脱硫吸收塔的直径和喷淋塔高度设计
脱硫塔参数脱硫系统参数

脱硫塔参数脱硫系统参数脱硫系统参数1. 原净烟气挡板:型式:单轴双百叶挡板内部挡板多层个数:4个电机功率:5.2KW 2. 挡板门密封风机:风量:6032-9500m ³/h;全压:7610-6527pa ;容量:30KW ;电机:功率:30kw ;电压/电流:380V/55A;转速:2950r/min3. 吸收塔:吸收塔型式:逆流喷淋塔;塔体尺寸:Φ19000×35300mm;浆池有效容积:2267m 3;反应池液位:8m ;材质:钢衬磷片;壁厚:10-28mm4. 除雾器:喷淋层类型:屋脊式、两级除雾器;喷淋管材质:FRP ;偏心喷嘴:600个;喷嘴材质:碳化硅;层数:3层/每塔5. 吸收塔搅拌器传动装置:功率:45KW ;电压/电流:380V/70A;转速:1475r/min6. 吸收塔浆液循环泵型式:离心式流量:12500m3/h ;扬程:A 泵21m 、B 泵22.8m 、C 泵23.6m ;吸入侧压力:70KPa ;密封系统形式:机械密封功率:A 泵1120KW 、B 泵1250KW 、C 泵1400KW ;电压/电流:10kV ;转速:A 泵1495r/min、B 泵1495r/min、C 泵1495r/min7. 吸收塔石膏排放冷却系统:体积流量:180m 3/h ;扬程:55m ;转速:1450r/min型式:离心式、变频控制功率:75KW ;电压/电流:380v/139.3A;转速:1490 r/min 8. 氧化风机:入口流量:14228N m3/h;扬程:0.084Mpa ;出口水合空气温度:130℃型式:罗茨式压缩机主轴转速:990r/min功率:560KW ;电压/电流:10kV/39.98A;转速:991r/min9. 吸收区集水坑软管:尺寸:3m ×3m ×3m ;有效容积:27m 3型式:顶进式电机功率:3kw ;电压/电流:380V/6.6A;转速:65r/min;10. 集水坑泵:流量:50m 3/h,;扬程:25m ;功率:11KW ;转速:1470r/min;电压/电流:380V/22.4A;11. 浆液罐事故:型式:立式;尺寸:Φ14000×17500mm;有效容积:2700m 3;材质:玻璃鳞片树脂12. 事故杯内罐搅拌器:型式:顶进式叶轮转速:17r/min;电机功率:37KW ;电压/电流:380V/75A;13.. 事故浆液返回泵型式:立式离心泵流量:340m ³/h;扬程:25m ;泵转速1450r/min;功率:45KW ;电压/电流:380V/85.4A;电机转速:1485r/min;14. 石灰石卸料斗类型:地下漏斗式;容积:30m15. 卸料斗振动给料机:额定功率:1.1KW ;额定振动力:1.6KN ;振动次数:960次/S r/min;电机功率:1.1KW ;电压/电流:380V/3.38A三相:50HZ16. 斗式提升机持续提升高度:35m 输送倾斜角:90°容量:75t/h;驱动电机:22kW/380V功率:55KW 电压/电流:380V/105A;转速:980r/min;17. 石灰石贮仓:类型:混凝土仓;有效容量:1040m 3;卸料口数量:1个称重皮带给料机类型:封闭式皮带输送机;电机功率:1.1KW ;电压/电流:50hz 380V/2.74A;转速:1440r/min18. 清扫电机:功率:1KW ;电压/电流:380V/2.74A;转速:1440r/min;19. 湿式球磨机:筒体有效内径:3200mm ;筒体有效长度:7000mm ;筒体有效容积:56.27m ³ ;工作转速:18.2r/min ;最大钢球装载量:74吨;出力:Q=22t/h;功率:710KW ;转速:987rmin ;电压/电流:10KV/67.74A;20. 湿式球磨机慢传:功率:11KW ;电压/电流:380V/24.6A;转速:970r/min; 21. 球磨机稀油站配套电机:电机功率:3KW 电压/电流:6.48A 转速:1450r/min 22. 喷射油站转速:820r/min;匹配功率:2.2KW ;额定排气压力: 0.8MPa ; 23. 湿磨浆液箱类型:立式箱;材质:碳钢有效容积:15m 3\24. 湿磨浆液箱搅拌器类型:叶片涡轮式;搅拌器电机:6KW/380V转速:51r/min; 25. 湿磨浆液泵型式:离心式;流量:150 m3/h,;扬程:280KPa ;功率:45KW ;转速:1485r/min;电压/电流:380V/85.4A ;石灰石浆液旋流器设计流量;195m ³/h,设计压降;1.3bar 旋流子个数:6进料流量:195m3/h26. 石灰石杯内箱类型:立式箱;尺寸:Φ5500×7000;有效容积:165 m3;材质:玻璃鳞片27. 石灰石浆液箱搅拌器类型:叶片涡轮式;转速:1470r/min;功率:15KW ;电压/电流:29.9A 380V 叶轮/轴材质:碳钢衬胶;28. 石料供浆泵流量:51m 3/h;扬程:28m ;电机功率:11KW ;电压/电流:380V/22.4A;功率:11KW ;转速:1470r/min;电压/电流:380V/22.4A; 29. 