴△ABC≌△DCB ····················································································· 8分 (注:选其它两对证明的,按以上相应步骤给分,全等三角形对应点不对应不扣分) 22.解(1)150 ············································································································ (2分) (2)10% ··············································································································· (2分) (3)每正确补全一个图形给2分,其中扇形统计图每补全一个扇形给1分.
23.解(1)这批树苗有(242x)棵················································································ 1分 (2)根据题意,得2423(1)52423(1)1xxxx≥ ································································ 5分 (每列对一个不等式给2分) 解这个不等式组,得40答:初三(1)班至少有41名同学,最多有44名同学. ···················································· 8分 24.解:(1)设乙队单独完成需x天 ·················································································· 1分