激光焊接工艺简介
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种高效、高精度、无污染的焊接工艺。
它采用激光束对金属材料进行瞬间加热,使其熔融并冷却凝固,从而实现焊接目的。
激光焊接技术在工业生产中应用广泛,可以焊接不同种类的金属材料,包括硬质合金、不锈钢、铜、铝等。
下面我们将重点讲述激光焊接技术的原理及工艺分析。
激光是一种高能、单色、单向聚焦的光束。
激光束可以在不进入空气的情况下穿过光学器件,并聚焦到一个极小的点上,这个点的能量密度非常高。
通过调节激光束能量密度和焦距,可以实现对金属材料的精确加热,从而实现激光焊接。
激光焊接主要由以下几个步骤组成:1. 准备工作:首先需要准备好待焊接的金属材料,并将其放置在焊接工作台上。
此外,需要准备好激光焊接机及其控制系统,并对其进行调试。
2. 焊接加热:可以采用两种方式进行加热——连续加热和脉冲加热。
连续加热可以使金属材料加热至其熔点以上,从而使其融化。
脉冲加热则会使金属材料在极短的时间内达到很高温度,从而使其物理性质发生变化。
3. 熔化金属材料:在金属材料加热到一定温度之后,其表面开始熔化,形成一定深度的液态金属池。
焊接操作员需要通过控制激光焊接机的参数来确定焊接池的深度和宽度,以及焊接速度。
4. 冷却凝固:当液态金属池达到所需深度和宽度时,需要停止焊接加热,并保持金属材料在一段时间内处于液态状态,以保证焊接良好。
随后,液态金属池逐渐冷却,变成固体状态。
在此过程中,操作员需要缓慢地将激光焊接机向焊接头移动,以使焊接接头均匀冷却。
激光焊接技术的优势与传统的电弧焊接、气体保护焊接等焊接技术相比,激光焊接技术具有以下优点:1. 高效:激光焊接机的功率可以调节,可以快速、高效地完成焊接任务。
2. 高精度:激光束通过聚焦可以形成非常小的焊接池,从而实现高精度焊接。
3. 无污染:激光焊接技术不需要电极和填充材料,可以防止在加热过程中产生大量的废气和废料,从而避免对环境造成污染。
4. 可焊接多种材料:激光焊接技术可以焊接各种不同种类的金属材料,包括硬质合金、不锈钢、铜、铝等。
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析激光焊接技术是一种使用激光束来进行焊接的方法。
它利用激光束的高能量和高聚焦度,将材料加热到熔点或者融化状态,从而实现材料的焊接。
激光焊接技术已广泛应用于各个行业,包括汽车制造、电子设备制造、航空航天工业等。
激光焊接技术的原理是利用激光器产生的激光束,经过透镜聚焦后,将高能量的激光束集中到焊接接头上。
当激光束照射到材料上时,它会与材料表面的原子或者分子产生相互作用,将光能转换为热能。
这样,就可以在局部区域内使材料加热到高温,从而达到焊接的目的。
激光焊接技术的工艺分析主要包括焊接参数的选择和焊接过程的控制。
焊接参数的选择是激光焊接工艺中非常重要的一环。
它包括激光功率、激光束的聚焦度、焊接速度等参数的选择。
激光功率的选择要根据焊接材料的种类和厚度来确定,功率过低会导致焊接质量不理想,功率过高会使焊接区域过热。
激光束的聚焦度决定了焊接区域的尺寸和能量密度,它的选择要根据焊接接头的形状和尺寸来确定。
焊接速度的选择要根据焊接接头的材料和厚度来确定,速度过快会导致焊接区域充分融化不充分,速度过慢会使焊接区域过热。
焊接过程的控制是保证激光焊接质量的关键。
焊接过程的控制包括焊接接头的准备、激光束的照射、焊接区域的保护、焊接过程的监控等。
