四川省2016年阿坝州中考数学试卷及参考答案
2017年四川省阿坝州中考数学试卷(含答案解析)

2017年四川省阿坝州中考数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)﹣2的倒数是()A.﹣2 B.﹣ C.D.22.(4分)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.3.(4分)下列计算正确的是()A.a3+a2=2a5B.a3•a2=a6 C.a3÷a2=a D.(a3)2=a94.(4分)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.115.(4分)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大6.(4分)如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°7.(4分)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm8.(4分)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.59.(4分)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.10.(4分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个二、填空题(共5小题,每小题4分,满分20分)11.(4分)因式分解:2x2﹣18=.12.(4分)数据1,2,3,0,﹣3,﹣2,﹣l的中位数是.13.(4分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.14.(4分)若一元二次方程x2+4x+c=0有两个相等的实数根,则c的值是.15.(4分)在函数y=中,自变量x的取值范围是.三、解答题(共5小题,满分40分)16.(10分)(1)计算:(﹣2)0+()﹣1+4sin60°﹣|﹣|.(2)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣1=0.17.(6分)如图,小明在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)18.(6分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.19.(8分)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.20.(10分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O 交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.四、填空题(每小题4分,共20分)21.(4分)在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.22.(4分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.23.(4分)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.24.(4分)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.25.(4分)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是.五、解答题:(本大题共3小题,共30分)26.(8分)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?27.(10分)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;28.(12分)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.2017年四川省阿坝州中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2017•阿坝州)﹣2的倒数是()A.﹣2 B.﹣ C.D.2【分析】根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.【解答】解:∵﹣2×=1.∴﹣2的倒数是﹣,故选:B.【点评】本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.(4分)(2017•阿坝州)如图是由三个相同小正方体组成的几何体的主视图,那么这个几何体可以是()A. B. C. D.【分析】解答此题首先要明确主视图是从物体正面看到的图形,然后根据几何体的主视图,判断出这个几何体可以是哪个图形即可.【解答】解:∵几何体的主视图由3个小正方形组成,下面两个,上面一个靠左,∴这个几何体可以是.故选:A.【点评】此题主要考查了三视图的概念,要熟练掌握,解答此题的关键是要明确:主视图是从物体正面看到的图形.3.(4分)(2017•阿坝州)下列计算正确的是()A.a3+a2=2a5B.a3•a2=a6 C.a3÷a2=a D.(a3)2=a9【分析】根据合并同类项法则、同底数幂的乘法法则、同底数幂的除法法则、积的乘方法则计算,判定即可.【解答】解:a3与a2不是同类项,不能合并,A错误;a3•a2=a5,B错误;a3÷a2=a,C正确;(a3)2=a6,D错误,故选:C.【点评】本题考查的是合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方,掌握相关的法则是解题的关键.4.(4分)(2017•阿坝州)已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.11【分析】利用多边形的外角和是360°,正多边形的每个外角都是36°,即可求出答案.【解答】解:360°÷36°=10,所以这个正多边形是正十边形.故选C.【点评】本题主要考查了多边形的外角和定理.是需要识记的内容.5.(4分)(2017•阿坝州)对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是75%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.6.(4分)(2017•阿坝州)如图,已知∠AOB=70°,OC平分∠AOB,DC∥OB,则∠C为()A.20°B.35°C.45°D.70°【分析】根据角平分线的定义可得∠AOC=∠BOC,再根据两直线平行,内错角相等即可得到结论.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC=AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故选B.【点评】本题考查了等腰三角形的判定与性质,角平分线的定义,平行线的性质,熟记各性质并准确识图是解题的关键.7.(4分)(2017•阿坝州)如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A.2cm B.cm C.2cm D.2cm【分析】通过作辅助线,过点O作OD⊥AB交AB于点D,根据折叠的性质可知OA=2OD,根据勾股定理可将AD的长求出,通过垂径定理可求出AB的长.【解答】解:过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD===(cm),∵OD⊥AB,∴AB=2AD=2cm.故选:D.【点评】本题考查了垂径定理和勾股定理的运用,正确应用勾股定理是解题关键.8.(4分)(2017•阿坝州)如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O 的半径为5,AB=8,则CD的长是()A.2 B.3 C.4 D.5【分析】根据垂径定理由OC⊥AB得到AD=AB=4,再根据勾股定理开始出OD,然后用OC﹣OD即可得到DC.【解答】解:∵OC⊥AB,∴AD=BD=AB=×8=4,在Rt△OAD中,OA=5,AD=4,∴OD==3,∴CD=OC﹣OD=5﹣3=2.故选A.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.9.(4分)(2017•阿坝州)如图,在Rt△ABC中,斜边AB的长为m,∠A=35°,则直角边BC的长是()A.msin35°B.mcos35° C.D.【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做∠A的正弦可得答案.【解答】解:sin∠A=,∵AB=m,∠A=35°,∴BC=msin35°,故选:A.【点评】此题主要考查了锐角三角函数,关键是掌握正弦定义.10.(4分)(2017•阿坝州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共5小题,每小题4分,满分20分)11.(4分)(2017•阿坝州)因式分解:2x2﹣18=2(x+3)(x﹣3).【分析】提公因式2,再运用平方差公式因式分解.【解答】解:2x2﹣18=2(x2﹣9)=2(x+3)(x﹣3),故答案为:2(x+3)(x﹣3).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)(2017•阿坝州)数据1,2,3,0,﹣3,﹣2,﹣l的中位数是0.【分析】先把数据按从小到大排列:﹣3,﹣2,﹣1,0,1,2,3,共有7个数,最中间一个数为0,根据中位数的定义求解.【解答】解:把数据按从小到大排列:﹣3,﹣2,﹣1,0,1,2,3,共有7个数,最中间一个数为0,所以这组数据的中位数为0.故答案为:0.【点评】本题考查了中位数的定义:把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数.13.(4分)(2017•阿坝州)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.(4分)(2017•阿坝州)若一元二次方程x2+4x+c=0有两个相等的实数根,则c的值是4.【分析】根据一元二次方程x2+4x+c=0有两个相等的实数根,得出△=16﹣4c=0,解方程即可求出c的值.【解答】解:∵一元二次方程x2+4x+c=0有两个相等的实数根,∴△=16﹣4c=0,解得c=4.故答案为4.【点评】本题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.15.(4分)(2017•阿坝州)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.三、解答题(共5小题,满分40分)16.(10分)(2017•阿坝州)(1)计算:(﹣2)0+()﹣1+4sin60°﹣|﹣|.(2)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣1=0.【分析】(1)根据零指数幂、负指数幂、特殊角的三角函数值、绝对值的性质化简即可.(2)根据分式的混合运算法则,化简后整体代入即可解决问题;【解答】解:(1)原式=1+3+2﹣2=4.(2)原式=•﹣=﹣==当x(x+2)=1时,原式=4.【点评】本题考查零指数幂、负指数幂、特殊角的三角函数值、绝对值的性质、分式的混合运算法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(6分)(2017•阿坝州)如图,小明在A处测得风筝(C处)的仰角为30°,同时在A正对着风筝方向距A处30米的B处,小明测得风筝的仰角为60°,求风筝此时的高度.