第五章一元一次不等式组应用(复习提高)
浙教版初中数学八年级上册第五章《一元一次不等式》单元复习试题精选 (64)

2019-2020年八年级数学上册《一元一次不等式》测试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________题号 一 二 三 总分 得分评卷人 得分一、选择题1.(2分)已知0a <,且不等式组x a x b >⎧⎨>⎩的解是x a >,则不等式组x ax b <⎧⎨−>⎩的解是( )A . b x a −<<B .x b >或x a <C .x a <D . 无解2.(2分)在方程组221x y my x −=⎧⎨−=⎩中,x 、y 满足0x y +>,则m 的取值范围在数轴上表示为( )A .B .C .D .3.(2分)不等式组475(1)22463x x x x −<−⎧⎨−>−⎩的解在数轴上表示为( )A .B .C .D .4.(2分) 已知三角形的两边长分别为 3,5,则第三边上的中线 m 的取值范围是( ) A .1m >B .14m ≤≤C .14m <<D .4m <5.(2分)下列不等式的解法正确的是( ) A .如果22x−>,那么1x <− B .如果3223x >−,那么0x < C .如果33x <−,那么1x >−D .如果1103x −<,那么0x > 6.(2分)关于不等式22x a −+≥的解集如图所示,a 的值是( )A .0B .2C .-2D .-47.(2分) 如果a<b<0,下列不等式中错误..的是( )A . ab >0B . a+b<0C .ba <1 D . a-b<08.(2分)不等式732122x x −−+<的负整数解有( ) A .1 个B .2 个C .3 个D .4 个9.(2分)在数轴上表示不等式260x −≥的解集,正确的是( )A .B .C .D .10.(2分)下列不等式变形正确的是( ) A 由412x −>得41x > B .由24x −<得2x <− C .由02y>得2y > D .由53x >得35x >11.(2分)下列不等式中一定成立的是( ) A .32x x >B .2x x −>−C .34x x −<−D .43y y> 12.(2分) 设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图,那么这三种物体的质量按从大到小的顺序排列应为( )A .■、●、▲B .●、▲、■C .■、▲、●D .▲、■、●评卷人 得分二、填空题13.(2分)不等式组47310x −<≤的整数解有_________________.14.(2分)已知关于x 的不等式50x m −<只有两个正整数解,则m 的取值范围是 . 15.(2分)不等式组的整数解是 . 16.(2分)当y 时,代数式324y−的值至少为1. 17.(2分)当x 时,代数式3214x−−的值是非负数. 18.(2分)关于x 的不等式324x a −≤−的解集如图所示,则a 的值是 .a19.(2分)已知33y x =−,要使y x ≥,则x 的取值范围为 . 20.(2分)当0a <,b<0 时,a b +< ,ab 0.三、解答题21.(7分)已知不等式组3(2)821132x x x x x −+>⎧⎪+−⎨≥−⎪⎩的整数解满足方程62ax x a +=−,求a 的值.22.(7分)已知|31|23250a b a b −+++−≤,求不等式组27()10(3)62ax x b a x b x −−>⎧⎪⎨+−>⎪⎩的解.2x <−23.(7分)解不等式组27163(1)5x x x x +−⎧⎨−−>⎩≥, ①,②,并求出所有整数解的和.24.(7分)先阅读,再解答问题: 例:解不等式211xx >−. 解:把不等式211x x >−进行整理,得2101x x −>−,即101x x +>−. 则有(1)1010x x +>⎧⎨−>⎩或(2)1010x x +<⎧⎨−<⎩,解不等式组(1)得1x >,解不等式组(2)得1x <−, ∴原不等式的解集为1x >或1x <−. 请根据以上解不等式的思想方法解不等式:231xx >−. 1235x <<25.(7分)解不等式组523(1)131722x x x x −>+⎧⎪⎨−≤−⎪⎩,并求出其整数解.26.(7分)解不等式组3043326x x x −>⎧⎪⎨+>−⎪⎩,并把解集在数轴上表示出来.27.(7分)已知方程21|28|(5)02x x y a −+−−=.(1)当0y >时,求a 的取值范围; (2)当0y <时,求a 的取值范围.28.(7分)规定一种新的运算:1a b a b a b ∆=⋅−++,如3434341∆=⨯−++.请比较大小:(3)4−∆与4(3)∆−.29.(7分)用两根长度均为 20 cm 的绳子,分别围成一个正方形和圆,试猜想,正方形和圆的面积哪个大?30.(7分)根据下列条件,,写出仍能成立的不等式. (1)72>−,两边都加2; (2)35−<,两边都减1; (3)23<,两边都乘以4; (4)39>−,两边都除以 3; (5)24−>−,两边都乘以3−; (6)168−<−,两边都除以一4.观察以上各题的结果,你有什么发现吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.B3.A4.C5.D6.A7.C8.A9.B10.D11.C12.C二、填空题13.0,114.10<m≤1515.1,216.≤1 2−17.≤1 2−18.-l19.32x ≥20.0,>三、解答题21.解原不等式组,得21x −<≤. ∴原不等式组的整数解是1x =−. ∴612a a −+=−−,∴7a =−.22.2x <−23.解:解不等式①,得2x ≥,解不等式②,得32x <.) ∴原不等式组的解集是322x −<≤. 则原不等式组的整数解是2101−−,,,.∴所有整数解的和是:2(1)012−+−++=−.24.1235x <<25.542x <≤,整数解为3,4 26.-l<x<3 27.(1)a<20;(2)a>20 28.(-3)△4>4△(-3) 29.圆30.(1)9>O ;(2)-4<4;(3)8<12;(4)1>-3;(5)6<12;(6)4>2 结论:①不等式的两边加上(或减去)同一个数,所得到的不等式仍成立;②:不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立;不等式的两边都乘(或都除以)同一个负数,必须把不等号的方向改变,所得的不等式成立。
初一数学一元一次不等式练习题汇总(复习用)含答案

一元一次不等式和一元一次不等式组培优训练一、填空题1. 比较大小:-3________-π,-0.22______(-0.2)2;2. 若2-x<0,x________2;3. 若>0,则xy_________0;4. 代数式的值不大于零,则x__________;5. a、b关系如下图所示:比较大小|a|______b,-6. 不等式13-3x>0的正整数解是__________;7. 若|x-y|=y-x,是x___________y;8. 若x≠y,则x2+|y|_________0;9. 不等式组的解集是____________.二、选择题在下列各题中的四个备选答案中,只有一个是正确的,将正确答案前的字母填在括号内:1.若|a|>-a,则a的取值范围是( ).(A)a>0; (B)a≥0; (C)a<0; (D)自然数.2.不等式23>7+5x的正整数解的个数是( ).(A) 1个;(B)无数个;(C)3个;(D)4个.3.下列命题中正确的是( ).(A) 若m≠n,则|m|≠|n|; (B)若a+b=0,则ab>0;(C)若ab<0,且a<b,则|a|<|b|; (D)互为例数的两数之积必为正.4.无论x取什么数,下列不等式总成立的是( ).(A) x+5>0; (B)x+5<0; (C)-(x+5)2<0;(D)(x-5)2≥0.5.若,则x的取值范围是( ).(A)x>1; (B)x≤1;(C)x≥1; (D)x<1.三、解答题1.