焊接接头的准备包括清洁表面、调整焊接接头的形状和尺寸等。
激光束的照射要保证激光束的聚焦度和焊接速度均匀稳定。
焊接区域的保护可以采用惰性气体保护或者真空环境,以防止氧化和污染。
焊接过程的监控可以通过温度传感器、红外摄像头等设备来实现,以保证焊接过程的质量和稳定性。
激光焊接技术是一种高精度、高效率的焊接方法。
它的原理是利用激光束将材料加热到熔点或者融化状态,然后实现材料的焊接。
激光焊接技术的工艺分析包括焊接参数的选择和焊接过程的控制,这些都是保证激光焊接质量的关键。
激光焊接技术的应用前景非常广阔,它将继续在各个领域中发挥重要作用。
激光焊接技术原理及工艺分析

激光焊接技术原理及工艺分析
激光焊接技术是一种高精密性焊接技术,其原理是利用高能量激光束对焊接材料进行
熔化并加热,使其达到熔化状态,然后使母材和焊材熔合,形成焊缝。
激光焊接技术具有
焊缝小、熔化深度浅、热影响区小、熔池凝固速度快、焊接速度快、成形美观等优点。
激光焊接工艺主要包括焊缝设计、焊接参数选择、设备调试、工艺控制等几个方面。
焊缝设计需要根据焊接材料的性质和焊接要求来确定焊缝的形状和尺寸。
焊接参数的选择
包括激光功率、焊缝速度、焊接气体种类和流量等,需要根据材料特性和焊接要求进行选择。
设备调试主要包括激光器的调试和光束传输系统的调试等。
工艺控制主要包括工件定位、焊接过程中的温度控制和焊接质量的检测等。
激光焊接工艺有很多种,其中比较常用的是峰值功率调制焊接、脉冲时间调制焊接和
连续波焊接等。
峰值功率调制焊接是在一定时间内增加激光功率,使焊接材料快速熔化和
凝固,从而实现焊接。
脉冲时间调制焊接是通过调节激光脉冲时间和脉冲频率,实现焊接
材料的熔化和凝固。
连续波焊接则是将激光束连续发射,通过控制焊接速度和功率,实现
材料融化和凝固。
激光焊接技术在飞机、船舶、汽车、机器人以及电子设备等领域的应用越来越广泛。
它不仅可以替代传统的焊接工艺,在提高焊接质量的同时,也能够提高生产效率和生产率。
未来,激光焊接技术有望进一步发展,成为高精度微观加工和大型结构焊接等领域的重要
工艺。
激光焊接工艺

6.5.2 激光焊接工艺
• 激光焊接是将光能转换为热能的过程,因此光和热 两方面的性能在激光焊接时都要考虑,如光的吸收、 能量密度、热容量、熔点、沸点及金属表面状况 等.
• 1焊接时激光的能量范围 • 为避免焊点金属的蒸发和烧穿,必须控制能量密度,
电子束焊 钨极氩弧焊
中等 优 高 高
中等 高 好
高 优 高 低 低 中等 好
好
好
窄
宽
窄
2 激光焊接的重要参数
1功率密度
功率密度是激光加工中最重要的参数之一.采用较高 的功率密度,在微秒时间范围内,表层即可加热至沸 点,产生大量气化.因此高功率密度对材料去除加工, 如打孔、切割、雕刻有利.对于较低功率密度,表层 温度达到沸点需要经历数毫秒,在表层气化前,底层 达到熔点,易形成良好的熔融焊接.
激光பைடு நூலகம்特性
1高方向性 激光发散角小,接近平行光,可用于定位、导向和测距等. 2亮度高光强 聚焦后光斑上的功率密度达1015W/cm2或更高,其亮度比太阳
光要亮100亿倍,可以进行材料加工或医疗外科手术. 3高单色性 其单色性比一般光高108-109倍以上,可把激光波长作为长度
的标准进行精密测量,或把其周期用作时间测量标准,应用 于激光通讯等. 4高相干性 单色性越好相干长度越长,可用于较长工件的高精度测量与校 验.