(结果保留根号)【分析】根据“等角对等边”求出BC的长,然后在Rt△BCD中,利用三角函数求出CD的长.【解答】解:∵∠A=30°,∠CBD=60°,∴∠ACB=30°,∴BC=AB=30米,在Rt△BCD中,∠CBD=60°,BC=30,∴sin∠CBD=,sin60°=,∴CD=15米,答:风筝此时的高度15米.【点评】本题考查了等腰三角形的应用﹣仰角俯角问题,构造合适的直角三角形是解题的关键.18.(6分)(2017•阿坝州)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了120名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是30%;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有450名.【分析】(1)根据安全意识一般的有18人,所占的百分比是15%,据此即可求得调查的总人数,然后利用百分比的意义求得安全意识为“很强”的学生占被调查学生总数的百分比;(2)利用总人数乘以对应的百分比即可求解;(3)利用总人数1800乘以对应的比例即可.【解答】解:(1)调查的总人数是:18÷15%=120(人),安全意识为“很强”的学生占被调查学生总数的百分比是:=30%.故答案是:120,30%;(2)安全意识“较强”的人数是:120×45%=54(人),;(3)估计全校需要强化安全教育的学生约1800×=450(人),故答案是:450.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.19.(8分)(2017•阿坝州)如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.(1)求直线l的表达式;(2)若反比例函数y=的图象经过点P,求m的值.【分析】(1)由条件可先求得B点坐标,再利用待定系数法可求得直线l的表达式;(2)先求得P点坐标,再代入反比例函数解析式可求得m的值.【解答】解:(1)∵A(2,0),∴OA=2.∵tan∠OAB==,∴OB=1,∴B(0,1),设直线l的表达式为y=kx+b,则,解得,∴直线l的表达式为y=﹣x+1;(2)∵点P到y轴的距离为1,且点P在y轴左侧,∴点P的横坐标为﹣1,又∵点P在直线l上,∴点P的纵坐标为:﹣×(﹣1)+1=,∴点P的坐标是(﹣1,),∵反比例函数y=的图象经过点P,∴=,∴m=﹣1×=﹣.【点评】本题主要考查函数图象上点的坐标特征,掌握待定系数应用的关键是求得点的坐标,注意三角函数定义的应用.20.(10分)(2017•阿坝州)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.【分析】(1)直线DE与圆O相切,理由如下:连接OD,由OD=OA,利用等边对等角得到一对角相等,等量代换得到∠ODE为直角,即可得证;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,在直角三角形OCE中,利用勾股定理列出关于x的方程,求出方程的得到x的值,即可确定出DE的长.【解答】解:(1)直线DE与⊙O相切,理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.【点评】此题考查了直线与圆的位置关系,以及线段垂直平分线定理,熟练掌握直线与圆相切的性质是解本题的关键.四、填空题(每小题4分,共20分)21.(4分)(2017•阿坝州)在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是.【分析】先画树状图展示所有6种等可能的结果数,再找出两次都摸到红球的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中两次都摸到红球的结果数为2,所以随机摸出1个球,两次都摸到红球的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.(4分)(2017•阿坝州)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE= 4.5.【分析】根据位似图形的性质得出AO,DO的长,进而得出==,求出DE 的长即可.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.【点评】此题主要考查了位似图形的性质以及坐标与图形的性质,根据已知点的坐标得出==是解题关键.23.(4分)(2017•阿坝州)如图,已知点P (6,3),过点P 作PM ⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y=的图象交PM 于点A ,交PN 于点B .若四边形OAPB 的面积为12,则k= 6 .【分析】根据点P (6,3),可得点A 的横坐标为6,点B 的纵坐标为3,代入函数解析式分别求出点A 的纵坐标和点B 的横坐标,然后根据四边形OAPB 的面积为12,列出方程求出k 的值.【解答】解:∵点P (6,3),∴点A 的横坐标为6,点B 的纵坐标为3,代入反比例函数y=得,点A 的纵坐标为,点B 的横坐标为,即AM=,NB=,∵S 四边形OAPB =12,即S 矩形OMPN ﹣S △OAM ﹣S △NBO =12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.24.(4分)(2017•阿坝州)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为12.【分析】根据平移的性质得出四边形APP′A′是平行四边形,进而得出AD,PP′的长,求出面积即可.【解答】解:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∵抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),∴PO==2,∠AOP=45°,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=2×2=4,∴AD=DO=sin45°•OA=×3=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4×=12.故答案为:12.【点评】此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP′是解题关键.25.(4分)(2017•阿坝州)如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0),…,则点P2017的坐标是(672,1).(2n,1),【分析】先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+1(2×336,0),可得P2016(672,0),进而得到P2017(672,1).再根据P6×336【解答】解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n(2n,+11),2016÷6=336,(2×336,0),即P2016(672,0),∴P6×336∴P2017(672,1),故答案为:(672,1).【点评】本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0).五、解答题:(本大题共3小题,共30分)26.(8分)(2017•阿坝州)某商品的进价为每件40元,售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.(1)当每件商品的售价是多少元时,每个月的利润刚好是2250元?(2)当每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【分析】(1)如果每件商品的售价每上涨1元,则每个月少卖2件,可得销售量为100﹣2(x﹣60),销售量乘以利润即可得到等式[100﹣2(x﹣60)](x﹣40)=2250,解答即可;(2)将(1)中的2250换成y即可解答.【解答】解:(1)[100﹣2(x﹣60)](x﹣40)=2250,解得:x1=65,x2=85.(2)由题意:y=[100﹣2(x﹣60)](x﹣40)=﹣2x2+300x﹣8800;y=﹣2(x﹣75)2+2450,当x=75时,y有最大值为2450元.【点评】本题考查了一元二次方程的应用和二次函数的应用,最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.27.(10分)(2017•阿坝州)如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.(1)求证:BD=CE;(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;【分析】(1)依据等腰三角形的性质得到AB=AC,AD=AE,依据同角的余角相等得到∠DAB=∠CAE,然后依据SAS可证明△ADB≌△AEC,最后,依据全等三角形的性质可得到BD=CE;(2)分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:(1)∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE.∴△ADB≌△AEC.∴BD=CE.(2)解:①当点E在AB上时,BE=AB﹣AE=1.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=.∴=.∴PB=.②当点E在BA延长线上时,BE=3.∵∠EAC=90°,∴CE==.同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠BEP=∠CEA,∴△PEB∽△AEC.∴=.∴=.∴PB=.综上所述,PB的长为或.【点评】本题主要考查的是旋转的性质、等腰三角形的性质、全等三角形的性质和判定、相似三角形的性质和判定,证明得△PEB∽△AEC是解题的关键.28.(12分)(2017•阿坝州)如图,抛物线y=ax2﹣x﹣2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.【分析】方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.=BC×h表示,若要它的面积最大,需要使h取(3)△MBC的面积可由S△MBC最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)略.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC ⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.【解答】方法一:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a﹣×4﹣2,即:a=;∴抛物线的解析式为:y=x2﹣x﹣2.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=4,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2﹣x﹣2,即:x2﹣2x﹣2﹣b=0,且△=0;∴4﹣4×(﹣2﹣b)=0,即b=﹣4;∴直线l:y=x﹣4.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×4=4.方法二:(1)略.(2)∵y=(x﹣4)(x+1),∴A(﹣1,0),B(4,0).C(0,﹣2),∴K AC==﹣2,K BC==,∴K AC×K BC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(4,0),C(0,﹣2),∴l BC:y=x﹣2,设H(t,t﹣2),M(t,t2﹣t﹣2),∴S=×(H Y﹣M Y)(B X﹣C X)=×(t﹣2﹣t2+t+2)(4﹣0)=﹣t2+4t,△MBC∴当t=2时,S有最大值4,∴M(2,﹣3).【点评】考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.。
