基于FPGA和STM32的数据采集系统设计

合集下载

STM32多通道ADC采集详解(DMA模式和非DMA模式)

STM32多通道ADC采集详解(DMA模式和非DMA模式)

STM32多通道ADC采集详解(DMA模式和非DMA模式)在非DMA模式下,ADC采集的数据是通过CPU直接读取的,采集效率相对较低,但是编程相对简单。

首先,需要初始化ADC模块的工作模式(单通道、多通道等)和采样时间。

然后,使能ADC模块,并配置所需的通道和采样时间。

接着,设置采样序列,指定要采集的通道和相应的排列顺序。

在采集数据时,首先需要设置ADC转换模式和采样时间,然后开始转换,并等待转换完成。

转换完成后,通过读取ADC_DR寄存器可以获取转换结果。

如果需要采集多个通道的数据,可以通过设置ADCSQR中的SQx位来启动下一次转换。

在DMA模式下,ADC采集的数据是通过DMA控制器传输到指定的内存区域,采集效率较高,适合数据量较大的应用场景。

与非DMA模式相比,DMA模式下的配置需要额外设置DMA控制器的工作模式(单次传输、循环传输等)和传输数据的目的地地址。

在采集数据前,需要设置DMA传输的目的地地址,并使能DMA传输。

在开启ADC转换后,DMA控制器会根据设置的目的地地址来自动传输数据,无需CPU干预。

采集完成后,CPU可以通过检查DMA传输完成标志位来判断数据是否已传输完毕。

总结:
使用非DMA模式的ADC采集相对简单而容易上手,适用于数据量较小且对实时性要求不高的应用场景。

DMA模式下的ADC采集效率更高,适用于数据量较大且对实时性要求较高的应用场景。

无论是DMA模式还是非DMA模式,都需要根据具体的应用需求来选择合适的模式。

在使用DMA模式时,还需要注意合理设置DMA传输的目的地地址和传输模式,以充分发挥DMA的优势。

基于STM32的Lattice FPGA脱机编程系统设计

基于STM32的Lattice FPGA脱机编程系统设计

基于STM32的Lattice FPGA脱机编程系统设计俸皓;凌小壮;陈俊彦【摘要】It is inconvenient to update and maintain the deeply?embedded application environment with Lattice FPGA,a novel off?line programming scheme based on STM32 is proposed. The scheme is composed of theoff?line programmer based on STM32 and upper computer software,which can realize the VME file format conversion,optimization and managementof the fuse figure in PC terminal,and VME file storage,selection and download function in off?line programmer and programmer. The off?lime system is rid of the dependency of PC on traditional FPGA programming method,and improves the programming effi?ciency. The test and practical application results show that the off?line programming system has the characteristics of portable use,flexibility and stability,and can meet the requirements of production,update and maintenance of the target applications.%为了解决运用Lattice FPGA的深度嵌入式应用环境不便于升级维护的问题,提出一种基于STM32的新型脱机编程方案。

嵌入式数字存储示波器设计

嵌入式数字存储示波器设计

嵌入式数字存储示波器设计程志强1,汪思静1,杨杰1,魏磊2(1.武汉科技大学信息科学与工程学院,湖北武汉430081;2.武汉科技大学汽车与交通工程学院,湖北武汉430081)摘要:提出了一种基于FPGA 和STM32的嵌入式数字存储示波器设计,以STM32为控制核心,FPGA 作为数据采集和处理模块,完成了对外部信号的采集和传输,实现了存储示波器数据处理和显示的功能。

关键词:STM32;FPGA ;数据采集;数据显示中图分类号:TP368文献标识码:A文章编号:1674-6236(2013)02-0162-03A design for embedded digital storage oscilloscopeCHENG Zhi -qiang 1,WANG Si -jing 1,YANG Jie 1,WEI Lei 2(1.College of Information Science and Engineering ,Wuhan University of Science and Technology ,Wuhan 430081,China ;2.School of Automobile and Traffic Engineering,Wuhan University of Science and Technology,Wuhan 430081,China )Abstract:This paper introduces a designing method for embedded digital storage oscilloscope based on FPGA and STM32,STM32is used as the controlling core and FPGA is used as the module of data acquisition and processing.The design completes the collection and transmission of external signal and achieves the data processing and showing on embedded digital storage oscilloscope.Key words:STM32;FPGA ;data collection ;data showing收稿日期:2012-09-19稿件编号:201209135作者简介:程志强(1988—),男,湖北武汉人,硕士研究生。

