半导体物理学 第七版 刘恩科编著chap6
半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学 刘恩科 第七版 完整课后题答案

半导体物理学刘恩科第七版完整课后题答案 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ (1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)2. 晶格常数为的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkh qE f ∆∆== 得qE k t -∆=∆补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (,式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π=(n=0,1,2…) 进一步分析an k π)12(+= ,E (k )有极大值,ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==(4)电子的有效质量能带底部 an k π2=所以m m n2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案)

半导体物理学(刘恩科)第七版-完整课后题答案)第⼀章习题1.设晶格常数为a 的⼀维晶格,导带极⼩值附近能量(k)和价带极⼤值附近能量(k)分别为:220122*********)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电⼦惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电⼦有效质量; (3)价带顶电⼦有效质量;(4)价带顶电⼦跃迁到导带底时准动量的变化解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ηηηηηηηη因此:取极⼤值处,所以⼜因为得价带:取极⼩值处,所以:在⼜因为:得:由导带:043222*83)2(1m dk E d mk k C nC===η sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===?=-=-=?=-==ηηηηη所以:准动量的定义:2. 晶格常数为0.25的⼀维晶格,当外加102,107的电场时,试分别计算电⼦⾃能带底运动到能带顶所需的时间。
解:根据:t khqE f== 得qE k t -?=?ηsat sat 137192821911027.810106.1)0(1027.810106.1)0(----?=??--==--=ππηη补充题1分别计算(100),(110),(111)⾯每平⽅厘⽶内的原⼦个数,即原⼦⾯密度(提⽰:先画出各晶⾯内原⼦的位置和分布图)在(100),(110)和(111)⾯上的原⼦分布如图1所⽰:(a )(100)晶⾯(b )(110)晶⾯(c )(111)晶⾯补充题2214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cmatom a a a cm atom a a a cm atom a a ?==?+?+??==??+?+?=?==?+-):():():(⼀维晶体的电⼦能带可写为)2cos 81cos 87()22ka ka ma k E +-=η(,式中a 为晶格常数,试求(1)布⾥渊区边界;(2)能带宽度;(3)电⼦在波⽮k 状态时的速度;(4)能带底部电⼦的有效质量*n m ;(5)能带顶部空⽳的有效质量*p m 解:(1)由0)(=dk k dE 得 an k π=(0,1,2…)进⼀步分析an k π)12(+= ,E (k )有极⼤值,222)ma k E MAXη=(ank π2=时,E (k )有极⼩值所以布⾥渊区边界为an k π)12(+= (2)能带宽度为222)()ma k E k E MINMAXη=-((3)电⼦在波⽮k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -==ηη(4)电⼦的有效质量)2cos 21(cos 222*ka ka m dkEd m n-==η能带底部 an k π2=所以m m n 2*=(5)能带顶部 an k π)12(+=,且**n p m m -=,所以能带顶部空⽳的有效质量32*mm p=半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原⼦严格按周期性排列并静⽌在格点位置上,实际半导体中原⼦不是静⽌的,⽽是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学刘恩科习题答案权威修订版

半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V0m 。
试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=ak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nCs N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:tkqE f得qE k ts a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数 r =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。
半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版完整课后题答案讲课稿
3. 以 Ga掺入 Ge中为例,说明什么是受主杂质、受主杂质电离过程和 p 型半导
体。
Ga有 3 个价电子,它与周围的四个 Ge原子形成共价键,还缺少一个电子,于是
在 Ge晶体的共价键中产生了一个空穴, 而 Ga原子接受一个电子后所在处形成一
个负离子中心, 所以, 一个 Ga原子取代一个 Ge原子, 其效果是形成一个负电中
载流子有效质量 m* n m *p。计算 77K时的 NC 和 NV。 已知 300K时,Eg=0.67eV。77k
时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。② 77K 时,锗的电子浓度 为 1017cm-3 ,假定受主浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ED为多少?