低压油泵:转速:1450r/min;功率:3kw ;电压:380V ;电流:6.48A;高压栓塞泵:额定流量:135L/min;往复次数:600min ;额定压力:6Mpa ;电机功率:15kw ;柱塞直径:45mm ;30. 板框压滤机:地脚尺寸:6950mm ;过滤面积:200m ³;压紧压力:25Mpa ;反压等力:31.5Mpa ;配板数量:76片;过滤压力:12kg/C㎡;31. 石膏浆液旋流器:型式:垂直式水力旋流器;进料口流量:120m ³/h ;压力:0.16MPa ;32. 旋流子运行/备用个数:10/1个;旋流器材质:聚氨酯;33. 真空皮带脱水机型式:水平式真空皮带脱水机;出力:41t/h (含水量≤10%);脱水面积:44m 2;石膏比产量(含水量≤10%):0.93kg/h.m;功率:18.5KW ;电压/电流:380V/36A;转速:1470r/min;34. 气液分离器有效容积:8.5m 3;材质:碳钢衬胶。
脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
塔的设计

火电厂烟气湿法脱硫装置吸收塔的设计总结1外形尺寸的决定1.1直径由工艺处理烟气量及其流速而定。
(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。
1.2几个必要高度1.2.1浆液高(a)。
由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定。
1.2.2烟气进口底部至浆液面距离(c)。
考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管,一般定为800mm~1200mm 范围为宜。
1.2.3烟气进出口高度。
根据工艺要求的进出口流速(一般为12m/s~18m/s)而定进出口面积,一般希望进气在塔内能分布均匀些,且烟道均呈方形,故宽/高取得较大些,即高度尺寸取得较小。
但宽度亦不宜过大,否则将会使壳体径向开口太大而影响壳体的稳定性。
1.2.4烟气进口中心至第二层喷浆管距离(b)。
根据烟气通过雾化区上升流速,反应时间算到第二层。
层间高差(e)根据国外用离心式喷雾喷头经验,按1.7m计。
喷浆管一般设3~4层,个别厂有设2层的(用实心锥状雾化喷头),这主要根据液/气比所需浆液循环量和喷头设置数量而定,而液/气比又与要求脱硫率有关。
1.2.5最上层喷浆管至第一段除雾器高差(d)。
根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5m左右。
1.2.6除雾器冲洗水喷头距除雾器间距(f)。
按0.5m~0.6m计,两层除雾器之间还设有上下冲水的两层水管,其间隔(A)应考虑到便于安装维修。
加上两层波形除雾器高度,最底部上冲水管至最上部下冲水管总高差(g)约3.4m~3.5m。
以上尺寸适于平铺波纹板式除雾器。
如用菱形除雾器,其空间高度(g)将可降1m左右。
1.2.7搅拌器设置高度(h),离塔底部1.5m~1.8m处均布。
综上所述:只要定出烟气进出口高度,则塔的有效高H和总高即可得到。
脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
脱硫吸收塔的直径和喷淋塔高度设计复习进程

脱硫吸收塔的直径和喷淋塔高度设计吸收塔的直径和喷淋塔高度设计脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =9.81×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。
逆流式吸收塔的烟气速度一般在-5ms 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。
湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为。
(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。
首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t)按照排放标准,要求脱硫效率至少95%。
二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( 2,可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η= 前面已经求得原来烟气二氧化硫SO 2质量浓度为a (mg/3m )且 a=×103mg/m 3 而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在-6.5 Kg (m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得 6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。