1 传热焊
采用的激光光斑功率功率密度小于105W/mm2时,激光将金 属表面加热到熔点与沸点之间,焊接时,金属材料表面将所 吸收的激光能转变为热能,使金属表面温度升高而熔化,然 后通过热传导方式把热能传向金属内部,使熔化区逐渐扩 大,凝固后形成焊点或焊缝,其熔深轮廓近似为半球形.这种 焊接机理称为传热焊.传热焊的主要特点是激光光斑的功 率密度小,大部分光被金属表面所反射,光的吸收率较低,焊 接熔深浅,焊接速度慢.主要用于厚度小于1mm件的焊接加 工.
激光焊接工艺

激光焊接工艺激光焊接工艺啊,这可是个相当厉害的技术!我记得有一次,我去一家工厂参观,那是我第一次亲眼看到激光焊接工艺的实际应用。
当时,工人们正在焊接一些汽车零部件,那场面可真是让我大开眼界。
激光焊接,简单来说,就是利用高能量密度的激光束来实现材料的连接。
这可不是像我们平时拿个电焊枪随便点点那么简单。
先来说说它的工作原理吧。
激光焊接就像是一个超级精准的“热能狙击手”,能把能量集中在一个特别小的点上,瞬间产生高温,让材料融化并连接在一起。
这个过程快得让人咋舌,而且焊接的地方非常精细,几乎看不到什么瑕疵。
和传统的焊接方法相比,激光焊接的优势那可真是太多了。
比如说,它的焊接速度超级快,能大大提高生产效率。
就像那次我在工厂看到的,短短几分钟,就完成了好几个零部件的焊接,这要是用传统方法,不知道得花多长时间呢。
而且啊,激光焊接的焊缝特别窄,焊接后的部件看起来就很美观,不会有那种粗糙的感觉。
还有哦,它能焊接的材料种类也特别多,不管是金属还是非金属,都能轻松搞定。
再讲讲它在不同领域的应用吧。
在汽车制造行业,激光焊接可以让车身更加坚固和美观。
那些车架的拼接,零部件的连接,都离不开激光焊接的功劳。
在电子行业,像手机、电脑里面的那些微小零件,也是靠激光焊接来完成的,精度高得让人惊叹。
还有医疗器械领域,一些精细的器械,比如心脏起搏器、手术器械等等,激光焊接能保证它们的密封性和安全性。
不过呢,激光焊接也不是完美无缺的。
它对设备的要求比较高,成本也相对较大。
而且操作的时候需要特别小心,毕竟那激光束可不是闹着玩的。
但是,随着技术的不断进步,这些问题也在逐渐得到解决。
我相信,在未来,激光焊接工艺会变得更加普及,给我们的生活带来更多的便利和惊喜。
总之,激光焊接工艺就像是一个神奇的魔法,让材料之间的连接变得更加高效、精准和美观。
希望以后能看到更多令人惊叹的激光焊接成果,让我们的生活变得更加美好!怎么样,是不是对激光焊接工艺有了一些新的认识呢?。
激光焊接工艺

激光焊接工艺
1 激光焊接是一种令人印象深刻的焊接技术
激光焊接是一种新兴的焊接技术,它具有超高速度、质量高、精度高和无焊接废料等特点。
激光焊接是利用高能激光束直接在金属材料上进行焊接,它可以对不同材料以及具有不同形状的物体结构进行焊接,焊接结合的质量较高。
2 激光焊接的优势
激光焊接的最大优势是可以进行极高的焊接速度,而且焊缝处质量高,对金属材料的能源利用率高,不会因焊接过程而产生污染和残留。
此外,激光焊接可以完全控制焊接焦深度,这是其它焊接方法所不具备的。
3 激光焊接的应用
激光焊接广泛应用于航天、电子、汽车、军工等行业,用于制造不同种类的工件,例如,航天行业可用它制造精密复杂的太空机器组件,而电子和汽车行业它可以用来生产各种复杂电路和电子元件,以及汽车车身的精密部件等,可谓是技术应用十分广泛。
4 激光焊接的安全技术
