变压器比率差动保护原理
比例差动保护

对于由多微机实现的变压器差动保护,这部分功能也可以由程序软件来实现,即通过调整平衡系数Kb来控制。具体计算时,只需根据变压器各侧一次额定电流、差动互感器变比求出电流平衡调整系数Kb,将Kb值当作定值输入微机保护,由保护软件实现电流自动平衡调整,消除不平衡电流。
3.3 在运行中改变分接头的影响及其防范措施
另一方面,由于电流互感器都是标准化的定型产品,所以实际选用的变比,与计算变比不可能完全一致,而且变压器的变比也不可能完全相同,这是在差动保护回路中引起不平衡电流的又一原因。这种由于变比选择不合适而引起的不平衡电流,可利用磁平衡原理在差动继电器中设置平衡线圈加以消除。一般平衡线圈接于保护臂电流小的一侧,因为平衡线圈和差动线圈共同绕在继电器的中间磁柱上,适当选择平衡线圈的匝数,使它产生的磁势与差流在差动线圈中产生的磁势相抵消,这样,在二次绕阻就不会感应电势了,流经差动继电器的执行元件的电流为0。但接线时要注意极性,应使小电流在平衡线圈的差流在差动线圈中产生的磁势相反。
Ibp =±dU·Idmax/Kn
式中 ±△U——调压分接头相对于额定抽头位置的最大变化范围;
Idmax——通过调压侧的最大外部故障电流。
为了消除这一不平衡电流的影响,在整定保护的动作电流时应给予相应的考虑,即提高保护的动作整定值。
在差动保护中差电流的二次谐波幅值用Id2表示,差电流Id中二次谐波所占的比率K2可表示为K2 = Id2/Id
二次谐波制动系数Kxb,那么只要K2大于定值Kxb就可以认为是励磁涌流出现,保护不动作。在K2小于Kxb,并同时满足比率差动其它判据时,才允许保护动作。
2 产生不平衡电流的原因
不平衡电流的产生有稳态和暂态两方面。
稳态情况下不平衡电流:
变压器比率差动保护动作原因

变压器比率差动保护动作原因变压器的比率差动保护,这听起来是不是有点拗口?别急,今天我们就来聊聊这个在电力系统中可是非常重要的东西。
想象一下,变压器就像是一个大大的电力搬运工,它负责把电从一个地方搬到另一个地方,但在这个过程中,它可不能出错,否则后果可就不堪设想了。
1. 什么是比率差动保护?好吧,先来简单解释一下什么是比率差动保护。
我们可以把它想象成一个保镖,专门用来保护变压器免受各种“攻击”。
当变压器的输入和输出电流比例出现异常时,这个保镖就会出动,立马发出警报,甚至直接切断电源,防止变压器受损。
听起来是不是有点像超级英雄?对,就是这么强大!1.1 输入和输出不一致咱们说说这个“比率”。
变压器在正常运行的时候,输入的电流和输出的电流之间有个固定的比率。
如果这个比率发生变化,说明可能有啥不对劲的事情发生了,比如变压器内部可能出现了短路或者其他故障。
这时候,保护装置就会觉得“不对劲”,立刻出手,保护变压器。
1.2 故障原因大揭秘那么,这些不一致的情况都是怎么产生的呢?有很多原因哦!可能是设备老化、绝缘损坏、负荷过重等等,简直就像是变压器的健康问题,各种毛病层出不穷。
就像咱们人一样,年纪大了,身子骨就容易出问题嘛。
2. 为什么会出现动作?哎,这个问题就有点复杂了。
想象一下,你的朋友跟你借了钱,结果你发现他总是没还。
这时候你就得提高警惕了。
变压器也是一样,当它发现输入和输出的电流比率不对了,就会自动“报警”,提醒我们注意。
2.1 短路和过载首先,短路是个大麻烦。
就像电线被虫子咬了一口,电流一下子就跑偏了,这时候变压器就会检测到电流异常,迅速启动保护机制。
再比如,负荷过重了,就像你背着个大背包,走不动了,变压器也会觉得不行,这时候就得动手“减负”。
2.2 设备故障设备老化也是一大元凶。
你想想,手机用了几年后,肯定也会慢下来,变压器也是一样,长时间工作后,难免会出现老化,导致保护动作。
这就像是一个老爷爷,年纪大了,偶尔也会咳嗽几声,你得注意点。
变压器差动保护工作原理