脱硫塔的设计计算

5. 设备计算及选型选塔体材料为Q235-B 5.1 脱硫塔的设计计算脱硫吸收塔采用填料塔,填料为φ50×30×1.5聚丙烯鲍尔环,公称直径为50cm ,空隙率为ε=0.927,比表面积为α=114.m 2/m 3,采用乱堆的方式。
5.1.1 塔径计算泛点气速法泛点气速是填料塔操作气速上限,填料塔的操作空塔气速必须小于泛点气速,操作空塔气速与泛点气速之比称为泛点率。
对于散装填料,其泛点率的经验值为 u/u F =0.5 ~ 0.85 填料的泛点气速可由贝恩 — 霍根关联式计算:81412.032)()(lg Lg L g F G L K A a g u ρρμρρε-=⨯⨯⨯ 式中 u F —— 泛点气速,m/s ; g —— 重力加速度,9.81m/s 2 ; a —— 填料总比表面积,m 2/m 3 ; ε —— 填料层空隙率,m 3/m 3 ; ρg 、ρL —— 气相、液相密度,kg/m 3 ;μ —— 液体粘度,mPa·S ;μ=0.837 mPa·SL 、G —— 液相、气相的质量流量,kg/h ;A 、K —— 关联常数,与填料的形状及材料有关。
查下表得出A=0.204,K=1.75。
其中,8141)()(Lg G L K A ρρ-8141)03.1044869.0()91126869.003.1044711.7(75.1204.0⨯⨯⨯⨯-=0583.1-=因此, 2.0310583.110ua g u LgF ρρε⨯⨯⨯=-所以s m u F 575.2873.0869.003.1044114927.081.9102.0310583.1=⨯⨯⨯=- 取泛点率为0.5,则s m u u F 751.168.0==根据操作态的每小时气体处理量算出塔径D ,m u / 4V s π=D式中:D ——吸收塔直径,m ; V S ——气体的体积流量,m 3/sD=m 2902.4751.13600911264=⨯⨯⨯π圆整后D 取4.3m壁厚的计算 Q235-B当δ在3-4mm的范围内时[]MPa t113=δ,操作压力kpa m kg N kg gh P m c 388.11712/8.9/2.9903=⨯⨯==ρ,设计压力为:Kpa kpa p p c 1293.0126.1291.1===, 选取双面焊无损检测的比例为全部,所以1ϕ=计算壁厚: []21211293.01113243001293.02C C C C ppD td ++-⨯⨯⨯=++-=ϕδδ,取2.01=C ,12=C所以mm d 66.3`12.046.2=++=δ圆整后取mm n 4=δ.5.4强度校核求水压试验时的应力。
吸收塔的相关设计计算

烟气脱硫工艺主要设备吸收塔设计和选型(2) 喷淋塔吸收区高度设计(二)对于喷淋塔,液气比范围在8L/m 3-25 L/m 3之间[5],根据相关文献资料可知液气比选择12.2 L/m 3是最佳的数值。
逆流式吸收塔的烟气速度一般在2.5-5m/s 范围内[5][6],本设计方案选择烟气速度为3.5m/s 。
湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钠硫比(Na/S)一般略微大于1,本次选择的钠硫比(Na/S)为1.02。
(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。
首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95% h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t) 按照排放标准,要求脱硫效率至少95%。
二氧化硫质量浓度应该低于580mg/m 3(标状态)ζ的单位换算成kg/( m 2.s),可以写成 ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度10050752C ︒+=下、烟气流速为 u=3.5m/s 、脱硫效率η=0.95 前面已经求得原来烟气二氧化硫SO 2质量浓度为 a (mg/3m )且 a=0.650×103mg/m 3而原来烟气的流量(200C ︒时)为标况20×103(m 3/h) (设为V a )换算成工况25360m3/h 时已经求得 V a =2×103 m 3/h=5.6 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =5.6×650mg/m 3=3640mg=3.64gV 2SO = 3.6422.4 L/mol 64/g g mol ⨯=1.3L/s=0.0013 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等 故 y 1=0.0013100%0.023%5.6⨯= 又 烟气流速u=3.5m/s, y 1=0.023%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在5.5-6.5 Kg/(m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得 6=64273(3600 3.50.000230.95)/22.427375h ⨯⨯⨯⨯⨯+ 故吸收区高度h=6.17/6≈1.03m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。