E(C k) EC
h2
k
2 x
k
2 y
(
k
2 z
)
状态数。
令 kx'
2 mt
ml
(
ma
1
)2
kx
,k
' y
(
ma
)
1 2
ky
,k
' z
(
ma
)
1 2
k
即d
z
z
g(k ' ) ? Vk'
g(k ' ) ? 4 k ' 2dk
3
1
2
mt 则: Ec (k ' ) Ec
mt
ml
h2
(
k
'2 x
k '2 y
价带:
dEV
6 2k
dk
m0
又因为
d 2 EV dk 2
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
半导体物理学(刘恩科)第七版-完整课后题答案
第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。
试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。
解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
N
D
NA
D
线性缓变结 N
D
N
A
j (x x j )
,αj杂质浓度梯度
6.1.2 空间电荷区
在结面附近, 由于存在载流子浓度梯度,导致 载流子的扩散. 扩散的结果: 在结面附近,出现静电荷--空间电 荷(电离施主,电离受主). 空间电荷区中存在电场--内建电场,内建电场 的方向: n→p . 在内建电场作用下,载流子要 作漂移运动.
,
p区载流子浓度与准费米能级的关系
n p n i exp( E Fn E i k 0T )
p p ni ex p (
E i E Fp k 0T
)
n p p p n i exp(
2
E Fn E Fp k 0T
)
pp’处,x=-xp,EFn-EFp=qV,因而
n p ( x p ) p p ( x p ) n i exp(
qV
D
E Fn E Fp
对于非简并半导体,n区和p区的平衡电子浓 度
n n 0 n i exp( E Fn E i k 0T )
n p 0 n i exp( E Fp E i k 0T )
两式相除取对数得
ln n n0 n p0 1 k 0T ( E Fn E Fp )
E F E F eV
6.2.2 理想pn结模型及其电流电压方程
小注入条件——注入的少数载流子浓度比平衡多数 载流子浓度小得多; 突变耗尽层条件——外加电压和接触电势差都降落 在耗尽层上,耗尽层中的电荷是由电离施主和电离 受主的电荷组成,耗尽层外的半导体是电中性的。 因此,注入的少数载流子在p区和n区是纯扩散运动 通过耗尽层的电子和空穴为常量,不考虑耗尽层中 的产生和复合作用。 玻耳兹曼边界条件——在耗尽层两端,载流子的分 布满足玻耳兹曼统计分布。
)
因为E(x) = -qV(x)
nn0 N c exp( E F E cn k 0T )
而Ecn= -qVD,所以
n ( x ) n n 0 exp( E cn E ( x ) k 0T ) n n 0 exp( qV ( x ) qV k 0T
D
)
当x=xn,V(x)=VD,所以
6.1.3 pn结能带图
热平衡条件
P N Hole
Ec
Ef
Ec
Ei
Ev
Ei
Ef
Ev
Silicon (p-type)
Silicon (n-type)
热平衡条件
当无外加电压, 载流子的流动终将达到 动态平衡(漂移运动与扩散运动的效果相 抵消, 电荷没有净流动), p-n结有统一的 EF (平衡pn结) 结面附近,存在内建电场,造成能带弯曲, 形成势垒区(即空间电荷区).
)[ E E ( x )]
1 2
dE
令
Z [ E E ( x )] /( k 0 T )
则上式变为
n ( x ) 4 2(m n )
3 * 3 2 3
( k 0T )
2
exp(
EF E (x) k 0T
) Z
0
1 2
e
Z
dZ
n ( x ) N c exp(
E F E (x) k 0T
2
qV k 0T
)
因为
p p ( x p ) p p0
p p0n p0 ni
2
代入可得
n p ( x p ) n p 0 exp( qV k 0T ) n n 0 exp( qV qV k 0T
D
)
由此注入p区边界pp’处的非平衡少数载流子 浓度为
n p ( x p ) n p ( x p ) n p 0 n p 0 [exp( qV k 0T ) 1]
同理可得注入n区边界nn’处的非平衡少数载 流子浓度为