近几年甘孜州阿坝州数学中考试卷真题

阿坝、甘孜州二O 一O 年初中毕业会考暨高中阶段学校招生统一考试数学试卷2.全卷共10页,用蓝色或黑色钢笔、圆珠笔直接答在试卷上.3.本试卷由A 卷和B 卷组成.A 卷满分100分,B 卷满分50分.120分钟内完卷.A 卷(100分)一、选择题:(本大题共10小题,每小题4分,共40分):以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的,把正确答案的代号填在括号内.1.(-3)2的结果是( ) A. 6 B. -6 C. 9 D. -9 2.下列计算正确的是( )A.(m+n )2=m 2+n 2B.m 2·m 3=m 5C. 2m +3n =5mnD.3.如图,已知直线AC ∥ED ,∠C =30°,∠BED =70°,则∠CBE 度数是 ( ) A.20° B.100° C. 55° D. 40°4.下列哪个不等式组的解集在数轴上表示如图所示 ( )5.某市统计局发布的统计公报显示,2006年到2010年,某市GDP 增长率分别为9.9%、10.1%、10.3%、10.5%、10.2%. 经济评论员说,这5年该的GDP 增长率相当平稳,从统计学的角度看,“增长率相当平稳”说明这组数据的 比较小. A.中位数 B. 方差 C.众数 D.平均数A.所有正方形都全等B. C.相等的圆周角所对的弧相等D. 顺次连结四边形各边中点所得到的四边形是平行四边形7.数学课外兴趣小组的同学每人制作一个面积为200cm 2的三角形学具进行展示. 设三角形的一边长为x cm ,该边上的高为y cm ,那么这些同学所制作的三角形的高y (cm )与边长x (cm )之间的函数关系的图象大致是 ( )8.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是 ( )A.∠ACB=∠AOEB.AD=BDC. 12AOB ABC S S ∆∆=D.AE BE=9.如图,为一个多面体的表面展开图,每个面内都标注了数字. 若数字为6的面是底面,则朝上一面所标注的数字为(A.5B.4C.3D.210.如图,OAB△绕点O 逆时针旋转80°得到OCD △,若110A ∠=°,40D ∠=°,则α∠的度数是( ) A .60° B .50° C .40° D .30°二、填空题:(本大题共4小题,每小题4分,共16分)11.分解因式:39x x -= .12.如图,已知在Rt ABC △中,90ACB ︒∠=,4AB =,分别以AC ,BC 为边向外作正方形,面积分别记为1S ,2S ,则1S +2S 的值等于 .(第9 B(第10题)中,菱形OACB 的顶点O 在原点,点C 的坐标为(40),,点B 的纵坐标是1-,则顶点A 的坐标是 _.14.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为 .三、解答题:(本大题共5小题,共44分)15.(本小题满分6分)1012)4sin 60|3-⎛⎫++- ⎪⎝⎭°.16. (本小题满分6分)解方程:22333x x x -=---17.(本小题满分7分)某镇开展了党员干部“一帮一扶贫”活动.为了解贫困群众对帮扶情况的满意程度,有关部门在该镇所管辖的两个乡内,分别随机抽取了若干名贫困群众进行问卷调查.根据收集的信息进行了统计,并绘制了下面尚不完整的统计图.已知在甲区所调查的贫困群众中,非常满意的人数占甲区所调查的总人数的35%.根据统计图所提供的信息解答下列问题:(1)甲区参加问卷调查的贫困群众有多少人?(2)请将统计图补充完整;(3)小明说:“因为甲区有30人不满意,乙区有40人不满意,所以甲区的不满意率比乙18.(本小题满分7分)杨佳和杨靓是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,杨佳和杨靓都想先挑选.于是杨佳设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则杨佳先挑选;否则杨靓先挑选.(1)用树状图或列表法求出杨佳先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.第17题图19、(本小题满分8分)如图一次函数y kx b =+的图象与反比例函数xmy =的图象相交于点A (1, 4-)、点B (3,n ). (1)求此一次函数和反比例函数的解析式; (2)求△AOB 的面积.20、(本小题满分10分)如图,△ABC 中,AB =AC ,AD 、AE 分别是∠BAC 和∠BAC 的外角的平分线,BE ⊥AE . (1)求证:AE ⊥DA ;(2)试判断AB 与DE 是否相等?并证明你的结论.B 卷(50分)四、填空题(每小题4分,共20分) 21.已知x 2+3x -3=0,那么4x 2+12x +2010的值为 . 22.a 、b 、c 、d 为实数,先规定一种新的运算:a c ad bcb d=-,那么3423(1)5x =-时,x = .23.如图,已知等腰三角形ABC 中,AB =AC ,∠A =36°,BD 为∠ABC 的平分线,则AD AC的值等于.第23题 第25题24.若点(-2, a ),(-1, b ),(1, c )在反比例函数1y x=的图象上,则a 、b 、c 的大小关系为 .(用“<”连接)25.如图AB 是半圆O 的直径,CB 是半圆O 的切线,B 是切点,AC 交半圆O 于点D ,已知CD =1,AD =4,则tan ∠CAB = .五、解答题:(本大题共3小题,共30分) 26.(本题共10分)某商店专销一种文具盒,进价12元/个,售价20元/个,为了促销,商店决定凡是买10只以上的,每多买一只,售价就降低0.10元(例如,某人买20个文具盒,于是每个降价0.10×(20-10)=1元,就可以按19元/个的价格购买),但是最低价为16元/个.(1)求顾客一次至少买多少个,才能以最低价购买?(2)有一天,一位甲顾客买了46个,另一位乙顾客买了50个,求商店在甲乙顾客的购买中分别赚了多少元?(3)写出当顾客一次购买x 个时(x >10),商店利润y (元)与购买量x (个)之间的函数关系式.27.(本题共10分) 如图,已知F 是以AC 为直径的半圆O 上任一点,过AC 上任一点(1)求证:DF是⊙O的切线;(2)若BF=AF,求证:AF2=EF·CF如图,在平面直角坐标系中,已知点A坐标为(-2, 4),直线x=-2与x轴相交于点B,连结OA,抛物线y=x2从点O沿OA方向平移,与(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;③当线段PB最短时,在抛物线对称轴的右侧是否存在一点Q,使△PMQ为直角三角形.阿坝、甘孜州二O 一O 年初中毕业会考暨高中阶段学校招生统一考试数学试题参考答案及评分意见说明:1. 正式阅卷前务必认真阅读参考答案和评分意见,明确评分标准,不得随意拔高或降低标准.2. 全卷满分150分,参考答案和评分意见所给分数表示考生正确完成当前步骤时应得的累加分数.3. 参考答案和评分意见仅是解答的一种,如果考生的解答与参考答案不同,只要正确就应该参照评分意见给分.合理精简解答步骤,其简化部分不影响评分.4. 要坚持每题评阅到底.如果考生解答过程发生错误,只要不降低后继部分的难度且后继部分再无新的错误,可得不超过后继部分应得分数的一半,如果发生第二次错误,后面部分不予得分;若是相对独立的得分点,其中一处错误不影响其它得分点的评分.A 卷(100分)一、选择题:(本大题共10小题,每小题4分,共40分):以下每小题给出代号为A 、B 、C 、D 的四个选项中,只有一项是符合题目要求的,把正确答案的代号填在括号内.1.C2.B3.D4.D5.B6.A7.B8.C9.D 10.B 二、填空题:(本大题共4小题,每小题4分,共16分) 11. (3)(3)x x x +- 12. 16 13. (2,1) 14. 4 三、解答题:(本大题共6小题,共44分) 15. (本小题满分6分) 解:原式=1+3+4×2-………………………………4分 =4……………………………………………………6分16.(本小题满分6分) 解:17.(本小题满分7分)223133223(3)322394255526x x x x x x x x x x -=-----=----=--+==……………………………………分……………………………………分………………………………………分……………………………………………………分5经检验:=是原方程的根…………………………分2解:(1)1200 ························································································································ 2分 (2)图形正确(甲区满意人数有500人) ··········································································· 4分 (3)不正确. ························································································································ 5分 ∵甲区的不满意率是30 2.5%1200=,乙区的不满意率是402%70076050040=+++, ∴甲区的不满意率比乙区的不满意率高. ············································································ 7分18.(本小题满分7分).