(完整word版)基于STM32的数据采集系统英文文献

(完整word版)基于STM32的数据采集系统英文文献

Design of the Data Acquisition System Based on STM32ABSTRACTEarly detection of failures in machinery equipments is one of the most important concerns to industry. In order to monitor effective of rotating machinery, we development a micro-controller uC/OS-II system of signal acquisition system based on STM32 in this paper。

we have given the whole design scheme of system and the multi —channel vibration signal in axis X,Y and Z of the rotary shaft can be acquired rapidly and display in real-time。

Our system has the character of simple structure,low power consumption, miniaturization.Keywords:STM32;data acquisition;embedded system;uC/OS-II;1.1. IntroductionThe real—time acquisition of vibration in rotating machinery can effectively predict, assess and diagnose equipment operation state,the industry gets vibration data acquisition Rapidly and analysis in real-time can monitor the rotating machinery state and guarantee the safe running of the equipment。

STM32的曼彻斯特编译码系统设计

STM32的曼彻斯特编译码系统设计

STM32的曼彻斯特编译码系统设计引言由于曼彻斯特(MancheSTer)编码具有传输时无直流分量,时钟提取方便等特点,被广泛地应用于以太网、车辆总线、工业总线中。

现在工程上常用的曼彻斯特编译码芯片为HD-6408和HD-6409,但是这种芯片有一些不足。

首先,该芯片在传输速率和每帧数据中的有效位数等方面都做了严格的限制。

其次,使用该芯片需要增加额外的硬件电路,提高了系统成本。

使用FPGA做曼彻斯特编译码成本高,而且开发周期长。

本文提出了一种基于STM32F103RET6的编译码系统方案,利用了STM32F103RET6强大的定时器功能,采用灵活的编译码方式,传输速率和数据帧格式都可以根据需要完全自行定义。

STM32F103RET6自带DMA 的功能使得数据编码不再需要频繁的定时中断,提高了编码速率,节约了CPU的资源。

该设计方案实现方法简单、稳定、灵活,应用范围广泛。

1 曼彻斯特码曼彻斯特编码是一种自动同步的编码方式即时钟同步信号就隐藏在数据波形中。

在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作为时钟信号,又作为数据信号。

每个码元均用两个不同相位的电平信号表示,与用高、低电平表示的非归零二进制码相比,在连“0”或连“1”的情况下更易于提取同步时钟信息。

并且曼彻斯特码传输时没有直流分量,可以降低系统的功耗,且有很强的抗干扰能力。

图1所示是最常用的一种曼彻斯特编码方法,当传送信号为“1”时,曼彻斯特编码由高电平跳变为低电平;若传送的信息为“0”,曼彻斯特由低电平跳变为高电平,在一个数据周期内保持低电平无跳变则表示空闲。

图1 曼彻斯特编码2 STM32F103RET6的定时器与DMA简介控制器采用ST公司的STM32微处理器,STM32系列微处理器基于ARM Cortex-M3内核,采用高效的哈佛结构三级流水线,达到 1.25DMIPS /MHz,这里我们选用增强型的STM32F103RET6.它具有如下特征:72 MHz系统时钟频率、512 KB闪存程序存储器、64 KBSRAM、8个定时器、3个12位模数转换器、1个数模转换器,1个CAN接口、7通道DMA控制器,以及SPI、USART、I2C、I2S、USB接口等。

基于STM32最小系统的温度采集程序设计研究

基于STM32最小系统的温度采集程序设计研究

基于STM32最小系统的温度采集程序设计研究摘要本文设计了一种以STM32作为主控系统,使用DS18B20温度传感器采集温度数据,并通过TFTLCD显示温度的检测系统。

每100ms获取温度信息并将其显示在LCD显示屏上,同时检测到的温度若是高于或低于设定的额定值,蜂鸣器将会报警以提醒操作人员。

在软件方面使用Keil5开发工具采用C语言编写程序所需的驱动代码及应用程序,在硬件方面使用Altium Designer 9开发软件绘制原理图以及PCB版图,采用STM32F103VET6芯片,配以外围驱动电路和电源电路组成STM32最小系统,使用DS18B20温度传感器采集温度信息,显示在TFTLCD液晶屏上[1]。