解不等式(组),并在数轴上表示它们的解集.(1)(x-1)≥1; (2);(3)(4)2. x取什么值时,代数式的值不小于代数式的值.3. K取何值时,方程=5(x-k)+1的解是非负数.4. k为何值时,等式|-24+3a|+中的b是负数?参考答案一、1.-3>-π,-22 <(-0.2)2; 2.x>2; 3.xy>0; 4.X≥2; 5.|a|>b,-,-b<-; 6.1,2,3,4; 7.x≤y; 8.x2+|y|>0; 9.无解.二、1.A; 2.C; 3.D 4.D; 5.B.三、1.(1)x≤-3;(2)x<1;(3)2≤x<8;(4)x<0;2.x≤-;3.k≥;4.k>-48.一元一次不等式能力测试题一、填空题(每空3分,共27分)1.(1)不等式的解集是________;(2)不等式的非负整数解是________;(3)不等式组的解集是______________;(4)根据图1,用不等式表示公共部分x的范围______________.2.当k________时,关于x的方程2x-3=3k的解为正数.3.已知,且,那么ab________b2(填“>”“<”“=”).4.一个三角形的三边长分别是3,1-2m,8,则m的取值范围是________.5.若不等式的解集为,则m的值为________.6.若不等式组无解,则m的取值范围是________.二、选择题(每小题4分,共24分)7. 如果不等式的解集为,那么( )A.B.C.D.m为任意有理数8.如果方程有惟一解,则( )A.B.C.D.9.下列说法①是不等式的一个解;②当时,;③不等式恒成立;④不等式和解集相同,其中正确的个数为( )A.4个 B.3个 C.2个 D.1个10.下面各个结论中,正确的是( )A.3a一定大于2a B.一定大于aC.a+b一定大于a-b D.a2+1不小于2a11.已知-1<x<0,则x、x2、三者的大小关系是( )A.B.C.D.12.已知a=x+2,b=x-1,且a>3>b,则x的取值范围是( ) A.x>1 B.x<4 C.x>1或x<4 D.1<x<4三、解答题13.解下列不等式(组).(12分)(1)(2)14.已知满足不等式的最小正整数是关于x的方程的解,求代数式的值.(12分)15.某人9点50分离家赶11点整的火车.已知他家离火车站10千米.到火车站后,进站、“非典”健康检查、检票等事项共需20分钟.他离家后以3千米/时的速度走了1千米,然后乘公共汽车去火车站.问公共汽车每小时至少行驶多少千米才能不误当次火车?(12分)16.某企业为了适应市场经济的需要,决定进行人员结构调整.该企业现有生产性行业人员100人,平均每人全年可创造产值a元.现欲从中分流出x人去从事服务性行业.假设分流后,继续从事生产性行业的人员平均每人全年创造产值可增加20%,而分流从事服务性行业的人员平均每人全年可创造产值3.5a元.如果要保证分流后,该厂生产性行业的全年总产值不少于分流前生产性行业的全年总产值,而服务性行业的全年总产值不少于分流前生产性行业全年总产值的一半,试确定分流后从事服务性行业的人数.(12分)一元一次不等式能力测试题参考答案一、填空题1. (1)(2)0,1,2 (3)(4)2.k>-13.>4.5.6.二、选择题7.C 8.D 9.A 10.D 11.D 12.D三、解答题13.(1)(2)x<2 14.15.18千米/时 16.15人功16人一、选择题:(每小题3分,共30分)1、下列不等式中,是一元一次不等式的是()A; B; C; D;2、“x大于-6且小于6”表示为()A -6<x<6;B x>-6,x≤6;C -6≤x≤6; D -6<x≤6;3、解集是x≥5的不等式是()A x+5≥0B x–5≥0C –5–x ≤0D 5x–2 ≤–94、不等式组的解是( )A、x≤2B、x≥2C、-1<x≤2D、x>-15、不等式组的解集在数轴上表示正确的是()6、下列不等式组无解的是()A.B.C.D.7、不等式组的正整数解的个数是()A.1个 B.2个 C.3个 D.4个8、等式组的解集是,则m的取值范围是()A.m ≤2 B.m≥2 C.m≤1 D. m>19、关于x的一元一次方程4x-m+1=3x-1的解是负数,则m的取值范围是()A m=2B m>2C m<2 Dm≤210、ax>b的解集是()A.; B.; C.; D.无法确定;二、填空题(每题4分,共20分)1、不等式的解集是:;不等式的解集是:;2、不等式组的解集为 . 不等式组的解集为 .3、不等式组的解集为 . 不等式组的解集为 .4、当x 时,3x-2的值为正数;x为时,不等式的值不小于7;5、已知不等式组无解,则的取值范围是三、解不等式(组),并在数轴上表示它的解集(每题6分,共24分)(1)(2)(3)(4)三、根据题意列不等式(组)——只列式,不求解;(每题6分,共12分)1、某次知识竞赛共有20道选择题.对于每一道题,若答对了,则得10分;若答错了或不答,则扣3分.请问至少要答对几道题,总得分才不少于70分?解:设,依题意得:2、小华家距离学校2.4千米.某一天小华从家中去上学恰好行走到一半的路程时,发现离到校时间只有12分钟了.如果小华能按时赶到学校,那么他行走剩下的一半路程的平均速度至少要达到多少?解:设,依题意得:四、解答题:(每题7分,共14分)1、若方程组的解、的值都不大于1,求的取值范围。
一元一次不等式和一元一次不等式组

第五章 一元一次不等式和一元一次不等式组一、 不等式与不等式的基本性质5.1 不等式(一)教学目标使学生正确理解不等式、不等式的解集、解不等式的概念。
教学重难点重点:正确理解不等式、不等式的解与解集的意义。
难点:正确理解不等式解集的意义。
教学互动设计(一) 创设情景,导入新课多媒体演示:(也可以借助天平演示导入)①两个体重相同的孩子正在跷跷板上做游戏。
现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因?②一辆匀速行驶的汽车在11:20时距离A 地50千米。
要在12:00以前驶过A 地,车速应该具备什么条件?若设车速为每小时x 千米,能用一个式子表示吗?③世纪公园的票价是:每人5元,一次购票满30张可少收1元,某班有27名少先队员去世纪公园进行活动,当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同学喊住了王小华,提议买30张票,但有的同学不明白,明明只有27个人,买30张票,岂不浪费吗?那么,究竟李敏的提议对不对呢?是不是真的浪费呢?(二) 合作交流,解读探究1.不等式、一元一次不等式的概念在学生充分发表自己的意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等式关系的式子也是不等式。
[练一练]下列式子中哪些是不等式?(1)a +b=b+a (2)-3>-5 (3)x ≠1 (4)x+3>6 (5)2m <n (6)2x-3上述不等式中,有些不含未知数,有些含有未知数。
我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式。
小组交流 说说生活中的不等关系/分组活动 先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”。
补充说明:“≥”和“≤”表示不等式关系的式子也是不等式。
[练一练]下列不等式中,哪些是一元一次不等式?(1)3+5>7; (2)x+y ≤9 (3)x1-2>3; (4)-2x >5 2.不等式的解多媒体演示 创设情景中的第②题问题1 要使汽车在12:00以前驶过A 地,你认为车速应该为多少呢?问题2 车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?问题3 我们曾经学过“使方程两边相等的未知数的值就是方程的解”,我们也可以把使不等式成立的未知数的值叫做不等式的解。
八年级数学:第五章一元一次不等式复习课件 2

乙 5 60
(1)按该公司要求可以有几种购买方案? (2)若该公司购进的6台机器的日生产 能力不能低于380个,那么为了节约资金 应选择哪种方案?