解:(1)根据题意可列表或树状图如下:第一次第二次1 2 3 41—— (1,2) (1,3) (1,4) 2(2,1) —— (2,3) (2,4) 3(3,1) (3,2) —— (3,4) 4(4,1) (4,2) (4,3) —— ··································································································· 4分···················································································································· 4分从表或树状图可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)23=·········································································································· 5分 (2)不公平. ························································································································ 6分 ∵杨佳先挑选的概率是P (和为奇数)23=,杨靓先挑选的概率是P (和为偶数)13=,∵2133≠,∴不公平. ··········································································································· 7分19、(本小题满分8分)解:(1)将点A (1, 4-)代入x m y =中,41m -= ∴m =-4∴反比例函数解析式为4y x =-······································································ 2分 将B (3,n )代入4y x =-中,43n =-,∴B 点坐标为(3,43-)………………………………………… ················· 3分 (1,2) (1,3) (1,4) 2 3 4 1 (1,1) (2,3) (2,4) 1 3 4 2 (3,1) (3,2) (3,4) 1 2 4 3 (4,1) (4,2) (4,3) 1 2 3 4 第一次摸球第二次摸球将A (1, 4-)、B (3,43-)的坐标分别代入y kx b =+中,得4433k b k b +=-⎧⎪⎨+=-⎪⎩,解得43163k b ⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的解析式为41633y x =-………………………… ······················ 5分(2)设一次函数解析式图象与x 轴交与点C ,当y =0时,416033x -=, x =4,∴C 点坐标(4,0) ∴OC =4 …………………… 6分S △AOC =21·OC ·| y A | =21×4×4=8, S △BOC =21·OC ·| y B | =21×4×43=83S △AOB = S △AOC -S △BOC =883-=163······························································· 8分20、(本小题满分10分)解:(1)证明:1212 18011()18090422905AD BAC BAD BAC AE BAF BAE BAF BAC BAF BAD BAE BAC BAF DAE AE DA ⎫∠⇒∠∠⎪⎪⎪∠⇒∠∠⎬⎪⎪⎪∠+∠=︒⎭⇒∠+∠∠+∠=⨯︒=︒⇒∠=︒⇒⊥平分=平分==分分(2)AB =DE ,理由是:………………………………6分907 B 9 90 90810AB AC AD BC ADB AD BAC AE D BE AE AEB DAE AB DE=⎫⎫⇒⊥⇒∠=︒⎬⎪∠⎭⎪⎪⇒⎬⎪⊥⇒∠=︒⎪⎪∠=︒⎭⇒=分平分四边形是矩形分分分B 卷四、(每小题4分,共20分)21.∵x 2+3x -3=0,∴x 2+3x =3 4x 2+12x =12,4x 2+12x +2010=12+2012=202422.∵3×5-4(1-x )=23,∴15-4+4x =23 11+4x =23 4x =12 ∴x =3 23.AD AC =24.b <a <c25.12五、解答题:(本大题共3小题,共30分) 26.(本小题满分10分)解:(1)设至少购买a 个 20-16=40.10×(a -10)=4元a =50个 ………………………………………………2分 (2)甲顾客降0.10×(46-10)=3.6元 每个利润:20―12―3.6=4.4元/个4.4×46=202.4元 …………………………4分 乙顾客降:0.10×(50-10)=4元 每个利润:20―12―4=4元/个4×50=200元 ……………………………………6分 ∴商店在甲顾客处赚了202.4元,在乙顾客处赚了200元。
四川初三初中数学中考真卷带答案解析

四川初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列各式计算正确的是()A.B.C.D.2.已知,则代数式的值为()A.0B.1C.2D.33.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A的1的坐标为()坐标是(4,10),则点B的对应点B1A.(7,1)B.B(1,7)C.(1,1)D.(2,1)4.将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.5.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40B.45,60C.30,60D.45,406.已知关于x的一元二次方程的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,27.如图所示,底边BC为,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.B.C.4D.8.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm9.“一方有难,八方支援”,雅安芦山420地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60B.70C.80D.9010.若式子有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.11.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.B.C.D.二、填空题1.1.45°= ′.2.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m= .3.一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.4.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.三、解答题1.(1)计算:;(2)先化简,再求值:,其中x=﹣2.2.解下列不等式组,并将它的解集在数轴上表示出来..3.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=.4.我们规定:若=(a,b),=(c,d),则=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.5.已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.6.已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.7.如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.四川初三初中数学中考真卷答案及解析一、选择题1.下列各式计算正确的是()A.B.C.D.【答案】D.【解析】A.,故本选项错误;B.,故本选项错误;C.与不是同类项,不能合并,故本选项错误;D.,故本选项正确;故选D.【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.2.已知,则代数式的值为()A.0B.1C.2D.3【答案】B.【解析】∵,∴==2×1﹣1=1.故选B.【考点】代数式求值;条件求值;整体代入.的3.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标为()坐标是(4,10),则点B的对应点B1A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【答案】C.【解析】∵点A(0,6)平移后的对应点A为(4,10),4﹣0=4,10﹣6=4,∴△ABC向右平移了4个单位长1度,向上平移了4个单位长度,∴点B的对应点B的坐标为(﹣3+4,﹣3+4),即(1,1).故选C.1【考点】坐标与图形变化-平移.4.将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.【答案】B.【解析】将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选B.【考点】简单组合体的三视图;点、线、面、体.5.某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40B.45,60C.30,60D.45,40【答案】B.【解析】由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【考点】扇形统计图.6.已知关于x的一元二次方程的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2B.﹣4,﹣2C.4,2D.﹣4,2【答案】D.【解析】由根与系数的关系式得:,=﹣2,解得:=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D.【考点】根与系数的关系.7.如图所示,底边BC为,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.B.C.4D.【答案】A.【解析】过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=,∴△ACE的周长=AC+AE+CE=AC+BC=,故选A.【考点】等腰三角形的性质;线段垂直平分线的性质.8.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm【答案】A.【解析】如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∴AC⊥BD,S四边形=AC•BD,∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得ABCDAB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.【考点】菱形的判定与性质.9.“一方有难,八方支援”,雅安芦山420地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60B.70C.80D.90【答案】C.【解析】设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选C.【考点】一元一次不等式的应用.10.若式子有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.【答案】C.【解析】∵式子有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选C.【考点】一次函数的图象;零指数幂;二次根式有意义的条件.11.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.B.C.D.【答案】D.【解析】设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴=BE•DE,即,∴AE=x,在Rt△ADE中,由勾股定理可得,即,解得x=,∴AE=3,DE=,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=,故选D.【考点】矩形的性质;轴对称-最短路线问题;最值问题.