研制工艺时应考虑到安全技术,良好的安全性能temperature是贯穿于激光焊接工艺开发过程中不可或缺的,首先应考虑的是工艺安全性。
因为激光焊接本质上是一项近乎化学无损的焊接,激光焊接使
用极其微弱的激光束,可以完成高品质的焊接任务,操作过程只需要紧凑的激光装置和激光焊条即可,且工作者不会受到污染,所以激光焊接的安全性比传统的焊接要强得多。
5 总结
激光焊接是一种强大的焊接技术,它具有高速度、高质量、高精度、无废料等特点,激光焊接的应用范围很广,其安全性也比传统方法强很多,因此,激光焊接技术受到越来越多的行业应用,未来将有更好的发展前景。
《激光焊接工艺》课件

硬度检测
对焊缝进行拉伸、弯曲、冲击等试验,检 测其力学性能。
通过硬度计测量焊缝及热影响区的硬度, 判断材料的冶金状态。
焊接质量的控制措施与标准
控制焊接参数
选择合适的激光功率、焊接速度、光斑直径 等参数,确保焊接质量稳定。
控制母材与填充材料
确保母材与填充材料的冶金性能符合要求, 减少杂质与气体含量。
《激光焊接工艺》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 激光焊接技术概述 • 激光焊接设备与材料 • 激光焊接工艺参数 • 激光焊接质量检测与控制 • 激光焊接技术的发展趋势与展望
01
激光焊接技术概述
激光焊接技术的定义
激光焊接技术是一种利用高能激光束 照射在材料表面,使材料熔化、冷却 并形成连接的工艺方法。
。
01
激光焊接设备与材 料
激光焊接设备的种类与特点
脉冲激光焊接机
适用于薄板、有色金属的精密焊接,具有能 量集中、热影响区小等特点。
光纤激光焊接机
具有光束质量好、聚焦光斑小、能量密度高 等特点,广泛应用于各种材料的焊接。
连续激光焊接机
适用于厚板、高熔点金属的焊接,具有焊接 速度快、深宽比大等特点。
通过添加填充金属丝,提高焊接质量和效率。
3
激光复合焊接技术
结合激光焊接和电弧焊接的优势,实现高效、高 质量的焊接。
激光焊接技术的未来发展方向
智能化控制
利用先进的传感器和控制系统,实现激光焊接过程的 智能控制。
高能束流加工技术
结合激光、电子束和离子束等高能束流加工技术,提 高加工效率和精度。
新型激光器研发
激光焊接工艺

激光焊接工艺
什么是激光焊接?
激光焊接是利用高能量密度的激光束将工件焊接在一起的方法。
它通常被用于焊接金属材料,比如不锈钢、铝和铜等。
相比于传统
的焊接方法,激光焊接具有更快的速度和更高的精度。
激光焊接的优势
1. 高速度:激光焊接可以通过高速移动的激光束来快速焊接工件。
2. 高精度:激光焊接能够焊接非常小的部件,并在焊接中保持
高精度。
3. 不留痕迹:激光焊接不需要任何填充材料,因此在焊接后留
下的痕迹很小,不需要额外的修复。
4. 无需接触:激光焊接不需要接触工件,因此与其他焊接方法相比,它非常适合用于对工件进行处理和修复。
激光焊接的应用
1. 汽车工业:激光焊接被广泛应用于汽车零部件的制造中。
2. 电子工业:激光焊接能够焊接非常小的部件,因此在电子工业中有非常广泛的应用。
3. 航空航天工业:激光焊接在制造航空航天部件中应用广泛。
总之,激光焊接作为一种先进的工艺,具有很多优势,并且在许多领域有广泛的应用。
随着技术的进步,激光焊接将会变得更加精密和高效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
激光焊接工艺简介一、激光焊接原理激光焊接可以采用连续或脉冲激光束加以实现,激光焊接的原理可分为热传导型焊接和激光深熔焊接。