但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。
而计算喷淋塔吸收区高度主要有两种方法:(1) 喷淋塔吸收区高度设计(一)达到一定的吸收目标需要一定的塔高。
通常烟气中的二氧化硫浓度比较低。
吸收区高度的理论计算式为h=H0×NTU (1)其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。
)NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。
根据(1)可知:h=H0×NTU=)ln()()(***22*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=∆- a k y =a k Y =×1025.07.04W G -]4[82.0W a k L ∂=]4[ (2)其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B)*1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B)k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a )x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B)G 气相空塔质量流速,kg/(m 2﹒h)W 液相空塔质量流速,kg/(m 2﹒h)y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲)k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa)k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3)式(2)中∂为常数,其数值根据表2[4]表3 温度与∂值的关系采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。
以上是传统的计算喷淋塔吸收区高度的方法,此外还有另外一种方法可以计算。
(2)喷淋塔吸收区高度设计(二)采用第二种方法计算,为了更加准确,减少计算的误差,需要将实际的喷淋塔运行状态下的烟气流量考虑在内。
而这部分的计算需要用到液气比(L/G)、烟气速度u(m/s)和钙硫摩尔比(Ca/S)的值。
本设计中的液气比L/G是指吸收剂石灰石液浆循环量与烟气流量之比值(L/M3)。
如果增大液气比L/G,则推动力增大,传质单元数减少,气液传质面积就增大,从而使得体积吸收系数增大,可以降低塔高。
在一定的吸收高度内液气比L/G增大,则脱硫效率增大。
但是,液气比L/G增大,石灰石浆液停留时间减少,而且循环泵液循环量增大,塔内的气体流动阻力增大使得风机的功率增大,运行成本增大。
在实际的设计中应该尽量使液气比L/G减少到合适的数值同时有保证了脱硫效率满足运行工况的要求。
湿法脱硫工艺的液气比的选择是关键的因素,对于喷淋塔,液气比范围在8L/m3-25 L/m3之间[5],根据相关文献资料可知液气比选择12.2 L/m3是最佳的数值[5][6]。
烟气速度是另外一个因素,烟气速度增大,气体液体两相截面湍流加强,气体膜厚度减少,传质速率系数增大,烟气速度增大回减缓液滴下降的速度,使得体积有效传质面积增大,从而降低塔高。
但是,烟气速度增大,烟气停留时间缩短,要求增大塔高,使得其对塔高的降低作用削弱。
因而选择合适的烟气速度是很重要的,典型的FGD脱硫装置的液气比在脱硫率固定的前提下,逆流式吸收塔的烟气速度一般在-5ms范围内[5][6],本设计方案选择烟气速度为3.5m/s。
湿法脱硫反应是在气体、液体、固体三相中进行的,反应条件比较理想,在脱硫效率为90%以上时(本设计反案尾5%),钙硫比(Ca/S)一般略微大于1,最佳状态为,而比较理想的钙硫比(Ca/S)为,因此本设计方案选择的钙硫比(Ca/S)为。
(3)喷淋塔吸收区高度的计算含有二氧化硫的烟气通过喷淋塔将此过程中塔内总的二氧化硫吸收量平均到吸收区高度内的塔内容积中,即为吸收塔的平均容积负荷――平均容积吸收率,以ζ表示。