1.若不等式(2k+1)x<2k+1的解集 是x>1,则k的范围是________。
2.
x 2 若 无解,则a的取值范围为: x a
3.如果不等式3x-m≤0的正整数解 是1,2,3,那么m的范围是___
两边都加上(或减 两边都加上(或减去)同 去)同一个数或同 一个数或同一个整式,不等号 一个整式,所得结 的方向不变。 果仍是等 两边都乘以(或除 两边都乘以(或除以)同一 以)同一个数(除 个正数,不等号的方向不变。 数不能是0),所 得结果仍是等式。
两边都乘以(或除以)同一个 负数,不等号的方向改变。
解:(1)设甲种商品应购进x件,乙种商品应购进y件. x+y=160, 根据题意得 20-15x+45-35y=1 100,
x=100, 解得 y=60.
答:甲种商品应购进100件,乙种商品应购进60件.
浙江三年中考 基础知识梳理 考题类型展示
浙江名师预测
跟踪训练
2x-1 2+x —— ≥ —— -2 2 3
7.不等式(组)
(1)3x-5 6 (2)求5 x+12 8 x-6的非负整数解。 (3)5( x 2) 3( x 1) 0 1 x 1 0, 2 1 x 0.
列不等式 不等式的性质
解:(1)设购买一块A型小黑板需要x元,则购买一块B型小黑板需要(x-20)元. 根据题意5x+4(x-20)=820, 解得x=100,∴x-20=80.
答:购买一块A型小黑板需要100元,购买一块B型小黑板需要80元.
2023年中考数学一轮复习之必考点题型全归纳与分层精练-一元一次不等式(组)(解析版)

专题10一元一次不等式(组)【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)不等式或组不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。
四种不等式组(a<b)解集图示口诀【注意】1.不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2.用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值;(7)写出答案(包括单位名称).【技巧归纳】基本不等式组的解集⎩⎨⎧≥≥b x a x x ≥b 大大取大⎩⎨⎧≤≤b x a x x ≤a 小小取小⎩⎨⎧≤≥bx a x a ≤x ≤b 大小小大中间找⎩⎨⎧≥≤b x a x 无解大大小小解不了技巧1:一元一次不等式组的解法技巧【类型】一、解普通型的一元一次不等式组12x <6,-2≤0的解集,在数轴上表示正确的是()2.解不等式组,并把解集表示在数轴上.(x +2),①+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是()A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________.5.用两种不同的方法解不等式组-1<2x -13【类型】三、“绝对值”型不等式转化为不等式组求解.6.解不等式|3x -12|≤4.【类型】四、“分式”型不等式转化为不等式组求解7.解不等式3x -62x +1<0.参考答案1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由|3x -12|≤4,得-4≤3x -12≤4.-4,①②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:-6>0,+1<0或<0,+1>0.解(Ⅰ)>2,<-12.∴此不等式组无解.解(Ⅱ)<2,>-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2;(2)4x -13-x >1;(3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x 5.解:去分母,得5(4-3x)-1<3(7+5x).①去括号,得20-15x -1<21+15x.②移项,合并同类项,得-30x <2.③系数化为1,得x >-115.④【类型】二、解含字母系数的一元一次不等式3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5+3y =10,-3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来.【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围.8.关于x 的两个不等式①3x +a 2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.参考答案1.解:(1)x>13x-2,23x>-2,x>-3.这个不等式的解集在数轴上的表示如图所示.(2)4x-13-x>1,4x-1-3x>3,x> 4.这个不等式的解集在数轴上的表示如图所示.(3)x+13≥2(x+1),x+1≥6x+6,-5x≥5,x≤-1.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x).去括号,得20-15x-15<21+15x.移项,合并同类项,得-30x<16.系数化为1,得x>-8 15 .3.解:移项,合并同类项得,(a-1)x>2,当a-1>0,即a>1时,x>2a-1;当a-1=0,即a=1时,x无解;当a-1<0,即a<1时,x<2a-1.4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:2x +3y =10,-3y =2,=2,=2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13,去括号,得9-3x +1<13,移项,合并同类项,得-3x <3,系数化为1,得x >-1.在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m 3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是()A .m >-2B .m <2C .m <-2D .m >22+y =-7-a ,-y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围.【类型】二、与不等式(组)的解集的综合问题题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5-a <1,-2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6>2,<a 的解集中共有5个整数,则a 的取值范围为()A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87-a ≥0,-b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8-1>0,-a <0无解,则a 的取值范围是__________.91<a ①,+5>x -7②有解,求实数a 的取值范围.参考答案1.B2.解:(1)=-3+a ,=-4-2a.∵x 为非正数,y 3+a ≤0,4-2a <0,解得-2<a ≤3.(2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b +b =-3,3a +b =13,=-4,=1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y 4<2,解得-7<y <5.4.a <25.-a <1.①,-2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9.6.A7.解:解不等式组得a 2≤x <b 3.∵不等式组仅有整数解1,2,3,∴0<a 2≤1,3<b 3≤4.解得0<a ≤2,9<b ≤12.∵a,b为整数,∴a=1,2,b=10,11,12. 8.a≤19.+1<a①,+5>x-7②,解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<x<a-1,则a-1>-6,a>-5.【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2-3【详解】解:由题意得:130 x abx->⎧⎨+≥⎩①②解不等式①得:x>1+a,解不等式②得:x≤3 b-不等式组的解集为:1+a<x≤3b- 不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为:-2,-3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是().A .m >3B .m≥3C .m≤3D .m <3【答案】C【解析】详解:841x x x m +<-⎧⎨>⎩①②,解①得,x>3;解②得,x>m ,∵不等式组841x x x m +<-⎧⎨>⎩的解集是x>3,则m ⩽3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A .13B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 1005 120x x -+>,15 220x >,解得:443x >,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是().A .2121m n -+>-+B .1144m n ++>C .m a n b+>+D .am an-<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、∵m >n ,∴-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意;B 、∵m >n ,∴m +1>n +1,则1144m n ++>,故该选项成立,符合题意;C 、∵m >n ,∴m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、∵m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意;故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是()A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据题意,得:100x +80(10﹣x )≤900,故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是()A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C 【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集.【详解】由30x +>得:3x >-由50x -≤得:5x ≤∴35x -<≤故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键.4.不等式3﹣x <2x +6)A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可.【详解】解:326x x -<+,移项得362x x -<+,合并同类项得33x -<,系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键.5.在数轴上表示不等式1x >-的解集正确的是()A.B.C.D.