功率密度小于104-105W/cm2为热传导焊,此时熔深浅、焊接速度慢;功率密度大于105-107W/cm2时,金属表面受热作用下凹成“孔穴”,形成深熔焊,具有焊接速度快、深宽比大的特点。
热传导型激光焊接原理为:激光辐射加热待加工表面,表面热量通过热传导向内部扩散,通过控制激光脉冲的宽度、能量、峰功率和重复频率等激光参数,使工件熔化,形成特定的熔池。
用于齿轮焊接和冶金薄板焊接用的激光焊接机主要涉及激光深熔焊接。
下面重点介绍激光深熔焊接的原理。
激光深熔焊接一般采用连续激光光束完成材料的连接,其冶金物理过程与电子束焊接极为相似,即能量转换机制是通过“小孔”(Key-hole)结构来完成的。
在足够高的功率密度激光照射下,材料产生蒸发并形成小孔。
这个充满蒸气的小孔犹如一个黑体,几乎吸收全部的入射光束能量,孔腔内平衡温度达2500℃左右,热量从这个高温孔腔外壁传递出来,使包围着这个孔腔四周的金属熔化。
小孔内充满在光束照射下壁体材料连续蒸发产生的高温蒸汽,小孔四壁包围着熔融金属,液态金属四周包围着固体材料(而在大多数常规焊接过程和激光传导焊接中,能量首先沉积于工件表面,然后靠传递输送到内部)。
孔壁外液体流动和壁层表面张力与孔腔内连续产生的蒸汽压力相持并保持着动态平衡。
光束不断进入小孔,小孔外的材料在连续流动,随着光束移动,小孔始终处于流动的稳定状态。
就是说,小孔和围着孔壁的熔融金属随着前导光束前进速度向前移动,熔融金属充填着小孔移开后留下的空隙并随之冷凝,焊缝于是形成。
上述过程的所有这一切发生得如此快,使焊接速度很容易达到每分钟数米。
二、激光深熔焊接的主要工艺参数(1)激光功率。
激光焊接中存在一个激光能量密度阈值,低于此值,熔深很浅,一旦达到或超过此值,熔深会大幅度提高。
只有当工件上的激光功率密度超过阈值(与材料有关),等离子体才会产生,这标志着稳定深熔焊的进行。
如果激光功率低于此阈值,工件仅发生表面熔化,也即焊接以稳定热传导型进行。
而当激光功率密度处于小孔形成的临界条件附近时,深熔焊和传导焊交替进行,成为不稳定焊接过程,导致熔深波动很大。
激光深熔焊时,激光功率同时控制熔透深度和焊接速度。
焊接的熔深直接与光束功率密度有关,且是入射光束功率和光束焦斑的函数。
一般来说,对一定直径的激光束,熔深随着光束功率提高而增加。
(2)光束焦斑。
光束斑点大小是激光焊接的最重要变量之一,因为它决定功率密度。
但对高功率激光来说,对它的测量是一个难题,尽管已经有很多间接测量技术。
光束焦点衍射极限光斑尺寸可以根据光衍射理论计算,但由于聚焦透镜像差的存在,实际光斑要比计算值偏大。
最简单的实测方法是等温度轮廓法,即用厚纸烧焦和穿透聚丙烯板后测量焦斑和穿孔直径。
这种方法要通过测量实践,掌握好激光功率大小和光束作用的时间。
(3)材料吸收值。
材料对激光的吸收取决于材料的一些重要性能,如吸收率、反射率、热导率、熔化温度、蒸发温度等,其中最重要的是吸收率。
影响材料对激光光束的吸收率的因素包括两个方面:首先是材料的电阻系数,经过对材料抛光表面的吸收率测量发现,材料吸收率与电阻系数的平方根成正比,而电阻系数又随温度而变化;其次,材料的表面状态(或者光洁度)对光束吸收率有较重要影响,从而对焊接效果产生明显作用。
CO2激光器的输出波长通常为10.6μm,陶瓷、玻璃、橡胶、塑料等非金属对它的吸收率在室温就很高,而金属材料在室温时对它的吸收很差,直到材料一旦熔化乃至气化,它的吸收才急剧增加。