关键词STM32;DS18B20;温度检测;TFTLCD1 课题研究的目的与意义为了适配现在的工农业生产对温度监控的要求,温度传感器不仅仅追求结构简单、测量速度快和稳定性高,还需要其能够接入互联网。

不过传统的温度检测的手段是通过人力来进行监视和测量,人工方法既费时又费力、效率极其低下,并且测量出的温度结果经常误差很大。

因此我们需要一种价格低廉、使用方便、测量结果准确,并且可以很便捷的接入互联网的温度测试仪器[2]。

2 硬件电路设计本文由STM32F103VET6作为主控单元,并使用DS18B20温度模块,TFTLCD显示模块及电源电路构成。

控制电路包括:本文采用的STM32VET6是基于Cortex-M3内核的微处理器,时钟电路采用高速外部晶振(HSE),产生高频时钟信号提供给单片机和外围硬件工作,外部晶振发出8MHz的高频时钟信号,复位电路是比较简单的RC电路,低电平有效,调试所用接口电路采用JTAG,外接J-LINK,用于下载和调试编写的程序[3]。

电源电路的设计:使用18650,一款3.7v可充电锂电池作为供电电源,并用XL6009芯片将外部输入电压转换为5v的电压输出,给DS18B20模块与蜂鸣器供电。

基于FPGA的光谱仪数据采集系统

基于FPGA的光谱仪数据采集系统

第42卷第3期激光杂志 Vol.42,No_3 2021 年3 月L A S E R J O U R N A L M a rc h,2021•光电技术与应用•基于F P G A的光谱仪数据采集系统袁洪平,曾立波,林志鹏武汉大学电子信息学院,武汉430072摘要:傅里叶红外光谱仪高效、可靠地获得光谱数据对于后续定性和定量分析物质有着重大的意义。

使 用F P G A的并行处理能力和可自定义外设构建灵活的片内系统,配合外部硬件电路设计,提出了一种基于FP- G A的可定制高效稳定地采集、存储和传输光谱数据的系统实现方法。

阐述了基于F P G A完全使用硬件实现干 涉信号采集和存储的方法,用以提高数据采集的可靠性。

通过最终的实验结果表明,系统可以长时间稳定的运 行,解决了使用ARM进行数据采集和传输出现数据丢失的问题。

关键词:光谱仪;F P G A;自定义外设;数据采集中图分类号:TN216 文献标识码:A d o i:10. 14016/j. cnki. jgzz. 2021. 03. 153Data acquisition system of spectrometer based on FPGAYUAN Hongping,ZENG Libo,LIN ZhipengSchool o f Electronics a n d In fo rm a tio n,W uhan U niversity,W uhan430072, C hinaAbstract:The efficient and reliable acquisition of spectral data by Fourier infrared spectrom eter is significant for the subsequent qualitative and quantitative analysis of substances. Using the parallel processing capability of FPGA and the characteristic of building flexible in-c h ip system with custom izable peripheral and com bining with the design of ex­ternal hardware circ u it, a system im plem entation m ethod based on FPGA can be custom ized and efficiently and stably co llec t, store and transm it spectral data was proposed. The method of interference signal acquisition and storage based on FPGA was described to improve data acquisition reliability. The final experim ental results show that the system can run stably for a long time and solve data loss in ARM data acquisition and transm ission.Key words:spectrom eter;F PG A;custom izable p e rip h e ra ls;data acquisitioni引言傅里叶红外光谱仪(Fourier Transform Infrared Spectrometer,FTS)能够对物质进行定性和定量分析,因此被广泛地应用于医药化工、石油、煤炭、环保等领 域[|4]。

基于FPGA的红外图像实时采集系统设计与实现

基于FPGA的红外图像实时采集系统设计与实现

基于FPGA的红外图像实时采集系统设计与实现摘要:随着红外图像在军事、航天、安防等领域的广泛应用,对红外图像的实时采集和处理需求越来越高。

本文基于FPGA设计并实现了一个红外图像实时采集系统,通过系统硬件框架、图像采集流程设计以及软硬件协同优化等方面的探究,实现了高效、稳定的红外图像实时采集和传输,为相关领域的探究和应用提供了重要支持。