【答案】A【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式x>−1的解集的是A.故选:A.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A,B两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A种西瓜__________kg.名称A B批发价(元/kg)43零售价(元/kg)64【答案】120【分析】设批发A种西瓜x kg,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A种西瓜x kg,则(6-4)x+120043x-×(4-3)≥1200×40%,解得x≥120.答:该超市至少批发A种西瓜120kg.故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.7.不等式2103x--<的解集为____.【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解.【详解】解:去分母,得:230x --<,移项,得:23x <+,合并同类项,得:5x <.∴不等式的解集为:5x <.故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意∶不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【详解】解:解不等式36x x -≤,得:3x ≥,解不等式312(1)x x +>-,得:3x >-,∵3x ≥与3x >-的公共部分为3x ≥,∴不等式组的解集是:3x ≥.在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示;②将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴Ⅱ;③平移数轴Ⅱ使点A 位于点B 的正下方,如图2所示;④扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧.则整数k 的最小值为()A .511B .510C .509D .500【答案】A 【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解.【详解】解:依题意,4AC =,2042AB =∵扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧,∴k ⋅AC AB >,即42042k >,解得15102k >, k 为正整数,∴k 的最小值为511,故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -,移项,得:3+2<1x x -,合并同类项,得:<1x -,系数化为1,得>1x -,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b +=.则下列结论正确的是()A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c=【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b +=,得出c b <;B.根据112a c b+=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b +=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断.【详解】A.∵0a b >>,∴11a b<,∵112a c b+=,∴11c b,∴c b <,故A 错误;B.∵112a c b +=,即2a c ac b+=,∴()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,∴a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误.故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是()A .﹣5B .﹣3C .0D .2【答案】D 【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8,解不等式②得:y ≤a ,∴原不等式组的解集为:﹣8<y ≤a ,∵不等式组至少有3个整数解,∴a ≥﹣5,1133x a x x++=--,去分母得∶1﹣x ﹣a =x ﹣3,解得:x 42a -=,∵分式方程有非负整数解,∴x ≥0(x 为整数)且x ≠3,∴42a -为非负整数,且42a -≠3,∴a ≤4且a ≠﹣2,∴符合条件的所有整数a 的值为:﹣4,0,2,4,∴符合条件的所有整数a 的和是:2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是()A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c=-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数,则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩,解得37711c ≤≤,∴3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c=﹣2+3c ,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】254m >-## 6.25m >-##164m >-【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得.【详解】解:根据题意得254()0m =-->Δ,解得,254m >-,故答案为:254m >-.【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算.7.若关于x 的分式方程232x m x -=-的解是非负数,则m 的取值范围是________.【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解.【详解】解:关于x 的分式方程232x m x -=-的解为:x =6−m ,∵分式方程有可能产生增根2,∴6−m ≠2,∴m ≠4,∵关于x 的分式方程232x m x -=-的解是非负数,∴6−m ≥0,解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4.故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元.①求w 与a 的函数关系式(不要求写出a 的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+②购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式.②根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解.(1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元.依题意得100100510x x =++.解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元;(2)解:① “神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.② 购进“神舟”模型的数量不超过“天宫”模型数量的13.()12003a a ∴≤-.解得:50a ≤.51000w a =+ .50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解.【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②,解不等式①,得1x ≥-,解不等式②,得>7x -,∴该不等式组的解集为1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
一元一次不等式组应用题及答案复习过程

一元一次不等式组应用题及答案精品文档一元一次不等式应用题用一元一次不等式组解决实际问题的步骤:⑴审题,找出不等关系;⑵设未知数;⑶列出不等式;⑷求出不等式的解集;⑸找出符合题意的值;⑹作答一.分配问题:1.把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?2 .把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?3.某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
4.将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?5. 用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?6.一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
(1)如果有x间宿舍,那么可以列出关于x的不等式组:(2)可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?二速度、时间问题1爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.王凯家到学校2.1千米,现在需要在18分钟内走完这段路。
已知王凯步行速度为90米/ 分,跑步速度为210米/分,问王凯至少需要跑几分钟?3.抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?三工程问题1 .一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?2 .用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
青岛版八年级下册数学《一元一次不等式组》教学说课研讨课件复习
因为不等式组有解,所以
知数
m+n≤ x < ( 2n+m+1 )÷2
又因为
3≤x<5
所以
mn 3 2n m 1
2
5
所以 n/m=4
解得
n 4 m 1
2x 3a 7b 练习2:如果不等式组 6b 3x 5a
的解是5<x<22,求a,b的值
题型2:已知不等式的整数解的个数,求 待定字母的取值范围
❖问题1:题中有哪些表示不等关系的词?
❖小明的年龄比小华年龄的2倍❖大 ❖两年后,小华的年龄比小明年龄的一 ❖大
❖问半题2:若设小华年龄为x岁,那么 小明的年龄为❖X+8 岁。 ❖问题3:题中的不等关系是:
例1. 求下列不等式组的解集:
(13)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组无解.
x 2, (14)x 5. -7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
x 1, (15)x 4. -3 -2 -1 0 1 2 3 4 5
解:原不等式组无解.
x 0, (16)x 4.
x m 1
例 2、若不等式组 x 2m 1无解,
则 m 的取值范围是什么?
分析:要使不等式组无解, 故必须 m 1 2m 1 ,
从而得 m 2 .
x 4 x 1 ①
例3
若关于
x
的不等式组
x
3
a
2 0
②
的解集为 x 2,则 a 的取值范围是什么?