二、填空题1.1.45°= ′.【答案】87′.【解析】1.45°=60′+0.45×60′=87′.故答案为:87′.【考点】度分秒的换算.2.P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m= .【答案】4.【解析】∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4××(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∴m=4,故答案为:4.【考点】有理数的乘法;新定义.3.一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.【答案】.【解析】列表如下图:由表格可知,现从上下层随机各取1本,共有12种等可能结果,其中抽到的2本都是数学书的有2种结果,∴抽到的2本都是数学书的概率为=,故答案为:.【考点】列表法与树状图法.4.如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.【答案】8.【解析】连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE===8;故答案为:8.【考点】圆周角定理;等腰三角形的性质.三、解答题1.(1)计算:;(2)先化简,再求值:,其中x=﹣2.【答案】(1)﹣6;(2)2﹣x,4.【解析】(1)分别根据有理数乘方的法则、负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把x=﹣2代入进行计算即可.试题解析:(1)原式===﹣6.(2)原式===1﹣(x﹣1)=1﹣x+1=2﹣x.当x=﹣2时,原式=2+2=4.【考点】分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.2.解下列不等式组,并将它的解集在数轴上表示出来..【答案】x<﹣1.【解析】先分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.试题解析:,由①得,x<﹣1,由②得,x≤2,故此不等式组的解集为:x<﹣1.在数轴上表示为:【考点】解一元一次不等式组;在数轴上表示不等式的解集.3.甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=.【答案】(1);(2)甲的射击成绩更稳定.【解析】(1)根据条形统计图求出乙的射击总数与不少于9环的次数,根据概率公式即可得出结论;(2)求出乙的平均成绩及方差,再与甲的平均成绩及方差进行比较即可.试题解析:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=;(2)=(2×7+3×8+6×9+1×10)÷12=8.5(环);===.∵=,<,∴甲的射击成绩更稳定.【考点】概率公式;方差.4.我们规定:若=(a,b),=(c,d),则=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.【答案】(1)﹣8;(2)不相交.【解析】(1)直接利用=(a,b),=(c,d),则=ac+bd,进而得出答案;(2)利用已知的出y与x之间的函数关系式,再联立方程,结合根的判别式求出答案.试题解析:(1)∵=(2,4),=(2,﹣3),∴=2×2+4×(﹣3)=﹣8;(2)∵=(x﹣a,1),=(x﹣a,x+1),∴y===,∴,联立方程:,化简得:,∵△= =﹣8<0,∴方程无实数根,两函数图象无交点.【考点】二次函数的性质;根的判别式;一次函数的性质;新定义.5.已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.【答案】(1)(0<x<20);(2)当x=10或x=16,存在点P使△PEF是Rt△.【解析】(1)在Rt△ABC中,根据三角函数可求y与x的函数关系式;(2)分三种情况:①如图1,当∠FPE=90°时,②如图2,当∠PFE=90°时,③当∠PEF=90°时,进行讨论可求x的值.试题解析:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于点E,∴sinC==,∵PC=x,PE=y,∴(0<x<20);(2)存在点P使△PEF是Rt△,①如图1,当∠FPE=90°时,四边形PEBF是矩形,BF=PE=x,四边形APEF是平行四边形,PE=AF=x,∵BF+AF=AB=10,∴x=10;②如图2,当∠PFE=90°时,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四边形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;③当∠PEF=90°时,此时不存在符合条件的Rt△PEF.综上所述,当x=10或x=16,存在点P使△PEF是Rt△.【考点】相似三角形的判定与性质;平行四边形的性质;矩形的性质;解直角三角形;动点型;存在型;分类讨论.6.已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.【答案】(1);(2)y=﹣x+3;(3)≤S△AMN<4.【解析】(1)令x=1代入一次函数y=x+3后求出C的坐标,然后把C代入反比例函数解析式中即可求出k的值;(2)设直线l2与x轴交于D,由题意知,A与D关于y轴对称,所以可以求出D的坐标,再把B点坐标代入y=ax+b即可求出直线l2的解析式;(3)设M的纵坐标为t,由题意可得M的坐标为(3﹣t,t),N的坐标为(,t),进而得MN=+t﹣3,又可知在△ABM中,MN边上的高为t,所以可以求出S△AMN与t的关系式.试题解析:(1)令x=1代入y=x+3,∴y=1+3=4,∴C(1,4),把C(1,4)代入中,∴k=4,∴双曲线的解析式为:;(2)如图所示,设直线l2与x轴交于点D,由题意知:A与D关于y轴对称,∴D的坐标为(3,0),设直线l2的解析式为:y=ax+b,把D与B的坐标代入上式,得:,∴解得:,∴直线l2的解析式为:y=﹣x+3;(3)设M(3﹣t,t),∵点P在线段AC上移动(不包括端点),∴0<t<4,∴PN∥x轴,∴N的纵坐标为t,把y=t代入,∴x=,∴N的坐标为(,t),∴MN=﹣(3﹣t)=+t﹣3,过点A作AE⊥PN于点E,∴AE=t,∴S△AMN=AE•MN=t(+t﹣3)==.由二次函数性质可知,当0≤t≤时,S△AMN 随t的增大而减小,当<t≤4时,S△AMN随t的增大而增大,∴当t=时,S△AMN 可取得最小值为,当t=4时,S△AMN可取得最大值为4,∵0<t<4,∴≤S△AMN<4.【考点】反比例函数综合题;二次函数的最值;最值问题;动点型;综合题.7.如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.【答案】(1)证明见解析;(2)12.【解析】(1)连接OC,由切线性质和垂直性质得∠1+∠3=90°、∠2+∠4=90°,继而可得∠3=∠5得证;(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=,可知QH=3、BH=4,设圆的半径为r,在RT在△OCH中根据勾股定理可得r的值,在RT△ABF中根据三角函数可得答案.试题解析:(1)连接OC,∵EC切⊙O于点C,∴OC⊥DE,∴∠1+∠3=90°,又∵OP⊥OA,∴∠2+∠4=90°,∵OA=OC,∴∠1=∠2,∴∠3=∠4,又∵∠4=∠5,∴∠3=∠5,∴DP=DC,即△PCD为等腰三角形;(2)如图2,连接OC、BC.∵DE与⊙O相切于点E,∴∠OCB+∠BCE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠BCE=90°,又∵CG⊥AB,∴∠OBC+∠BCG=90°,∴∠BCE=∠BCG,∵BF∥DE,∴∠BCE=∠QBC,∴∠BCG=∠QBC,∴QC=QB=5,∵BF∥DE,∴∠ABF=∠E,∵sinE=,∴sin∠ABF=,∴QH=3、BH=4,设⊙O的半径为r,∴在△OCH中,,解得:r=10,又∵∠AFB=90°,sin∠ABF=,∴AF=12.【考点】切线的性质;垂径定理.。
2015年四川省阿坝州中考数学试卷解析

2015年四川省阿坝州中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分,以下每小题给出的四个选项中,只有一项是符合题目要求的)2.(4分)(2015•甘孜州)如图所示的几何体的主视图是( )4.(4分)(2015•甘孜州)使二次根式的有意义的x 的取值范围是( )5.(4分)(2015•甘孜州)如图,在△ABC 中,∠B=40°,∠C=30°,延长BA至点D ,则∠CAD 的大小为( )7.(4分)(2015•甘孜州)函数y=x ﹣2的图象不经过( )8.(4分)(2015•甘孜州)某校篮球队五名主力队员的身高分别是174,179,180,174,178210.(4分)(2015•甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•张家界)因式分解:x2﹣1=.12.(4分)(2015•甘孜州)将除颜色外其余均相同的4个红球和2个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为.13.(4分)(2015•甘孜州)边长为2的正三角形的面积是.14.(4分)(2015•甘孜州)若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为.三、解答题(本大题共6小题,共44分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(6分)(2015•甘孜州)(1)计算:﹣(π﹣1)0﹣4sin45°;(2)解不等式x>x﹣2,并将其解集表示在数轴上.16.(6分)(2015•甘孜州)解分式方程:+=1.17.(7分)(2015•甘孜州)某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?18.(7分)(2015•甘孜州)如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)19.(8分)(2015•甘孜州)如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.20.(10分)(2015•甘孜州)如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).四、填空题(每小题4分,共20分)21.(4分)(2015•甘孜州)若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=.22.(4分)(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是.23.(4分)(2015•甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC 的大小为度.24.(4分)(2015•甘孜州)若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是.25.(4分)(2015•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.五、解答题(本大题共3小题,共30分,解答时应写出必要的文字说明、证明过程或演算步骤)26.(8分)(2015•甘孜州)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?27.