一、引言红外图像技术是一种利用物体发射的红外辐射进行成像分析的技术,具有透过阴郁、烟雾等不利环境的能力。

它在军事、航天、安防等领域具有重要应用价值。

红外图像的实时采集和处理对于这些领域的探究和应用至关重要,然而传统的红外图像采集系统存在采集速度慢、波动大、传输距离限制等问题。

因此,设计并实现一种基于FPGA的红外图像实时采集系统具有重要意义。

二、系统框架设计基于FPGA的红外图像实时采集系统主要由硬件和软件两个部分组成。

硬件部分包括红外探测器、FPGA开发板、存储器、图像传输模块等;软件部分主要包括图像采集控制程序和数据处理程序。

硬件框架设计接受分层结构,分为红外图像采集层、控制层、存储层和传输层四个部分。

红外图像采集层包括红外探测器和模拟-数字转换电路,负责将红外辐射信号转换为数字信号。

控制层包括FPGA芯片和时钟控制电路,负责采集信号的控制和同步。

存储层包括高速存储器和图像缓存,负责暂存采集到的红外图像数据。

传输层包括数据传输电路和网络接口,负责将采集到的图像数据传输到外部设备。

三、图像采集流程设计图像采集流程是指将红外图像转换为数字信号并存储的过程。

在红外图像采集层,红外探测器将红外辐射信号转换为模拟信号,经过模拟-数字转换电路转换成数字信号。

在控制层,FPGA芯片控制采集信号的采样频率和位宽,通过时钟控制电路实现同步。

在存储层,高速存储器负责将采集到的图像数据暂存起来,图像缓存则将暂存的图像数据进行处理和压缩。

在传输层,数据传输电路将处理和压缩后的图像数据传输到外部设备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-- -- 1 绪论 1.1虚拟仪器的背景 现在客户对于测试的需求越来越大。随着创新的步伐越来越快,希望更多具有竞争力的新产品更快投入市场的压力也越来越大。消费者的期望在不断地增高。以电子市场为例,消费者要求不同的功能可以更低的成本在一个更小的空间得到集成。近年来经济的低迷并没有阻止革新的需要,但是却要求使用更少资源。满足这些需要是商业成功的一个因素——能够快速、一贯并且最可靠地满足这些需要的公司一定能在竞争中占有决定性的优势。所有这些条件都驱使着对新的验证、检验和生产测试技术的高要求。一个能与创新保持同步的测试平台不是可有可无的,而是必需的。这个平台必须包含具有足够适应能力的快速测试开发工具以在整个产品开发流程中使用。产品快速上市和高效生产产品的需要要求有高吞吐量的测试技术。为了测试消费者所要求的复杂多功能产品需要精确的同步测量能力,而且随着公司不断地创新以提供有竞争力的产品,测试系统必须能够进行快速调整以满足新的测试需求。 虚拟仪器是应对这些挑战的一种革新性的解决方案。它将快速软件开发和模块化、灵活的硬件结合在一起从而创建用户定义的测试系统。 模拟式仪器是指针式的,它基于电磁原理进行测量;数字式仪器则适应了快速响应和高精度的要求,将对模拟信号的测量转化成为对数字信号的测量来显示测量结果;智能化仪器仪表则运用了微处理器芯片,通过将程序固化在ROM中以及将测量结果储存在RAM中自动完成各种测量功能。它的功能模块全部都是以硬件(或固化的软件)的形式存在,相对虚拟仪器而言,无论是开发还是应用,都缺乏灵活性。第四代虚拟示波器,它是现代计算机技术、通信技术和测量技术相结合的产物,是传统仪器观念的一次巨大变革。 虚拟示波器的出现改变了原有的示波器的整体设计思路,用软代替了硬件。将传统仪器由硬件实现的数据分析与显示功能能,改由功能强大的微型计算机来完成信号的处理和波形的显示,利用软件技术在屏幕上设计出方便、逼真的仪器面板,进行各种信号的处理、加工和分析,用各种不同方式(如数据、图形、图表等)表示测量结果,完成各种规模的测量任务。并具有存储、再现、分析、处理波形等特点,而且体积小,耗电少的功能。 -- -- 1.2 虚拟仪器的发展现状 虚拟仪器技术目前在国外发展很快,以美国国家仪器公司(NI公司)为代表的一批厂商已经在市场上推出了基于虚拟仪器技术而设计的商品化仪器产品。