分析:由①可解出 x 2 ,
练习
1 如果不等式组 -2<x≤4
x+m>1有4个整数解,求m的取值
人教版七年级下册数学期末考复习专题05一元一次不等式及不等式组(知识点串讲)(解析版)
专题05 一元一次不等式及不等式组知识框架重难突破一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解及解集(1)使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
(2) 一元一次不等式的所有解组成的集合是一元一次不等式的解集。
(3)解集在数轴上表示3、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
备注:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项,每一项要变号;但符号不改变)a a a a < > ≤ ≥合并同类项,得 73≤-x (计算要正确)系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了) 例1.(2019·湖南广益实验中学初一期中)下列不等式中,是一元一次不等式的是( )A .1x >3B .x 2<1C .x +2y >0D .x <2x +1【答案】D【解析】解:A 、1x 是分式,因此1x>3不是一元一次不等式,故此选项不合题意; B 、x 2是2次,因此x 2<1不是一元一次不等式,故此选项不合题意;C 、x +2y >0含有2个未知数,因此不是一元一次不等式,故此选项不合题意;D 、x <2x +1是一元一次不等式,故此选项符合题意;故选:D .练习1.(2018·六安市裕安中学初一期中)下列不等式中,一元一次不等式有( )①2x 32x +> ②130x -> ③ x 32y -> ④x 15ππ-≥ ⑤ 3y 3>- A .1 个B .2 个C .3 个D .4 个 【答案】B【解析】详解:①不是,因为最高次数是2;②不是,因为是分式;③不是,因为有两个未知数;④是;⑤是.综上,只有2个是一元一次不等式.故选B .例2.(2019·洋县教育局初二期中)若437m x -+≤是关于x 的一元一次不等式,则m =__________.【答案】3【解析】解:∵437m x -+≤是关于x 的一元一次不等式,∴4-m =1,∴m=3,故答案为:3.练习1.(2019·山东省初二期中)已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±3【答案】A【解析】根据题意|m|﹣3=1且m+4≠0解得:|m|=4,m≠﹣4所以m=4.故选:A.例3.(2018·浙江省初二期中)一元一次不等式2(x﹣1)≥3x﹣3的解在数轴上表示为()A.B.C.D.【答案】B【解析】解: 2(x﹣1)≥3x﹣3去括号, 得2x-2≥3x-3,移项, 合并同类项, 得-x≥-1,得:x≤1故在数轴上表示为:故选B.练习1.(2020·万杰朝阳学校初一期中)如图,张小雨把不等式3x>2x-3的解集表示在数轴上,则阴影部分盖住的数字是____.【答案】-3【解析】由3x>2x-3,解得:x>-3,∴阴影部分盖住的数字是:-3.故答案是:-3.例4.(2020·监利县新沟新建中学初一期中)解不等式:14232-+->-x x . 【答案】x <−2【解析】解:去分母:2(x −1)−3(x +4)>−12,去括号:2x −2−3x −12>−12,合并同类项:−x >2,系数化1:x <−2. 练习1.(2018·福建省永春第二中学初一期中)解不等式3(21)x +<13(43)x --,并把解集在数轴上表示出来.【答案】x <2,数轴见解析【解析】去括号,得 6x +3<13-4+3x ,移项,得 6x -3x <13-4-3,即3x <6,两边同除以3,得x <2,在数轴上表示不等式的解集如下:例5.(2019·重庆市凤鸣山中学初一期中)关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 【答案】A【解析】解:解不等式22x a -+≥,得22a x- ,∵由数轴得到解集为x ≤-1, ∴212a -=- ,解得:a =0. 故选:A .练习1.(2019·陕西省初二期中)不等式-4x -k ≤0的负整数解是-1,-2,那么k 的取值范围是( ) A .812k ≤<B .812k <≤C .23k ≤<D .23k <≤ 【答案】A【解析】解:∵-4x -k ≤0,∴x ≥-4k , ∵不等式的负整数解是-1,-2,∴-3<-4k ≤-2, 解得:8≤k <12,故选:A .二、一元一次不等式组1、一元一次不等式组定义: 含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用
解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.
六年级春季班第12讲:一元一次不等式(组)的应用与提高-教师版
本讲在上一讲学习了一元一次不等式(组)的基础上,讲解一元一次不等式(组)的相关应用,以及含字母系数的不等式(组)和含绝对值的不等式.重点是灵活运用不等式的思想解决相关的实际问题,难点是掌握分类讨论的数学思想,用以解决含字母系数的不等式(组)和含绝对值的不等式的问题.1、 一元一次不等式及其解法只含有一个未知数且未知数的次数是一次的不等式叫做一元一次不等式. 解一元一次不等式的一般步骤: (1)去分母; (2)去括号; (3)移项;(4)化成ax b >(或ax b <等)的形式(其中0a ≠);(5)两边同时除以未知数的系数,得到不等式的解集.一元一次不等式(组)的应用与提高内容分析知识结构模块一:一元一次不等式的解法及应用知识精讲【例1】()5134y y--≥-的最大整数解是__________.【难度】★【答案】4.【解析】原不等式化为:28y≤,即:4y≤,所以最大整数解是4.【总结】考查不等式的解法,注意题目中求的是最大整数解.【例2】解下列不等式.(1)7341112536x x x x-++--≥-+;(2)()()112335123x x⎡⎤----≥⎢⎥⎣⎦.【难度】★★【答案】(1)3617x≤;(2)23x≤-.【解析】(1)去分母得:15(7)6(34)3010(1)5(1)x x x x--+≥-++-去括号得:10515182430101055x x x x---≥--+-合并同类项得:3472x≤解得:3617x≤;(2)化简得:5(23)23x x---+≥,4(23x--≥,423x-≤-即原不等式的解为:23x≤-.【总结】考查不等式的解法,注意去分母时每一项都要乘以最简公分母.【例3】当a为何值时,不等式31324x a x-->的解集是x > 2.【难度】★★【答案】16.【解析】去分母得:2(31)3x a x->-,去括号化简得:92x a>+所以原不等式的解为:29ax+>,即229a+=,解得:16a=.【总结】本题主要考查对不等式的解集的理解及运用.例题解析【例4】m为何正整数时,关于x的方程5315424x m m-=-的解是非正数?【难度】★★【答案】m为1或2或3.【解析】去分母得:53215x m m-=-,化简得:3x m=-.因为方程的解是非正数,所以30m-≤,解得:3m≤,所以正整数m的值为1、2、3.