(10分)(2015•甘孜州)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.28.(12分)(2015•甘孜州)如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x 轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.2015年四川省阿坝州中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分,以下每小题给出的四个选项中,只有一项是符合题目要求的)2.(4分)(2015•甘孜州)如图所示的几何体的主视图是()4.(4分)(2015•甘孜州)使二次根式的有意义的x的取值范围是()中解:要使5.(4分)(2015•甘孜州)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为()8.(4分)(2015•甘孜州)某校篮球队五名主力队员的身高分别是174,179,180,174,1782==10.(4分)(2015•甘孜州)如图,已知扇形AOB的半径为2,圆心角为90°,连接AB,则图中阴影部分的面积是()△OAB二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2015•张家界)因式分解:x2﹣1=(x+1)(x﹣1).12.(4分)(2015•甘孜州)将除颜色外其余均相同的4个红球和2个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为.=.故答案为:.13.(4分)(2015•甘孜州)边长为2的正三角形的面积是.BC=1=BC,故答案为:14.(4分)(2015•甘孜州)若矩形ABCD的两邻边长分别为一元二次方程x2﹣7x+12=0的两个实数根,则矩形ABCD的对角线长为5.的对角线长是:三、解答题(本大题共6小题,共44分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(6分)(2015•甘孜州)(1)计算:﹣(π﹣1)0﹣4sin45°;(2)解不等式x>x﹣2,并将其解集表示在数轴上.)×x16.(6分)(2015•甘孜州)解分式方程:+=1.17.(7分)(2015•甘孜州)某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?18.(7分)(2015•甘孜州)如图,某中学九年级数学兴趣小组测量校内旗杆AB的高度,在C点测得旗杆顶端A的仰角∠BCA=30°,向前走了20米到达D点,在D点测得旗杆顶端A的仰角∠BDA=60°,求旗杆AB的高度.(结果保留根号)=sin×=1019.(8分)(2015•甘孜州)如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.y=;)联立或(20.(10分)(2015•甘孜州)如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).BC=AB=2BC=AB=2×.四、填空题(每小题4分,共20分)21.(4分)(2015•甘孜州)若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h=2.22.(4分)(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是1.x=+32=23.(4分)(2015•甘孜州)如图,AB是⊙O的直径,弦CD垂直平分半径OA,则∠ABC 的大小为30度.OC24.(4分)(2015•甘孜州)若函数y=﹣kx+2k+2与y=(k≠0)的图象有两个不同的交点,则k的取值范围是k>﹣且k≠0.消去,>﹣时,函数y=(25.(4分)(2015•甘孜州)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为(5,﹣5).=5=5五、解答题(本大题共3小题,共30分,解答时应写出必要的文字说明、证明过程或演算步骤)26.(8分)(2015•甘孜州)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?,27.(10分)(2015•甘孜州)已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.MQ=PN=DE PQ=MN=AF,MQ=PN=AF28.(12分)(2015•甘孜州)如图,已知抛物线y=ax2﹣5ax+2(a≠0)与y轴交于点C,与x 轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.,x x+2,﹣x+2,x x+2=,==,=,参与本试卷答题和审题的老师有:sjzx;gsls;gbl210;zjx111;星期八;王学峰;py168;CJX;sd2011;sdwdmahongye;sks;zcx;zhjh;zhehe;yu123;放飞梦想;733599;wdzyzmsy@;守拙;fangcao;73zzx;张其铎(排名不分先后)菁优网2015年7月14日。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年数学中考试题及答案

2016年数学中考试题及答案【篇一:2016年全国中考数学模拟卷及答案】=txt>数学试卷一、选择题下面各题均有四个选项,其中只有一个是符合题意的。
..1.截止到2016年6月1日,北京市已建成39个地下调蓄设施,蓄水能力达到2 40 000立方平米。
将1240 000用科学记数法表示应为2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是a.a b.bc.cd.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 a. b. c. d.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为6.如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开,若测得am的长为1.2km,则m,c两点间的距离为a.0.5km b.0.6km c.0.9km d.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是 a.21,21 b.21,21.5 c.21,22 d.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是a.景仁宫(4,2)b.养心殿(-2,3) c.保和殿(1,0) d.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:a.购买a类会员年卡b.购买b类会员年卡 c.购买c类会员年卡d.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的ab,bc,ca,oa,ob,oc组成。
为记录寻宝者的进行路线,在bc的中点m处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为a.a→o→bb.b→a→cc.b→o→c d.c→b→o 二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线ab,bc,cd,de,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
近11年中考真题之2016年四川省成都市中考数学试卷及答案+附中考数学几何知识点大全
成都市二○一六年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1. 在-3,-1,1,3四个数中,比-2小的数是( )(A) -3 (B) -1 (C) 1 (D) 32.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )(A) 18.1×105(B) 1.81×106(C) 1.81×107(D) 181×1044. 计算()23x y -的结果是( )(A) 5x y - (B) 6x y (C) 32x y - (D) 62x y 5. 如图,2l l 1∥,∠1=56°,则∠2的度数为( )(A) 34° (B) 56° (C) 124° (D) 146°6. 平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标为( )(A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2) 7. 分式方程213xx =-的解为( ) (A) x=-2 (B) x=-3 (C) x=2 (D) x=38.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x (单位:分)及方差2s 如下表所示:甲 乙 丙 丁 x7 8 8 7 2s11.211.8如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁9. 二次函数223y x =-的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下(B) 抛物线经过点(2,3)(C) 抛物线的对称轴是直线x=1 (D) 抛物线与x 轴有两个交点10.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA=50°,AB=4,则BC ︵的长为( )(A) 103π (B) 109π (C) 59π (D) 518π第Ⅱ卷(非选择题,共70分)二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11. 已知|a+2|=0,则a = ______.12. 如图,△ABC ≌△'''A B C ,其中∠A =36°,∠C ′=24°,则∠B=___°. 13. 已知P 1(x 1,y 1),P 2(x 2 ,y 2)两点都在反比例函数2y x=的图象上,且x 1< x 2 < 0,则y 1 ____ y 2.(填“>”或“<”)14. 如图,在矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为_________.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15. (本小题满分12分,每题6分)(1)计算:()()32162sin 302016π-+-+-(2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围.16.(本小题满分6分)化简:22121x x x x x x -+⎛⎫-÷ ⎪-⎝⎭17.(本小题满分8分)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A 处安置测倾器,量出高度AB =1.5m ,测得旗杆顶端D 的仰角∠DBE =32°,量出测点A 到旗杆底部C 的水平距离AC =20m. 根据测量数据,求旗杆CD 的高度。
四川省阿坝藏族羌族自治州中考数学试卷