变压器差动保护工作原理变压器差动保护,听起来就像是科技界的一部大片,实际上它是电力系统中非常重要的一环。
想象一下,变压器就像电力的“超人”,负责把电压调整到我们日常生活中能用的水平。
可问题来了,超人也会有失误的时候,对吧?这时候,差动保护就像是他的“助手”,随时准备出手相助,确保变压器不会因为故障而“挂掉”。
这个保护的工作原理就像是在打扫卫生,保持一切井井有条。
变压器的输入和输出电流是它的“血液”,如果这两者不一致,就意味着有问题。
比如说,输入流量大于输出流量,这就像是你一边喝水,一边发现水龙头在流,结果你的杯子还是空的,这可不得了!变压器就像是开了一场“差动比赛”,这时候保护装置就会迅速反应,打响警报,阻止任何更大的损害发生。
这个差动保护的机制就像是一种“灵敏的雷达”,能够瞬间捕捉到任何异常的变化。
就算是微小的电流差异,它也能立马检测出来。
你想啊,电流的变化就像是气候变化,哪怕是一点点风吹草动,它都能敏锐察觉,真是个“敏感小精灵”。
这时候,保护装置就会开始动作,迅速切断电源,保护变压器免遭损坏。
有趣的是,这个过程其实是很迅速的,快得让人惊叹。
可以说,变压器在保护的帮助下,真的是“安全感爆棚”。
想象一下,一个人在马路上走,突然有车冲过来,他立马跳开,躲过了危机,这就是差动保护的效果。
它的反应速度可以说是“飞一般的感觉”,不容小觑。
变压器差动保护的设置也并不是一蹴而就的,它需要精确的参数设定。
就像是调味品,盐放多了,菜就咸了,少了又没味儿。
合理的设置能确保保护装置在恰当的时机发挥作用,而过度的保护反而可能导致频繁的误动作,给整个电力系统带来麻烦。
这时候就需要专业人员仔细调试,确保一切都在“正轨”上。
而这其中的每一步,就像是进行一场“高难度”的平衡木表演,既要有技巧又要有耐心。
搞定这些后,变压器的安全性就会大大提升。
毕竟,安全可不是小事,谁都不想在关键时刻掉链子,对吧?说到这里,大家可能会想,差动保护的优势究竟在哪里呢?答案简单明了,它不仅可以及时发现故障,避免变压器损坏,还能保护其他设备的安全。
差动保护和比例差动保护原理(含图)

1.比率差动是差动电流和制动电流的制约,要考虑到励磁涌流的影响;2.差流速断是当差流过定值后不考虑制动电流直接出口跳闸,在整定时就躲过励磁涌流。
3.变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。
随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。
为防止差动保护误动作,引入比率差动保护。
其能可靠地躲过外部故障时的不平衡差动电流。
1.差动速断保护反映变压器内部或引出线严重短路故障,任一相电流大于整定值,保护跳闸并发信号,其动作方程为:Id>I1式中,Id为短路电流,I1差动保护定值。
Ih为高压侧电流,Il为低压侧电流TAP=(VWDG2×CT2×C)/(VWDG1×CT1)式中:VWDG1为高压侧线电压;VWDG2为低压侧线电压;CT1为高压侧CT变比;CT2为低压侧CT变比。
当相位调整选择“退”时,为外部接线补偿,C=3。
差动电流的计算方法为:Id=|Ih+ Il*TAP| ,其中Idh、Idl都为矢量。
制动电流的计算方法为:Ir= Imax |Ih、Il*TAP|。
(表示选择其中最大相)当相位调整选择“投”时,为内部软件补偿,。
C=1单加高压侧形成的差动电流的计算方法为:Idh=Ih线/3;单加低压侧形成的差动电流的计算方法为:Idl=Il*TAP;高压侧和低压侧同时施加,各相差动电流的计算方法为:Id=|Idh +Idl| ,其中Idh、Idl都为矢量。
高压侧和低压侧同时施加,各相制动电流的计算方法为:Ir=Imax |Idh、Idl|。
差动速断保护原理逻辑图如下:图6-1 差动速断保护原理逻辑图2.比率差动保护变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。
随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。
变压器比率差动保护原理