【总结】考查解一元一次方程与解不等式的综合运用,注意对非正数的理解.【例5】有一个两位数,个位数字与十位数字的和是9,且这个两位数不大于63,求这个两位数.【难度】★★【答案】63或54或45或36或27或18.【解析】设这个两位数的十位数字为x,则个位数字为(9)x-,则有:10963x x+-≤,解得:6x≤,所以这个两位数可能为:63、54、45、36、27、18.【总结】考查不等式的简单应用.【例6】10名菜农,每人可种甲种蔬菜3亩或种乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜可收入0.8万元,要使总收入不低于15.6万元,则最多能安排几个人种甲种蔬菜?【难度】★★【答案】4人.【解析】设安排x人种甲种蔬菜,则种乙种蔬菜的人数为(10x-)人,则0.530.82(10)15.6x x⨯+⨯-≥,解得:4x≤,故最多安排4人种甲种蔬菜.【总结】考查不等式在实际生活中的简单应用.【例7】 用含药率15%与40%的同种农药混合成含药率不小于30%的农药100千克,那么含药率40%的农药应不少于多少千克? 【难度】★★【答案】不少于60千克.【解析】设需含药率15%的农药x 千克,则需含药率40%的农药(100x -)千克, 可列方程:15%40%(100)30x x +-=,解得:40x =,故10060x -=千克. 【总结】考查不等式在实际生活中的简单应用.【例8】 某单位组织旅游,定了若干条游船(不超过10条),如每条游船坐4人,则还余19人没安排;如每条游船坐6人,则有一条船人没坐满.问:该单位定了多少条游船? 【难度】★★ 【答案】10条.【解析】设该单位定了x 条游船(010)x x <≤,为整数,则0(419)6(1)6x x <+--<,解得:9.510x <≤, 所以10x =,即该单位定了10条游船. 【总结】考查不等式的简单应用.【例9】 某班班主任组织优秀班干部去旅游,甲旅行社说:“如果班主任买全票一张,则其余学生可享受半价优惠.”乙旅行社说:“包括班主任在内全部按全票价的6折优惠.”全票价为24元/张,就学生数讨论哪家旅行社更优惠. 【难度】★★★ 【答案】见解析.【解析】设旅行社收的费用为y 元,学生数有x 人,根据题意得:24024050%120240(1)24060%144144y x x y x x =+⨯⨯=+=+⨯⨯=+甲乙,当y y =甲乙时,解得4x =,即当学生数为4时,两家旅行社收费一样多; 所以可得:当4x >时,y y <甲乙;当4x <时,y y >甲乙.因此学生数多于4人时,选甲旅行社;当学生数少于4人时,选乙旅行社. 【总结】考查不等式的应用,注意对两种方案的选择.【例10】 已知A 市和B 市库存某种机器12台和6台,现决定支援C 市10台,D 市8台,已知从A 市调运一台机器到C 市、D 市的运费分别为400元和800元;从B 市调运一台机器到C 市、D 市运费分别300元和500元,要求运费不超过9000元,问共有几种调运方案. 【难度】★★★ 【答案】见解析.【解析】设B 市到C 市运x 台,则B 市到D 市运(6x -)台,A 市到C 市运(10x -)台, A 市到D 市运(12(10)x --)台,总运费为ω元,则 300500(6)400(10)800[12(10)]x x x x xω=+-+-+--=+,令9000ω≤,即20086009000+≤,解得:2x ≤. 所以共有三种调运方案:①B 市往C 市运0台,B 市往D 市运6台,A 市往C 市运10台,A 市往D 市运2台; ②B 市往C 市运1台,B 市往D 市运5台,A 市往C 市运9台,A 市往D 市运3台; ③B 市往C 市运2台,B 市往D 市运4台,A 市往C 市运8台,A 市往D 市运4台. 【总结】考查不等式的应用,注意对方案的选择.【例11】 解不等式:34312xx->-. 【难度】★★★【答案】102x <<.【解析】移项得:343012x x -->-,通分得:343(12)012x x x --->-,即2012xx>-. 1. 当0120x x >->,且时,解得:102x <<; 2.当0120x x <-<且时,不等式无解. 综上原不等式的解集为:102x <<. 【总结】本题综合性较强,注意分类讨论,切忌直接去分母.1、 解一元一次不等式组的一般步骤(1)求出不等式组中各个不等式的解集; (2)在数轴上表示各个不等式的解集;(3)确定各个不等式解集的公共部分,就得到这个不等式组的解集.【例12】 不等式3941x -<-<的解集是__________. 【难度】★ 【答案】23x <<.【解析】移项:39419x --<-<-,两边同时除以-4:1248x -<-<-,解得:23x <<. 【总结】考查不等式组的解法.【例13】 同时满足不等式23104x-+≥和()225x -≥-的整数解是______________. 【难度】★★ 【答案】0、1、2.【解析】由第一个不等式可得:2340x -+≥,解得:2x ≤,由第二个不等式可得:245x -≥-,解得:12x ≥-,所以:122x -≤≤,故满足不等式组的整数解是:0、1、2.【总结】考查不等式组的解法及应用,注意对整数解的确定.模块二:一元一次不等式组的解法与应用知识精讲例题解析【例14】 x 的2倍与5的和的一半大于3-且不大于7,列出不等式(组)为____________,x 的取值范围为__________________. 【难度】★★ 【答案】见解析. 【解析】根据题意得:25372x +-<≤,解得:11922x -<≤. 【总结】考查不等式组的应用及解法.【例15】 不等式组()12143x ax x +<⎧⎪⎨->-⎪⎩的解集为一切负数,求a 的值.【难度】★★ 【答案】1.【解析】由①得:1x a <-,由②得:112x <,因为不等式组的解集为一切负数, 所以1x a <-,且101a a -==,解得:. 【总结】考查对不等式组的解集的理解及简单应用.【例16】 解下列不等式组: (1)1032752532x x x x x --⎧+-<-⎪⎪⎨⎪+>+⎪⎩;(2)()()22132237223x x x x x x ⎧+≤+⎪->+⎨⎪-≥+⎩.【难度】★★. 【答案】见解析【解析】(1)由①得:10(2)2(10)705(3)x x x +--<--,化简得:1345x <,解得:4513x <,由②得:4x >-, 所以原不等式组的解集为:45413x -<<; (2)由①得:1x ≥,由②得:5x >,由③得:4x ≥,所以原不等式组的解为:5x >.【总结】考查不等式组的解法:同大取大,同小取小,小大大小取中间,大大小小是空集.【例17】 一件商品售价为120元,若按售价九折出售,获利不超过20%;若按售价七折出售,则出现亏本.求商品成本价的范围.【难度】★★ 【答案】见解析.【解析】设商品成本价为x 元,由题意可得:12090%120%12070%x x ⨯≤+⎧⎨⨯<⎩,解得:9084x x ≥⎧⎨>⎩, 所以原不等式组的解集为:90x ≥.【总结】考查不等式组在实际问题中的简单应用.【例18】 一种灭虫药粉40千克,含药率是15%,现在要用含药率较高的同样的灭虫药粉50千克与它混合,使混合后的含药率在25%与30%之间(不包括25%和30%),求所用药粉的含药率的范围. 【难度】★★ 【答案】见解析.