采用表面涂层或表面生成氧化膜的方法,提高材料对光束的吸收很有效。
(4)焊接速度。
焊接速度对熔深影响较大,提高速度会使熔深变浅,但速度过低又会导致材料过度熔化、工件焊穿。
所以,对一定激光功率和一定厚度的某特定材料有一个合适的焊接速度范围,并在其中相应速度值时可获得最大熔深。
(5)保护气体。
激光焊接过程常使用惰性气体来保护熔池,当某些材料焊接可不计较表面氧化时则也可不考虑保护,但对大多数应用场合则常使用氦、氩、氮等气体作保护,使工件在焊接过程中免受氧化。
氦气不易电离(电离能量较高),可让激光顺利通过,光束能量不受阻碍地直达工件表面。
这是激光焊接时使用最有效的保护气体,但价格比较贵。
氩气比较便宜,密度较大,所以保护效果较好。
但它易受高温金属等离子体电离,结果屏蔽了部分光束射向工件,减少了焊接的有效激光功率,也损害焊接速度与熔深。
使用氩气保护的焊件表面要比使用氦气保护时来得光滑。
氮气作为保护气体最便宜,但对某些类型不锈钢焊接时并不适用,主要是由于冶金学方面问题,如吸收,有时会在搭接区产生气孔。
使用保护气体的第二个作用是保护聚焦透镜免受金属蒸气污染和液体熔滴的溅射。
特别在高功率激光焊接时,由于其喷出物变得非常有力,此时保护透镜则更为必要。
保护气体的第三个作用是对驱散高功率激光焊接产生的等离子屏蔽很有效。
金属蒸气吸收激光束电离成等离子云,金属蒸气周围的保护气体也会因受热而电离。
如果等离子体存在过多,激光束在某种程度上被等离子体消耗。
等离子体作为第二种能量存在于工作表面,使得熔深变浅、焊接熔池表面变宽。
通过增加电子与离子和中性原子三体碰撞来增加电子的复合速率,以降低等离子体中的电子密度。
中性原子越轻,碰撞频率越高,复合速率越高;另一方面,只有电离能高的保护气体,才不致因气体本身的电离而增加电子密度。
从表可知,等离子体云尺寸与采用的保护气体不同而变化,氦气最小,氮气次之,使用氩气时最大。
等离子体尺寸越大,熔深则越浅。
造成这种差别的原因首先由于气体分子的电离程度不同,另外也由于保护气体不同密度引起金属蒸气扩散差别。
氦气电离最小,密度最小,它能很快地驱除从金属熔池产生的上升的金属蒸气。
所以用氦作保护气体,可最大程度地抑制等离子体,从而增加熔深,提高焊接速度;由于质轻而能逸出,不易造成气孔。
当然,从我们实际焊接的效果看,用氩气保护的效果还不错。
等离子云对熔深的影响在低焊接速度区最为明显。
当焊接速度提高时,它的影响就会减弱。
保护气体是通过喷嘴口以一定的压力射出到达工件表面的,喷嘴的流体力学形状和出口的直径大小十分重要。
它必须以足够大以驱使喷出的保护气体覆盖焊接表面,但为了有效保护透镜,阻止金属蒸气污染或金属飞溅损伤透镜,喷口大小也要加以限制。
流量也要加以控制,否则保护气的层流变成紊流,大气卷入熔池,最终形成气孔。
为了提高保护效果,还可用附加的侧向吹气的方式,即通过一较小直径的喷管将保护气体以一定的角度直接射入深熔焊接的小孔。
保护气体不仅抑制了工件表面的等离子体云,而且对孔内的等离子体及小孔的形成施加影响,熔深进一步增大,获得深宽比较为理想的焊缝。
但是,此种方法要求精确控制气流量大小、方向,否则容易产生紊流而破坏熔池,导致焊接过程难以稳定。
(6)透镜焦距。
焊接时通常采用聚焦方式会聚激光,一般选用63~254mm(2.5”~10”)焦距的透镜。
聚焦光斑大小与焦距成正比,焦距越短,光斑越小。
但焦距长短也影响焦深,即焦深随着焦距同步增加,所以短焦距可提高功率密度,但因焦深小,必须精确保持透镜与工件的间距,且熔深也不大。