在区外故障时,由于电流互感器误差、变压器接线方式及变比不同等因素,会引起不平衡 电流。整定时应躲过最大不平衡电流。
灵敏度校验
按最小运行方式下变压器低压侧两相短路时流过高压侧的电流进行校验,灵敏度应满足要 求。
调试步骤与注意事项
调试步骤 检查二次回路接线是否正确,确保电流互感器极性正确。
保护配置
比率差动保护采用二次谐波制动原理,设置合理的制动系 数和动作门槛,确保在变压器内部故障时快速动作,同时 防止外部故障时误动。
动作情况
在某次运行中,变压器低压侧发生匝间短路故障。比率差 动保护正确动作,跳开三侧开关,避免了事故扩大。
案例二:某发电厂厂用变比率差动保护应用
01
案例背景
某发电厂厂用变容量为10kV/400V,采用干式变压器。为保护厂用变
差动保护范围
差动保护的范围是构成变压器差动保护的电流互感器之 间的电气设备、以及连接这些设备的导线。简单地说, 就是输入的两端TA之间的设备。由于差动保护对保护区 外故障不会动作,因此可以不考虑保护区外故障时(包 括系统短路)TA的饱和问题。对于保护区内的故障,TA 饱和会使二次电流小于实际电流,造成保护“拒动”, 后果严重。为避免TA饱和,应从两方面着手。一是在选 择TA时,变比不能选得太小,要考虑线路短路时TA的饱 和问题,一般10kV线路保护的TA变比最好大于300/5。 另一方面要尽量减少TA二次负载阻抗,尽量避免保护和 计量共用TA,缩短TA二次电缆长度及加大二次电缆截面; 对于综合自动化变电站,10kV线路尽可能选用保护测控 合一的产品,并在控制屏上就地安装,这样能有效减小 二次回路阻抗,防止TA饱和。
02
变压器是电力系统中重要的设备之一,需要可靠的保护措施。
变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。
2、变压器差动保护与线路差动保护的区别:由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。
因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。
例如图8-5所示的双绕组变压器,应使8.3.2变压器纵差动保护的特点1 、励磁涌流的特点及克服励磁涌流的方法(1)励磁涌流:在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。
(2)产生励磁涌流的原因因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。
但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。
此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。
(3)励磁涌流的特点:①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。
②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。
③励磁涌流的波形出现间断角。
表8-1 励磁涌流实验数据举例(4)克服励磁涌流对变压器纵差保护影响的措施:采用带有速饱和变流器的差动继电器构成差动保护;②利用二次谐波制动原理构成的差动保护;③利用间断角原理构成的变压器差动保护;④采用模糊识别闭锁原理构成的变压器差动保护。
2、不平衡电流产生的原因(1)稳态情况下的不平衡电流①变压器两侧电流相位不同电力系统中变压器常采用Y,d11接线方式,因此,变压器两侧电流的相位差为30°,如下图所示,Y侧电流滞后△侧电流30°,若两侧的电流互感器采用相同的接线方式,则两侧对应相的二次电流也相差30°左右,从而产生很大的不平衡电流。
变压器差动保护的基本原理

变压器差动保护的基本原理
变压器差动保护是一种常用的电力系统保护方式,主要用于检测变压器的内部故障。
其基本原理如下:
差动保护是通过比较变压器的输入端和输出端的电流差值来实现的。
正常情况下,输入端和输出端的电流应当相等,因为变压器是一个能量转换设备,输入端的电流应当等于输出端的电流(不考虑损耗)。
如果发生内部故障,例如短路或绕组断线,就会导致输入端和输出端的电流不相等。
差动保护系统的基本组成包括电流互感器、比率变压器、差动继电器和保护装置。
电流互感器用于测量输入端和输出端的电流,传输给差动继电器进行比较。
比率变压器用于调整输入端和输出端电流的比例,以匹配差动继电器的输入要求。
当差动继电器检测到输入端和输出端的电流差值超过设定的阈值时,保护装置将触发,切断故障区域的电源,防止进一步损坏。
变压器差动保护的优点是能够快速、准确地检测到内部故障,并迅速采取保护措施,保证电力系统的安全稳定运行。
比率制动式差动保护原理