首先给出定义,喷淋塔内总的二氧化硫吸收量除于吸收容积,得到单位时间单位体积内的二氧化硫吸收量ζ=hC K V Q η0= (3) 其中 C 为标准状态下进口烟气的质量浓度,kg/m 3η为给定的二氧化硫吸收率,%;本设计方案为95%h 为吸收塔内吸收区高度,mK 0为常数,其数值取决于烟气流速u(m/s)和操作温度(℃) ;K 0=3600u ×273/(273+t)由于传质方程可得喷淋塔内单位横截面面积上吸收二氧化硫的量]8[为:G (y 1-y 2)=a k y ×h ×m y ∆ (4)其中: G为载气流量(二氧化硫浓度比较低,可以近似看作烟气流量),kmol/(Y 1,y 2 分别为、进塔出塔气体中二氧化硫的摩尔分数(标准状态下的体积分数) k y 单位体积内二氧化硫以气相摩尔差为推动力的总传质系数,kg/(m 3﹒s)a 为单位体积内的有效传质面积,m 2/m 3.m y ∆ 为平均推动力,即塔底推动力,△y m =(△y 1-△y 2)/ln(△y 1/△y 2)所以 ζ=G(y 1-y 2)/h (5)吸收效率ζ=1-y 1/y 2,按照排放标准,要求脱硫效率至少95%。
二氧化硫质量浓度应该低于580mg/m 3(标状态)所以 y 1η≥1% (6)又因为G=×(273+t )/273=u(流速)将式子(5)ζ的单位换算成kg/( 2,可以写成ζ=3600×h y u t /*273273*4.22641η+ (7) 在喷淋塔操作温度C ︒=+75250100下、烟气流速为 u=3.5m/s 、脱硫效率η= 前面已经求得原来烟气二氧化硫SO 2质量浓度为a (mg/3m )且 a=×104mg/m 3 而原来烟气的流量(145C ︒时)为20×104(m 3/h)换算成标准状态时(设为V a )已经求得 V a =×105 m 3/h=36.30 m 3/s故在标准状态下、单位时间内每立方米烟气中含有二氧化硫质量为2SO m =××104mg/m 3=×10mg 4=428.3gV 2SO =L/mol 22.4/643.428⨯mol g g =149.91L/s=0.14991 m 3/s ≈0.15 m 3/s 则根据理想气体状态方程,在标准状况下,体积分数和摩尔分数比值相等故 y 1=%41.0%10030.3615.0=⨯ 又 烟气流速u=3.5m/s, y 1=%,C t ︒==75,95.0η总结已经有的经验,容积吸收率范围在-6.5 Kg (m 3﹒s )之间[7],取ζ=6 kg/(m 3﹒s )代入(7)式可得6=(95.0041.05.3752732734.22643600⨯⨯⨯+⨯⨯)/h 故吸收区高度h=≈18.3m(4)喷淋塔除雾区高度(h 3)设计(含除雾器的计算和选型)吸收塔均应装备除雾器,在正常运行状态下除雾器出口烟气中的雾滴浓度应该不大于75mg/m 3 [9] 。
除雾器一般设置在吸收塔顶部(低流速烟气垂直布置)或出口烟道(高流速烟气水平布置),通常为二级除雾器。
除雾器设置冲洗水,间歇冲洗冲洗除雾器。
湿法烟气脱硫采用的主要是折流板除雾器,其次是旋流板除雾器。
① 除雾器的选型折流板除雾器 折流板除雾器是利用液滴与某种固体表面相撞击而将液滴凝聚并捕集的,气体通过曲折的挡板,流线多次偏转,液滴则由于惯性而撞击在挡板被捕集下来。
通常,折流板除雾器中两板之间的距离为20-30mm ,对于垂直安置,气体平均流速为2-3m/s ;对于水平放置,气体流速一般为6-10m/s 。
气体流速过高会引起二次夹带。
旋流板除雾器 气流在穿过除雾器板片间隙时变成旋转气流,其中的液滴在惯性作用下以一定的仰角射出作螺旋运动而被甩向外侧,汇集流到溢流槽内,达到除雾的目的,除雾率可达90%-99%。
喷淋塔除雾区分成两段,每层喷淋塔除雾器上下各设有冲洗喷嘴。
最下层冲洗喷嘴距最上层喷淋层()m ,距离最上层冲洗喷嘴()m 。
② 除雾器的主要设计指标a.冲洗覆盖率:冲洗覆盖率是指冲洗水对除雾器断面的覆盖程度。
冲洗覆盖率一般可以选在100 %~300 %之间。
冲洗覆盖率%=%100*22Atg h n απ 式中 n 为喷嘴数量,20个;α为喷射扩散角,90A 为除雾器有效通流面积 ,15 m 2h 为冲洗喷嘴距除雾器表面的垂直距离,0.05m所以 冲洗覆盖率%=%100*22A tg h n απ= 22200.051100%15π⨯⨯⨯=203% b.除雾器冲洗周期:冲洗周期是指除雾器每次冲洗的时间间隔。
由于除雾器冲洗期间会导致烟气带水量加大。
所以冲洗不宜过于频繁,但也不能间隔太长,否则易产生结垢现象,除雾器的冲洗周期主要根据烟气特征及吸收剂确定。
c.除雾效率。
指除雾器在单位时间内捕集到的液滴质量与进入除雾器液滴质量的比值。
影响除雾效率的因素很多,主要包括:烟气流速、通过除雾器断面气流分布的均匀性、叶片结构、叶片之间的距离及除雾器布置形式等。
d.系统压力降。
指烟气通过除雾器通道时所产生的压力损失 ,系统压力降越大 ,能耗就越高。
除雾系统压降的大小主要与烟气流速、叶片结构、叶片间距及烟气带水负荷等因素有关。
当除雾器叶片上结垢严重时系统压力降会明显提高 ,所以通过监测压力降的变化有助把握系统的状行状态 ,及时发现问题 ,并进行处理。
e.烟气流速。
通过除雾器断面的烟气流速过高或过低都不利于除雾器的正常运行 ,烟气流速过高易造成烟气二次带水,从而降低除雾效率,同时流速高系统阻力大,能耗高。
通过除雾器断面的流速过低,不利于气液分离,同样不利于提高除雾效率。
设计烟气流速应接近于临界流速。