【解析】设所用药粉的含药率为x ,由题意可得:4015%5025%30%4050x ⨯+<<+,解得:33%42%x <<, 即所用药粉的含药率在33%到42%之间.【总结】考查不等式组的简单应用,注意对含药率的准确理解.【例19】 某初三毕业班若干名同学合影留念,需交照相费40元(含两张照片),若另外加洗一张照片收费5元,预定平均每人交钱大于6元而少于8元,问:至少有多少学生参加照相,才能保证一人一张照片? 【难度】★★ 【答案】11.【解析】设有x 名学生参加照相,由题意可得:6405(2)8x x x <+-<,解得:1030x <<,因为学生数为整数,所以至少有11名同学.【总结】考查不等式组在实际问题中的简单应用,注意学生数只能取整数.【例20】 某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料生产A 、B 两种产品共50件,已知生产一件A 种产品需要甲种原料9千克,乙种原料3千克,出售后可获利700元;生产一件B 种产品需要甲种原料4千克,乙种原料10千克,出售后可获利1200元.按要求安排A 、B 两种产品的生产件数,有哪几种方案?哪种方案获利最大?最大利润是多少? 【难度】★★★ 【答案】见解析.【解析】设生产A 种产品x 件,则有:94(50)360310(50)290x x x x +-≤⎧⎨+-≤⎩,解得:3032x ≤≤,所以有三种方案:①生产A 种产品30件,B 种产品20件;此时获利:7003012002045000⨯+⨯=元; ②生产A 种产品31件,B 种产品19件;此时获利:7003112001944500⨯+⨯=元; ③生产A 种产品32件,B 种产品18件;此时获利:7003212001844000⨯+⨯=元, 所以采用方案①所获利润最大,为45000元.【总结】本题综合性较强,主要考查不等式组在实际问题中的应用.【例21】 某厂2016年12月在制定2017年某种化肥的生产计划时,收集到了如下信息: 生产该化肥的工人数不能超过200人;每个工人全年工时数不得多于2100个;预计2017 年该化肥至少可销售80000袋;每生产一袋该化肥需要4个工时;每袋该化肥需要原料 20千克;现库存原料800吨,本月还需要200吨,2017年可补充1200吨. 请你根据以上数据确定2017年该种化肥的生产袋数的范围. 【难度】★★★【答案】8000090000x ≤≤.【解析】设2017年该种化肥的生产袋数为x ,则根据题意,可得:4210020020(8002001200)10008000x x x ≤⨯⎧⎪≤-+⨯⎨⎪≥⎩由①得:105000x ≤, 由②得:90000x ≤所以8000090000x ≤≤,即2017年生产袋数范围是8000090000x ≤≤. 【总结】本题综合性较强,主要考查不等式组在实际问题中的应用.【例22】甲、乙两人到某折扣店买商品,商店的商品只剩两种,单价为32元和36,已知两人购买商品的件数相同,且两人购买商品一共花费了688元,求两人共购买两种商品各多少件?【难度】★★★【答案】8、12.【解析】设单价为32元的购买x件,36元的y件,则3236688x y+=,化简得:8()172x y y++=,因为x、y均为整数,所以解得812xy=⎧⎨=⎩,即两人共购买甲商品8件,乙商品12件.【总结】本题综合性较强,主要考查不等式组在实际问题中的应用.【例23】已知a、b、c为三个非负数,且满足325a b c++=,231a b c+-=,若39S a b c=+-,则S的最大值与最小值为多少?【难度】★★★【答案】见解析.【解析】由325231a b ca b c++=⎧⎨+-=⎩①②,得73711a cb c=-⎧⎨=-⎩③④,所以393(73)71192 s a b c c c c c=+-=-+--=-.因为a、b、c为三个非负数,故由③得:730a c=-≥,37c≥,由④得:7110b c=-≥,711c≤,所以37711c≤≤,则当711c=时,s值最大,为1511-;当37c=时,s值最小,为137-.【总结】本题较复杂,主要考查不等式组的应用,注意用一个未知量去表示另一个未知量.1、 含字母系数的不等式根据不等式的性质3可知:对于不等式1ax >,若0a >,则1x a >;若0a <,则1x a<.【例24】 解关于x 的不等式()120a x a --+>(其中a > 1). 【难度】★ 【答案】21a x a ->-. 【解析】由题意可得:(1)2a x a ->-,因为a > 1,所以10a ->,所以21a x a ->-. 【总结】考查不等式的解法,注意对字母系数的正负的判定.【例25】 讨论关于x 的不等式ax < b (0a ≠)的解的情况. 【难度】★★ 【答案】见解析. 【解析】当0a >时,b x a <; 当0a <时,bx a>. 【总结】考查解含字母系数的不等式,注意分类讨论.【例26】 设a < 1,解不等式1ax a x +-<. 【难度】★★ 【答案】1x >-.【解析】由题意可得:(1)1a x a -<-,因为a < 1,所以10a -<, 所以原不等式的解为1x >-.【总结】考查不等式的解法,注意对字母系数的正负的判定.模块三:含字母系数的不等式(组)知识精讲例题解析【例27】 解关于x 的不等式2m x n x ->+. 【难度】★★ 【答案】21nx m <-+. 【解析】由题意可得:2m x x n -->,即2(1)m x n -+>, 因为2(1)0m x -+<,所以原不等式的解为21nx m <-+. 【总结】考查不等式的解法,注意对字母系数的正负的判定.【例28】 已知关于x 的不等式()3223a x a -<-的解集是1x >-,求a 的取值范围. 【难度】★★★【答案】23a <.【解析】由题意可得:320a -<,解得:23a <. 【总结】考查对不等式的解集的理解及应用.【例29】 设不等式()()230a b x a b ++-<的解集是13x <-,解关于x 的不等式()32a b x a b ->-.【难度】★★★ 【答案】3x <-.【解析】由题意可得:不等式的解集为:32b ax a b-<+, 3213b a a b -∴=-+,解得2a b =,代入()32a b x a b ->-,得:3bx b ->. 0320200a b b a a b a b +>-<=∴>>,且,,,()323x a b x a b x ∴->-<-的解集的式为:关于不等.【总结】本题综合性较强,要先根据第一个不等式的解集,求出a 、b 之间的关系,从而再求出第二个不等式的解集,注意要根据已知条件判断系数的符号.1、 ax b c +>(0c >)的解法是:先化为不等式组ax b c +>或ax b c +<-,再由不等式的性质求出原不等式的解集. 2、 ax b c +<(0c >)的解法是:先化为不等式c ax b c -<+<,再由不等式的性质求出原不等式的解集.【例30】 下列不等式中,解集为一切实数的是( )A .21x +>B .211x ++>C .()2781x ->-D .()27810x -->【难度】★ 【答案】C【解析】A 、B 选项当x 取-2时不成立; C 选项()2780x -≥所以不论取何值时都是成立的; D 选项当x 取78时不成立. 【总结】考查绝对值的非负性的运用.【例31】 解绝对值不等式. (1)23x -≤;(2)23x ->.