四川省阿坝藏族羌族自治州中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)实数a,b在数轴上的位置如图所示,则下列结论正确的是()A . a+b>0B . a-b>0C . ab>0D .2. (2分) (2019八上·保山月考) 下列运算正确的是()A .B .C .D .3. (2分)按组成面的平和曲划分,与圆锥为同一类的几何体是()A . 棱锥B . 棱柱C . 圆柱D . 长方体4. (2分) (2019七下·中山期中) 估计的值()A . 在3到4之间B . 在4到5之间C . 在5到6之间D . 在6到7之间5. (2分) (2016七下·邻水期末) 9的平方根为()A . 3B . ﹣3C . ±3D .6. (2分)(2020·宜兴模拟) 如图,已知矩形ABCD的四个顶点都在双曲线y=(k>0)上,BC=2AB,且矩形ABCD的面积是32,则k的值是()A . 6B . 8C . 10D . 12二、填空题 (共10题;共10分)7. (1分)若,则x=________.8. (1分)(2018·南岗模拟) 地球绕太阳公转的速度约为110000千米/时,将这个数用科学记数法表示为________9. (1分)若成立,则x满足________10. (1分)计算的结果是________.11. (1分)方程的根为________.12. (1分) (2019九上·泗阳期末) 一元二次方程x2﹣2x=0的两根分别为x1和x2 ,则x1x2为________.13. (1分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是________.14. (1分) (2017八下·君山期末) n边形的外角和是________.15. (1分) (2017八下·湖州月考) 如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(-1,0),点B的坐标为(0,2),点A在第二象限.直线y=- x+5与x轴、y轴分别交于点N、M将菱形ABCD沿x轴向右平移m 个单位,当点D落在△MON的内部时 (不包括三角形的边),则m的值可能是________.(写出一个即可)16. (1分) (2020八下·相城期中) 已知反比例函数(m为常数)的图象在一、三象限,则m 的取值范围为________.三、解答题 (共11题;共91分)17. (15分) (2016八上·宁城期末) 计算:(1)(2)(3)18. (10分)已知关于x、y的二元一次方程组(1)若m=1,求方程组的解;(2)若方程组的解中,x的值为负数,y的值为正数,求m的范围,并写出m的整数解.19. (5分)如图,AD为△ABC的中线,分别过点C、B作AD的垂线,垂足分别为E、F.求证:BF=CE.20. (3分)某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考和总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2考和总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:应聘者成绩笔试成绩加分面试成绩甲117385.6乙121085.1(1)甲、乙两人面试的平均成绩为________ ;(2)甲应聘者的考核总成绩为________ ;(3)根据上表的数据,若只应聘1人,则应录取________ .21. (10分)(2016·鄞州模拟) 某校社团活动开设的体育选修课有:篮球(A),足球(B),排球(C),羽毛球(D),乒乓球(E),每个学生选修其中的一门,学校对某班全班同学的选课情况进行调查统计后制成了以下两个统计图.(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班的其中某4个同学,1人选修篮球(A),2人选修足球(B),1人选修排球(C).若要从这4人中选2人,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.22. (5分) (2016八上·江苏期末) 已知△ABC的三边a、b、c满足 =0,求最长边上的高h.23. (10分)(2020·台州模拟) 疫情期间,甲厂欲购买某种无纺布生产口罩,A、B两家无纺布公司各自给出了该种无纺布的销售方案.A公司方案:无纺布的价格y(万元)与其重量x(吨)是如图所示的函数关系;B公司方案:无纺布不超过30吨时,每吨收费2万元;超过30吨时,超过的部分每吨收费1.9万元.(1)求如图所示的y与x的函数解析式;(不要求写出定义域)(2)如果甲厂所需购买的无纺布是40吨,试通过计算说明选择哪家公司费用较少.24. (6分)(2019·南关模拟) 如图,是的直径,是的切线,点在的延长线上,连结、 .(1)求证:(2)若,,则的长为+________.(结果保留)25. (5分)某市正在进行商业街改造,商业街起点在古民居P的南偏西60°方向上的A处,现已改造至古民居P南偏西30°方向上的B处,A与B相距150 m,且B在A的正东方向。
四川省阿坝藏族羌族自治州中考数学试卷
四川省阿坝藏族羌族自治州中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分)1. (3分)(2019·本溪模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (3分)估计的值是在()A . 3和4之间B . 4和5之间C . 5和6之间D . 6和7之间3. (3分) (2017八下·泰兴期末) 将分式中的m、n都扩大为原来的3倍,则分式的值()A . 不变B . 扩大3倍C . 扩大6倍D . 扩大9倍4. (3分)(2018·龙东) 某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A . 平均分是91B . 中位数是90C . 众数是94D . 极差是205. (3分)(2016·鄂州) 一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是()A .B .C .D .6. (3分)(2017·宜城模拟) 在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A .B .C .D .7. (3分) (2019八下·宁明期中) 已知三角形两边长分别为2和9,第三边的长为二次方程x2-14x+48=0的一根,则这个三角形的周长为()A . 11B . 17C . 19D . 17或198. (3分)若当x=2时,反比例函数y=(k1≠0)与y=k2x(k2≠0)的值相等,则k1与k2的比是()A . 1:4B . 2:1C . 4:1D . 1:2二、填空题(本大题共10小题,每小题3分,共30分) (共9题;共27分)9. (3分)(2013·绵阳) 因式分解:x2y4﹣x4y2=________.10. (3分) (2019七上·顺德期末) 对某批乒乓球的质量进行随机抽查,结果如下表所示:随机抽取的乒乓球数优等品数优等品率当越大时,优等品率趋近于概率________.(精确到)11. (3分) (2016九上·盐城开学考) 方程x(x+4)=﹣3(x+4)的解是________.12. (3分)计算:(﹣)﹣2﹣|1﹣|+4cos45°=________.13. (3分) (2019七下·十堰期末) 如图,有一条平直的等宽纸带按图折叠时,则图中∠α=________14. (3分) (2017九上·满洲里期末) 有一个边长为3的正六边形,若要剪一张圆形纸片完全盖住这个圆形,则这个圆形纸片的半径最小是________.15. (3分) (2019八下·嘉陵期中) 如图,矩形ABCD的对角线BD的中点为O,过点O作OE⊥BC于点E,连接OA,已知AB=5,BC=12,则四边形ABEO的周长为________.16. (3分) (2018九上·吴兴期末) 如图,在Rt△ABC中,∠A=60°,AB=1,将Rt△ABC绕点C按顺时针方向旋转到△A1B1C的位置,点A1刚好落在BC的延长线上,则点A从开始到结束所经过的路径长为(结果保留π)________ .17. (3分)(2018·凉州) 如图是一个运算程序的示意图,若开始输入的值为625,则第2018次输出的结果为________.三、解答题(本大题共有10小题,共96分) (共10题;共96分)18. (8分) (2017九上·潮阳月考) 计算:19. (8分)(2016·江都模拟) 计算下列各题(1)计算:(﹣π)0﹣6tan30°+()﹣2+|1+ |.(2)解不等式组,并写出它的所有整数解.20. (8.0分)(2011·南宁) 南宁市某校七年级实行小组合作学习,为了解学生课堂发言情况,随机抽取该年级部分学生,对他们每天在课堂上发言的次数进行调查和统计,统计表如下,并绘制了两幅不完整的统计图.已经知A、B两组发言人数直方图高度比为1:5.请结合图中相关的数据回答下列问题:(1) A组的人数是多少?本次调查的样本容量是多少?(2)求出C组的人数并补全直方图.(3)该校七年级共有250人,请估计全年级每天在课堂上发言次数不少于15次的人数.21. (8分)(2012·温州) 一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.22. (10分) (2017八下·鹤壁期中) 甲、乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度.23. (10分)(2018·潍坊) 如图1,在中,于点的垂直平分线交于点 ,交于点 ,,.(1)如图2,作于点 ,交于点 ,将沿方向平移,得到,连接.①求四边形的面积;②直线上有一动点 ,求周长的最小值.(2)如图3.延长交于点.过点作 ,过边上的动点作 ,并与交于点 ,将沿直线翻折,使点的对应点恰好落在直线上,求线段的长.24. (10分)(2020·北京模拟) 如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD,过点C作CE⊥DB,垂足为E,直径AB与CE的延长线相交于F点.(1)求证:CF是⊙O的切线;(2)当BD=,sinF=时,求OF的长.25. (10.0分)(2017·静安模拟) 已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:DE•AB=AC•BE;(2)如果AC2=AD•AB,求证:AE=AC.26. (12分)(2017·西华模拟) 如图,抛物线y=ax2+bx﹣3与x轴交于点A(1,0)和点B,与y轴交于点C,且其对称轴l为x=﹣1,点P是抛物线上B,C之间的一个动点(点P不与点B,C重合).(1)直接写出抛物线的解析式;(2)小唐探究点P的位置时发现:当动点N在对称轴l上时,存在PB⊥NB,且PB=NB的关系,请求出点P的坐标;(3)是否存在点P使得四边形PBAC的面积最大?若存在,请求出四边形PBAC面积的最大值;若不存在,请说明理由.27. (12分)(2018·赣州模拟) 如图,在平面直角坐标系中,Rt△AOB的斜边OA在x轴的正半轴上,∠OBA=90°,且tan∠AOB= ,OB= ,反比例函数的图象经过点B.(1)求反比例函数的表达式;(2)若△AMB与△AOB关于直线AB对称,一次函数y=mx+n的图象过点M、A,求一次函数的表达式.参考答案一、选择题(本大题共8小题,每小题3分,共24分) (共8题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题(本大题共10小题,每小题3分,共30分) (共9题;共27分) 9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题(本大题共有10小题,共96分) (共10题;共96分)18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、。