p n ( x n ) p n ( x n ) p n 0 p n 0 [exp( qV k 0T ) 1]
可见注入势垒区边界pp’和nn’处的非平衡少数 载流子是外加电压的函数。以上两式为解连 续性方程的边界条件。
n( xn ) nn0
当x=-xp ,V(x)=0,所以p区非平衡少数载流 子浓度为
n ( x p ) n n 0 exp( qV
D
)
k 0T
同理,可以求得x点处的空穴浓度为
p ( x ) p n 0 exp( qV ( x ) qV k 0T所以
P
p n0
)
Lp
2.温度对电流密度的影响很大
Js qD n n p 0 Ln q( Dn
p ( xn ) p n0
当x=-xp ,V(x)=0,所以p区非平衡多数载流子浓度 为
p ( x p ) p n 0 exp( qV
D
)
k 0T
或
p p 0 p n 0 exp( qV
D
)
k 0T
载流子在势垒两边的浓度关系服从玻尔兹曼分布。
利用上述公式计算电势能比n区导带底高 0.1eV的点x处的载流子浓度,假设势垒 高度为0.7eV,则
计算电流密度方法
根据准费米能级计算势垒区边界nn’和pp’处注入
的非平衡少数载流子浓度 以边界nn’和pp’处注入的非平衡少数载流子浓度 作为边界条件,解扩散区中载流子连续性方程, 得到扩散区中非平衡少数载流子的分布 将非平衡载流子的浓度代入扩散方程,算出扩散 密度,再算出少数载流子的电流密度 将两种载流子的扩散密度相加,得到理想pn结模 型的电流电压方程式
在稳态时,空穴扩散区中非平衡少子的连续 性方程
Dp d pn
2
dx
2
p Ex
dpn dx
npn
d Ex dx
pn pn0
0
p
小注入条件下,电场变化项可以忽略,n型扩 散区|Ex|=0,故
Dp d pn
2
dx
2
p n p n0
0
p
根据边界条件
x , p n ( ) p n0 x x n , p n ( x n ) p n 0 exp( qV k 0T )
第六章 pn结
6.1pn结及能带图
6.1.1 pn结的形成和杂质分布 p-n结的形成 ♦ 控 制 同 一 块 半 导 体 的 掺 杂 , 形 成 pn 结 (合金法; 扩散法等) ♦在p(n)型半导体上外延生长n(p)型半导体 同质结和异质结 ♦由导电类型相反的同一种半导体单晶材 料组成的pn结--同质结 ♦由两种不同的半导体单晶材料组成的 结—异质结
dx
若忽略势垒区的产生-复合作用,通过pn结的 总电流密度为
J J p ( x p ) J n ( x p ) J p ( x n ) J n ( x p )
代入可得
J ( qD n n p 0 Ln qD
P
p n0
)[exp(
qV k 0T
) 1]
Lp
令
Js ( qD n n p 0 Ln qD
J p ( x n ) qD dp n ( x )
p
x xn
qD
P
p n0
[exp(
qV k 0T
) 1]
dx
Lp
同理,x=-xp处,电子的扩散流密度
J n ( x p ) qD dn p ( x )
n
x xp
qD n n p 0 Ln
[exp(
qV k 0T
) 1]
可求得
p n ( x ) p n 0 p n 0 [exp( qV k 0T ) 1] exp( xn x LP )
同理可得
n p ( x ) n p 0 n p 0 [exp( qV k 0T ) 1 ] exp( xp x Ln )
小注入条件下,x=xn处,空穴的扩散流密度
J
p
n
dE
p
F
dx
或
dE dx
F
J n
p p
对于平衡pn结,电子电流和空穴电流均为0,因此
dE dx
F
0 , E F 常数
当电流密度一定的时候,载流子浓度大的地方,EF 随位置变化小;载流子浓度小的地方,EF随位置变 化大。
6.1.4 pn结接触电势差
,
平衡pn结的空间电荷区两端间的电势差VD称 为pn结的接触电势差或内建电势差,qVD称为 pn结的势垒高度。
eV eV
♦稳态时,扩散区内少子分布也是稳定的.
n( x p ) n p0e
kT
, p ( xn ) pn0e
kT
电流:
♦在体内,电流是多子漂移电流 ♦在少子扩散区,多子电流主要是漂移电流;少子 电流是扩散电流 ♦讨论电子电流的变化: 在空穴扩散区,电子(多 子)边漂移边与空穴复合; 势垒区很薄,势垒区中 电子电流可认为不变;在电子扩散区,电子(少子) 边扩散边与空穴复合. ♦类似地, 可讨论空穴电流的变化:稳态下, 通过 任一截面的总电流是相等的
J n nq n E qD
dn