在美国虚拟仪器系统及其图形编程语言,已作为各大学理工科学生的一门必修课程。美国的斯福坦大学的机械工程系要求三、四年级的学生在实验时应用虚拟仪器进行数据采集和实验控制。当今虚拟仪器的系统开发采用的总线包括传统的RS232串行总线、GPIB通用接口总线、VXI总线,以及已经被PC机广泛采用的USB串行总线和IEEE1394总线(即Fire wire,也叫做火线)。世界各国的公司,特别是美国NI公司,为使虚拟仪器能够适应上述各种总线的配置,开发了 大量的软件以及适应要求的硬件(插件),可以灵活的组建不同复杂程度的虚拟仪器自动检测系统。传统仪器有复杂的工艺问题和知识产权问题,发达国家的传统仪器市场已具有相当规模。而虚拟仪器是一个全新的领域,大力发展虚拟仪器技术可以略过传统仪器的发展阶段,迅速进入虚拟仪器发展阶段,与国外大公司处于同一起跑线,形成跨越式发展。目前,虚拟仪器技术在中国越来越受到人们重视,研究高潮方兴未艾,应用范围越来越广,虚拟仪器技术必然会有突飞猛进的发展。 1.3 选题目的和意义 1.3.1 选题目的 (1)培养毕业生综合运用所学专业知识解决实际问题的能力; (2)使毕业生初步掌握开展科学研究的工作步骤和基本方法; (3)培养毕业生正确表达技术路线和研究成果的能力(写作和口头表达); (4)初步培养毕业生探索科学技术前沿问题的兴趣; (5)掌握虚拟示波器开发过程 1.3.2 选题意义 传统示波器是由仪器厂家设定并定义好功能的一个封闭结构,它有特定的输入输出和仪器操作面板,具有波形显示、参数测量等功能。当要实现更多的测量功能时,就要配置更多的仪器,这给用户的使用带来很多的不便,并且传统示波器的测量精度比较低,无法满足高精度的测量要求,而且传统的示波器缺乏相应的计算机接口,配合数据采集及数据处理比较困难。此外传统示波器比较庞大,制造成本比较高,这就增加了测量系-- -- 统的开发成本。 虚拟示波器的出现改变了原有的示波器的整体设计思路,用软件代替了硬件。将传统仪器由硬件实现的数据分析与显示功能能,改由功能强大的微型计算机来完成信号的处理和波形的显示,利用软件技术在屏幕上设计出方便、逼真的仪器面板,进行各种信号的处理、加工和分析,用各种不同方式(如数据、图形、图表等)表示测量结果,完成各种规模的测量任务。并具有存储、再现、分析、处理波形等特点,而且体积小,耗电少的功能。 虚拟示波器携带方便,应用灵活,可以根据自己的应用重新更新仪器的功能。利用虚拟示波器所做的任何测量,都是归结为对电压的测量。虚拟示波器可以测量各种波形的电压幅度,既可以测量直流电压和正弦电压,又可以测量脉冲或非正弦电压的幅度。更有用的是它可以测量一个脉冲电压波形各部分的电压幅值,如上冲量或顶部下降量等。这是其他任何电压测量仪器都不能比拟的。虚拟示波器可以测量信号的频率。通过采集的信号进行存储后,利用处理器对数据提取并处理,计算出信号的频率以及周期等。 1.4 论述内容 设计一种基于FPGA和STM32的虚拟数据采集系统,实现现场数据的采集、传输和存储。数据采集和处理过程主要由三部分构成:(1)由前级放大电路进行信号的调理,对数据衰减或放大来满足AD转换的要求;(2) AD转换部分由80MHz的AD转换芯片进行模拟到数字信号的转换;(3)控制和数据处理部分采用两种方案:① 由FPGA控制,采用Verilog HDL语言设计FIFO缓冲数据区和FIFO、AD转换的时钟分频电路,通过USB芯片CH372将采集数据传输给上位机进行进一步处理,另外还有前级放大倍数的控制和AC/DC选择也可以由FPGA控制,FPGA接受上位机传来的指令分析判断后输出相应的放大倍数控制电平和AC/DC选择电平;② 在STM32中实现数据处理、传输以及放大倍数和AC/DC的选择,并在PC机中开发上层数据管理软件,实现数据的显示、存储并能给单片机和FPGA发送指令。电路设计方法简单、可靠性高,能满足实际应用的要求。 --