2016四川中考数学试题及答案
2016四川中考数学试题及答案【篇一:2016年四川省成都市中考数学试卷及解析】ass=txt>一、选择题:本大题共10小题,每小题3分,共30分1.(3分)(2016?成都)在﹣3,﹣1,1,3四个数中,比﹣2小的数是()a.﹣3 b.﹣1 c.1 d.32.(3分)(2016?成都)如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是()a.b.c.d.3.(3分)(2016?成都)成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一.今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流纪录,这也是今年以来第四次客流纪录的刷新,用科学记数法表示181万为()324.(3分)(2016?成都)计算(﹣xy)的结果是()563262a.﹣xy b.xy c.﹣xyd.xy6.(3分)(2016?成都)平面直角坐标系中,点p(﹣2,3)关于x轴对称的点的坐标为()a.(﹣2,﹣3) b.(2,﹣3) c.(﹣3,﹣2) d.(3,﹣2) 7.(3分)(2016?成都)分式方程=1的解为()a.x=﹣2 b.x=﹣3 c.x=2 d.x=38.(3分)(2016?成都)学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数(单位:分)2a.甲 b.乙 c.丙 d.丁9.(3分)(2016?成都)二次函数y=2x﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()a.抛物线开口向下 b.抛物线经过点(2,3)c.抛物线的对称轴是直线x=1 d.抛物线与x轴有两个交点则的长为()2a二、填空题:本大题共4个小题,每小题4分,共16分11.(4分)(2016?成都)已知|a+2|=0,则a=13.(4分)(2016?成都)已知p1(x1,y1),p2(x2,y2)两点都在反比例函数y=的图象上,且x1<x2<0,则y1y2(填“>”或“<”).14.(4分)(2016?成都)如图,在矩形abcd中,ab=3,对角线ac,bd相交于点o,ae垂直平分ob于点e,则ad的长为.三、解答题:本大共6小题,共54分2(2)已知关于x的方程3x+2x﹣m=0没有实数解,求实数m的取值范围.16.(6分)(2016?成都)化简:(x﹣)17.(8分)(2016?成都)在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点a处安置测倾器,18.(8分)(2016?成都)在四张编号为a,b,c,d的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用a,b,c,d表示);222(2)我们知道,满足a+b=c的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.19.(10分)(2016?成都)如图,在平面直角坐标xoy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点a(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线oa向上平移3个单位长度后与y轴交于点b,与反比例函数图象在第四象限内的交点为c,连接ab,ac,求点c的坐标及△abc的面积.(1)求证:△abd∽△aeb;(2)当=时,求tane;(3)在(2)的条件下,作∠bac的平分线,与be交于点f,若af=2,求⊙c的半径.四、填空题:每小题4分,共20分21.(4分)(2016?成都)第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.22.(4分)(2016?成都)已知是方程组的解,则代数式(a+b)(a﹣b)的值为.23.(4分)(2016?成都)如图,△abc内接于⊙o,ah⊥bc于点h,若ac=24,ah=18,⊙o的半径oc=13,则ab=.24.(4分)(2016?成都)实数a,n,m,b满足a<n<m<b,这四个数在数22轴上对应的点分别为a,n,m,b(如图),若am=bm?ab,bn=an?ab,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n=.第一步:如图①,将平行四边形纸片沿对角线bd剪开,得到△abd和△bcd纸片,再将△abd纸片沿ae剪开(e为bd上任意一点),得到△abe和△ade纸片;第二步:如图②,将△abe纸片平移至△dcf处,将△ade纸片平移至△bcg处;第三步:如图③,将△dcf纸片翻转过来使其背面朝上置于△pqm处(边pq与dc重合,△pqm和△dcf在dc同侧),将△bcg纸片翻转过来使其背面朝上置于△prn处,(边pr与bc重合,△prn和△bcg在bc同侧).则由纸片拼成的五边形pmqrn中,对角线mn长度的最小值为.五、解答题:共3个小题,共30分26.(8分)(2016?成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?(1)求证:bd=ac;(2)将△bhd绕点h旋转,得到△ehf(点b,d分别与点e,f对应),连接ae.①如图②,当点f落在ac上时,(f不与c重合),若bc=4,tanc=3,求ae的长;【篇二:2016年四川省成都市中考数学试题及答案解析】class=txt>(含成都市初三毕业会考)数学注意事项:1. 全卷分a卷和b卷,a卷满分100分,b卷满分50分;考试时间120分钟.2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16. 17.
18. 19.
20. 21. 22. 23. 24. 25.
26.
27.
18. 如图,在平面直角坐标系xOy中,一次函数y=ax+b的图象与反比例函数y= 的图象相交于点A(﹣4,﹣2),B( m,4),与y轴相交于点C.
(1) 求此反比例函数和一次函数的表达式; (2) 求点C的坐标及△AOB的面积. 19. 如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.
(1) 求证:BG=AE;
(2) 将正方形DEFG绕点D旋转,当线段EG经过点A时,(如图②所示)
①求证:BG⊥GE;
②设DG与AB交于点M,若AG:AE=3:4,求 的值.
27. 如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣ 3).
A.2B.3C.4D.5 9. 如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点 运动的路径 的长为( )
A . π B . 2π C . 4π D . 8π 二、填空题
10. 分解因式:a2﹣b2=________. 11. 抛掷一枚质地均匀的硬币,落地后正面朝上的概率是________. 12. 直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为________. 13. 如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是________.
和租金如表所示:
A型客车
B型客车
载客量(人/辆)
45
28
租金(元/辆)
400
250
经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:
(1) 用含x的代数式填写下表:
车辆数(辆)
载客量(人)
A型客车
x
45x
B型客车1ຫໍສະໝຸດ ﹣x租金(元)400x
(2) 采用怎样的租车方案可以使总的租车费用最低,最低为多少? 26. 如图①,AD为等腰直角△ABC的高,点A和点C分别在正方形DEFG的边DG和DE上,连接BG,AE.
两个统计图.
请你根据以上信息解答下列问题:
(1)
在这次调查中,一共抽取了名学生;
(2)
请补全条形统计图;
(3) 如果全校有1200名学生,请你估计其中喜欢D套餐的学生的人数.
17. 如图,在一次测量活动中,小丽站在离树底部E处5m的B处仰望树顶C,仰角为30°,已知小丽的眼睛离地面的距离 AB为1.65m,那么这棵树大约有多高?(结果精确到0.1m,参考数据: ≈1.73)
四川省2016年阿坝州中考数学试卷
一、选择题
1. ﹣3的绝对值是( ) A . B . ﹣ C . 3 D . ﹣3 2. 使分式 有意义的x的取值范围是( ) A . x≠1 B . x≠﹣1 C . x<1 D . x>1 3. 下列立体图形中,俯视图是正方形的是( )
A.
B.
C.
D.
4. 某自治州自然风景优美,每天吸引大量游客前来游览,经统计,某段时间内来该州风景区游览的人数约为36000人 ,用科学记数法表示36000为( )
23. 在平面直角坐标系xOy中,P为反比例函数y= (x>0)的图象上的动点,则线段OP长度的最小值是________. 24. 如图,正方形CDEF的顶点D,E在半圆O的直径上,顶点C,F在半圆上,连接AC,BC,则 =________.
五、解答题
25. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量
(1) 判断DH与⊙O的位置关系,并说明理由; (2) 求证:H为CE的中点; (3) 若BC=10,cosC= ,求AE的长.
四 、 填 空 题 B卷
20. 若x2﹣3x=4,则代数式2x2﹣6x的值为________. 21. 在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入m个一样的黑球并 摇匀,此时,随机摸出一个球是黑球的概率等于 ,则m的值为________. 22. 如图,点P1 , P2 , P3 , P4均在坐标轴上,且P1P2⊥P2P3 , P2P3⊥P3P4 , 若点P1 , P2的坐标分别为(0, ﹣1),(﹣2,0),则点P4的坐标为________.
三、解答题
14. 计算下列各题 (1) 计算: +(1﹣
(2) 解方程组:
)0﹣4cos45°.
.
15. 化简: + .
16. 某学校在落实国家“营养餐”工程中,选用了A,B,C,D种不同类型的套餐.实行一段时间后,学校决定在全校范 围内随机抽取部分学生对“你喜欢的套餐类型(必选且只选一种)”进行问卷调查,将调查情况整理后,绘制成如图所示的
A.6B.7C.8D.9 7. 将抛物线y=x2向上平移2个单位后,所得的抛物线的函数表达式为( ) A . y=x2+2 B . y=x2﹣2 C . y=(x+2)2 D . y=(x﹣2)2 8. 如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为( )
A . 36×103 B . 0.36×106 C . 0.36×104 D . 3.6×104 5. 在直角坐标中,点P(2,﹣3)所在的象限是( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 6. 某学校足球兴趣小组的五名同学在一次射门训练中,射进球门的次数分别为:6,7,7,8,9.这组数据的众数为 ()
(1)
求抛物线的函数表达式;
(2) 判断△BCM是否为直角三角形,并说明理由.
(3) 抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相
等?若存在,求出点N的坐标;若不存在,请说明理由. 参考答案 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.