比率制动式差动保护原理比率制动式差动保护是电力系统中常用的一种保护方式,其原理是根据电力系统中不同位置的电流差值来判断系统中是否存在故障。
本文将从差动保护的基本原理、比率制动式差动保护的工作原理、实际应用中的优点和缺点以及未来的发展方向等方面对比率制动式差动保护原理进行详细阐述。
一、差动保护的基本原理差动保护是一种根据系统不同位置的电流值之差来判断系统中是否存在故障的保护方式。
其基本原理是通过比较系统两个端点的电流值来判断系统中是否存在故障,当电流值之差超过一定的阈值时触发保护动作,以保护系统正常运行。
在电力系统中,通常使用差动保护来保护变压器、发电机和输电线路等重要设备。
差动保护的工作原理是通过测量不同位置的电流值,然后将这些电流值进行比较,当存在差值超出一定范围时,即判断系统中存在故障,并触发相应的保护动作,以确保系统的安全运行。
二、比率制动式差动保护的工作原理比率制动式差动保护是一种常用的差动保护方式,其工作原理是通过测量系统中不同位置的电流值,并根据设定的比率进行差值比较,当电流差值超出设定的范围时,触发保护动作。
比率制动式差动保护可以根据系统的特点和要求进行定制,以满足不同系统的保护需求。
比率制动式差动保护的工作原理主要包括以下几个方面:1.电流测量:比率制动式差动保护通过电流互感器或电流变压器等设备对系统中不同位置的电流进行测量,然后将这些电流值输入到保护装置中进行比较。
2.比率设定:根据系统的特点和要求,设定差动保护的比率范围,当系统中的电流差值超出这一范围时触发保护动作。
3.差动比较:比率制动式差动保护将系统中的电流值进行比较,当存在差值超出设定范围时,即判断系统中存在故障,触发保护动作。
4.动作信号输出:当差动保护判断系统中存在故障时,输出相应的动作信号,触发保护设备进行相应的动作,以保护系统正常运行。
通过以上几个方面的工作原理,比率制动式差动保护可以对系统中的故障进行及时有效的保护,确保电力系统的安全稳定运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
t) I ( 0 i
...
变压器比率差动保护原理
• 主变差动保护的应用
变压器纵差不是基于基尔霍夫电流定律的 变压器纵差是基于功率平衡反映各侧电流的平衡关系
变压器比率差动保护原理
以Y/Δ11变压器为例来探讨二次电流关系
1、正常运行时保护装置采集到 的电流大小和相位 2、软件补偿计算
装置选用变压器Y→△形侧校正的原理 △侧: Ia'=Ia Ib'=Ib Ic'=Ic IA’、IB’、IC’为Y侧调整后的电流 Ia’、Ib’、Ic’为△侧调整后的电流
变压器比率差动保护原理 • 差流的计算
正常情况下,差流为零;故障情况下,形成新的电流支路, 平衡关系被打破,产生差流 不考虑TA传变误差和TA饱和,不需要制动
变压器比率差动保护原理
分析下图中流入保护装置中的电流大 小和相位:
IA IB IC IN
IA1
Ia1
In Ic Ib Ia
变压器比率差动保护原理
• 深南瑞PRS-778补偿原理
装置选用变压器Y→△形侧校正的原理 △侧: Ia'=Ia Ib'=Ib Ic'=Ic IA’、IB’、IC’为Y侧调整后的电流 Ia’、Ib’、Ic’为△侧调整后的电流
Id
I
i 1
n
i
实际应用中,需要考虑TA传变误差、TA饱和等因素的 影响, 使用带比率制动的差动保护
变压器保护基本原理
9 2015-7-23
变压器比率差动保护原理
• 动作特性曲线
Id
速断区
Icdsd
动作区 k2 k3 制动区
Icdqd
k1
Ir1
Ir2
Ir
变压器比率差动保护原理
以PCS978为例,探讨三相比率差动和单相比率差动的实验方法 (以500kV蝶岭站#4主变参数为计算基础)
变压器比率差动保护原理
继保自动化二班
变压器比率差动保护原理
• 常规差动保护理论基础
基尔霍夫电流定律 :对于任一集中参数电路中的任一闭合面,在任 一时刻,通过该闭合面的所有支路电流的代数和等于零。 关键词:集中参数电路,闭合面,同一时刻,所有支路,代数和
I1
集中参数电路 In I2
i 1
Id
速断区
Icdsd
动作区 k3 制动区 k2
△侧: Ia'=Ia Ib'=Ib Ic'=Ic
Icdqd
k1
Ir1
Ir2
Ir
变压器比率差动保护原理
• 南瑞继保RCS-978补差原理
装置采用Δ->Y变化调整差流平衡 Y0侧: IA’= (IA-Io); IB’= (IB-Io); IC’ = (IC-Io) IA’、IB’、IC’为Y侧调整后的电流 Ia’、Ib’、Ic’为△侧调整后的电流
变压器比率差动保护原理
• 国电南自PST-1200补差原理