-- 2 系统方案设计 2.1 虚拟示波器设计要求 (1)分析虚拟示波器的国内外发展概况与发展趋势,并对现有的几种虚拟示波器的优缺点进行分析,确定本课题所研究系统的技术类型,为课题的进一步研究工作奠定基础; (2)分析当前流行虚拟示波器方案优缺点的基础上,确定系统的总体设计方案,掌握虚拟示波器的原理; (3)在系统总体设计方案的基础上,通过调研,了解目前市场上各种芯片的性能,根据实际市场供需状况综合考虑性能、价格等因素,选择满足实际系统需要的各种芯片,进行系统硬件部分的具体设计,主要包括电源模块、前级处理模块以及主控模块的电路原理图设计; (4)设计虚拟示波器单片机和FPGA的软件。在系统硬件平台的基础上,进行系统软件部分的设计,应用KEIL开发工具进行单片机STM32的程序设计及优化,应用quartus Ⅱ开发工具进行FPGA模块的程序设计; (5)系统测试与分析,对系统测试; 2.2 实验原理及设计基本思路 2.2.1 工作原理 虚拟示波器的出现改变了原有的示波器的整体设计思路,用软代替了硬件。将传统仪器由硬件实现的数据分析与显示功能能,改由功能强大的微型计算机来完成信号的处理和波形的显示,利用软件技术在屏幕上设计出方便、逼真的仪器面板,进行各种信号的处理、加工和分析,用各种不同方式(如数据、图形、图表等)表示测量结果。 一个典型的虚拟示波器原理框图如图2.1所示,它的工作过程一般分为存储和显示两个阶段,在存储工作阶段,模拟输入信号先经过适当的放大或衰减,然后经过取样和量化两个过程的数字化处理,将模拟信号转化成数字化信号,最后,数字化信号在逻辑控制电路的控制下一次写入到FIFO中,FIFO缓存器是用FPGA芯片采用硬件编程语言编写异步FIFO缓存器,工作频率比专用FIFO芯片高许多,并且性能稳定。FIFO采用8Bit数据宽度。对于高频信号和脉冲信号应用FIFO存储工作模式,低频信号用实时工作模式。 -- -- 虚拟示波器对模拟量进行实时取样。实时取样是对一个周期内的信号的不同点取样,它与取样示波器的跨周期取样是不同的。N个取样点得到的数字量分别存储于地址号为OOH.0NH的N个FIFO存储单元中,这样,采样点所存储的地址信息即表示了采样点的时间信息。在显示时依序取出采样离散化数据,再通过数据处理,送上位机进行波形显示。将数字存储技术和微处理器用于取样示波器,可以构成存储取样示波器。 示波器的采样频率和满足AD转换要求的模拟信号的调理由上位机软件发出指令来控制。

2.2.2 设计基本思路 采集的模拟信号从BNC接口的探头进入,再通过模拟开关进行AC/DC和阻容衰减倍数的选择,选择合适的缩放比后进入跟随放大器使前后级阻抗匹配,以至于模拟信号能无大量丢失的传输到下一级压控运算放大器,进一步对模拟信号缩放调理,其输出信号再加上电平调节电路送来的直流分量使完全的适合AD转化电压要求。这部分的设计很重要,它制约着示波器的最大工作带宽,通过广泛的挑选芯片、精心的设计和实验使示波器的带宽达到15MHz左右。进入AD转换器输出数字信号,选择8Bit数据精度,80MHz转换速率的高速AD转换器得到较高的测量频率。 因为采用高达80MHz转换速率的AD转换器,然而单片机的处理速度远远不如AD转换的速度,所以对AD频率进行控制的同时还需要缓存器对采集的数据暂时缓存配合单片机进行数据处理。由于专用分频集成芯片和FIFO缓存搭建出来的电路频率不够高,抗干扰能力低,可靠性和灵活性差再加上成本的考虑,电路的性能和最高频率不能达到

探头 前级放大和衰减 AD

转换

FPGA、STM32数据处理及控制

数据缓存

PC机处理及显示

图 2.1 设计总框图

相关文档
最新文档