由于受焊接过程中产生的飞溅物和激光模式的影响,实际焊接使用的最短焦深多为焦距126mm(5”)。
当接缝较大或需要通过加大光斑尺寸来增加焊缝时,可选择254mm(10”)焦距的透镜,在此情况下,为了达到深熔小孔效应,需要更高的激光输出功率(功率密度)。
当激光功率超过2kW时,特别是对于10.6μm的CO2激光束,由于采用特殊光学材料构成光学系统,为了避免聚焦透镜遭光学破坏的危险,经常选用反射聚焦方法,一般采用抛光铜镜作反射镜。
由于能有效冷却,它常被推荐用于高功率激光束聚焦。
(7)焦点位置。
焊接时,为了保持足够功率密度,焦点位置至关重要。
焦点与工件表面相对位置的变化直接影响焊缝宽度与深度。
在大多数激光焊接应用场合,通常将焦点的位置设置在工件表面之下大约所需熔深的1/4处。
(8)激光束位置。
对不同的材料进行激光焊接时,激光束位置控制着焊缝的最终质量,特别是对接接头的情况比搭接结头的情况对此更为敏感。
例如,当淬火钢齿轮焊接到低碳钢鼓轮,正确控制激光束位置将有利于产生主要有低碳组分组成的焊缝,这种焊缝具有较好的抗裂性。
有些应用场合,被焊接工件的几何形状需要激光束偏转一个角度,当光束轴线与接头平面间偏转角度在100度以内时,工件对激光能量的吸收不会受到影响。
(9)焊接起始、终止点的激光功率渐升、渐降控制。
激光深熔焊接时,不管焊缝深浅,小孔现象始终存在。
当焊接过程终止、关闭功率开关时,焊缝尾端将出现凹坑。
另外,当激光焊层覆盖原先焊缝时,会出现对激光束过度吸收,导致焊件过热或产生气孔。
为了防止上述现象发生,可对功率起止点编制程序,使功率起始和终止时间变成可调,即起始功率用电子学方法在一个短时间内从零升至设置功率值,并调节焊接时间,最后在焊接终止时使功率由设置功率逐渐降至零值。
三、激光深熔焊特征及优、缺点(1)激光深熔焊的特征1)高的深宽比。
因为熔融金属围着圆柱形高温蒸气腔体形成并延伸向工件,焊缝就变成深而窄。
2)最小热输入。
因为小孔内的温度非常高,熔化过程发生得极快,输入工件热量很低,热变形和热影响区很小。
3)高致密性。
因为充满高温蒸气的小孔有利于焊接熔池搅拌和气体逸出,导致生成无气孔的熔透焊缝。
焊后高的冷却速度又易使焊缝组织细微化。
4)强固焊缝。
因为炽热热源和对非金属组分的充分吸收,降低杂质含量、改变夹杂尺寸和其在熔池中的分布。
焊接过程无需电极或填充焊丝,熔化区受污染少,使得焊缝强度、韧性至少相当于甚至超过母体金属。
5)精确控制。
因为聚焦光点很小,焊缝可以高精确定位。
激光输出无“惯性”,可在高速下急停和重新起始,用数控光束移动技术则可焊接复杂工件。
6)非接触大气焊接过程。
因为能量来自光子束,与工件无物理接触,所以没有外力施加工件。
另外,磁和空气对激光都无影响。
(2)激光深熔焊的优点1)由于聚焦激光比常规方法具有高得多的功率密度,导致焊接速度快,受热影响区和变形都很小,还可以焊接钛等难焊的材料。
2)因为光束容易传输和控制,又不需要经常更换焊枪、喷嘴,又没有电子束焊接所需的抽真空,显著减少停机辅助时间,所以有荷系数和生产效率都高。
3)由于纯化作用和高的冷却速度,焊缝强度、韧性和综合性能高。
4)由于平均热输入低,加工精度高,可减少再加工费用;另外,激光焊接运转费用也较低,从而可降低工件加工成本。
5)对光束强度和精细定位能有效控制,容易实现自动化操作。
(3)激光深熔焊的缺点1)焊接深度有限。
2)工件装配要求高。
3)激光系统一次性投资较高。