【难度】★★【答案】(1)15x -≤≤;(2)51x x ><-或. 【解析】(1)323x -≤-≤,解得:15x -≤≤; (2)23x ->或23x -<-,解得:51x x ><-或. 【总结】考查含绝对值符号的不等式的解法.模块四:含绝对值符号的不等式知识精讲例题解析【例32】 解不等式125x -<. 【难度】★★ 【答案】23x -<<.【解析】由题意得:5125x -<-<,即:624x -<-<,解得:23x -<<. 【总结】考查含绝对值符号的不等式的解法.【例33】 不等式组1122210x x ⎧-≥⎪⎨⎪-<⎩的解集为____________.【难度】★★ 【答案】82x -<≤-.【解析】由题意:由①得:2x ≤-;由②得:812x -<<,所以不等式组的解集为:82x -<≤-. 【总结】考查含绝对值符号的不等式的解法.【例34】 解不等式组:431013x ≤-<. 【难度】★★★ 【答案】见解析.【解析】由题意可得:1331013x -<-<、31043104x x -≥-≤-或,解得:2313x -<<;1423x x ≤≥或,所以原不等式组的解为:14231233x x -<≤≤<或. 【总结】考查含绝对值符号的不等式的解法,注意解集取公共部分.【例35】 解不等式:211x x +>+. 【难度】★★★【答案】23x <-或0x >.【解析】①若210x +≥,即12x ≥-时,有211x x +>+,解得:0x >,②若210x +<,即12x <-时,有211x x -->+,解得:23x <-,综上,不等式的解集为:23x <-或0x >.【总结】考查含绝对值符号的不等式的解法,注意分类讨论.【例36】 解不等式:211x x -+>. 【难度】★★★ 【答案】203x x ><-或. 【解析】由题意,不等式可化为:211211x x x x -+>-+<-或, 整理得:211211x x x x +<-+>+或,由①可得:210210211211x x x x x x +>+<⎧⎧⎨⎨+<---<+⎩⎩或,此时无解,由②得:210210211211x x x x x x +>+<⎧⎧⎨⎨+>+-->+⎩⎩或,解得:203x x ><-或,综上原不等式的解集为:203x x ><-或. 【总结】考查含绝对值符号的不等式的解法,注意分类讨论.【习题1】 解下列不等式.(1)14153328x x ++≥--; (2)0.30.20.050.010.70.120.40.020.3x x x ++--≤-. 【难度】★★ 【答案】(1)394x ≥-;(2)4x ≤. 【解析】(1)由题意,去分母得:120884123x x -≥--,整理得:439x ≥-,解得:394x ≥-; (2)由题意化简得:3251712423x x x ++--≤-, 去分母得:9630624-284x x x +--≤+,整理得:728x ≤, 解得:4x ≤.【总结】考查不等式的解法,注意去分母时每一项都要乘以最简公分母.随堂检测【习题2】 解不等式组:(1)()()11373113365221038127x x x xx x x ⎧----<-⎪⎪⎨--⎪-<-⎪⎩;(2)342534127232310.54x xx x x x x x +<+⎧⎪-<-⎪⎪+⎨+<--⎪⎪-->⎪⎩.【难度】★★ 【答案】(1)613x >;(2)11x -<<. 【解析】(1)由①得:7055(3)18615(13)x x x x --<---, 整理得:18366x >,解得:613x >; 由②得:147(38)4(10)14x x x --<--,整理得:756264x x -+<-,解得:10x >, 所以原不等式组的解集是:613x >; (2)由①得:1x >-;由②得:2x <;由③得:1x <;由④得:2x >-, 所以原不等式组的解集是:11x -<<. 【总结】考查解不等式组的简单应用.【习题3】 若代数式32353x x -+-的值是非负数,则x 的取值范围是_______. 【难度】★★【答案】214x ≥.【解析】由题意可得:323053x x -+-≥,化简得:965150x x ---≥,解得:214x ≥. 【总结】考查不等式的简单应用,注意对非负数的准确理解.【习题4】 三个连续的正偶数的和不超过30,求这三个数. 【难度】★★. 【答案】见解析.【解析】由题意得:2222230n n n -+++≤,即6305n n ≤≤,,所以2345n =、、、, 所以这三个数为2、4、6或4、6、8或6、8、10或8、10、12. 【总结】考查不等式在实际问题中的简单应用.【习题5】公园门票,普通票每位10元,如买20人以上(含20人)的团体票则可8折优惠.现有18位游客买了20人的团体票,问比买普通票省了多少钱?如果不足20人,至少多少人买20人的团体票比买普通票省钱?【难度】★★【答案】省了20元;至少17人.【解析】(1)18位游客买20人的团体票所需费用为:20×10×80%=160元,这18为游客若买普通票则需要费用为18×10=180元,所以便宜180-160=20元;(2)设至少有x人,则:20 1020100.8xx<⎧⎨>⨯⨯⎩解得:1620x<<,所以至少17人.【总结】考查不等式的简单应用,解题时注意认真分析题意.【习题6】在爆破时,如果导火线燃烧的速度是0.8厘米/秒,人跑开的速度是5米每秒,那么点燃导火线的人要在爆破时能跑到100米以外的安全区域,导火线的长度应不小于多少米?【难度】★★【答案】0.16米.【解析】设导火线应该是x厘米.由题意得:0.81005x÷≥÷,解得:16x≥经检验符合题意,所以导火线的长度至少16厘米,即0.16米.【总结】考查不等式的简单应用,注意单位的统一.【习题7】某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每台机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不低于380个,那么为了节约资金应选择哪种购买方案?【难度】★★【答案】见解析.【解析】设购买甲种机器x 台(0x ≥),则购买乙种机器(6)x -台,由题意得:75(6)34x x +-≤,解得:2x ≤,即可以取0、1、2三个值.所以有以下方案:方案①:不买甲,买乙6台,需资金6×5=30万元,日生产能力为6×60-360个, 方案②:买甲1台,买乙5台,需资金1×7+5×5=32万元, 生产能力为100+5×60=400个,方案③:买甲2台,买乙4台,需资金2×7+4×5=34万元,生产能力为2×100+4×60=440, 因此,选择方案②,既能达到生产能力又比方案③节约. 【总结】考查不等式的简单应用,注意对最优方案的选择.【习题8】 今有浓度5%、8%、9%的甲、乙、丙三种盐水分别为60克、60克、47克,现要配制7%的盐水100克,问甲种盐水最多可用多少克?最少可用多少克?【难度】★★★【答案】甲种盐水最多取49克,最少取35克.【解析】设甲乙丙盐水分别各取x 克、y 克、z 克,配成浓度为7%的盐水100克, 则有1005897%100x y z x y z ++=⎧⎨++=⨯⎩①②,其中060060047x y z ≤≤⎧⎪≤≤⎨⎪≤≤⎩③④⑤由①②得:20043100y x z x =-=-,,于是由④有:0200460x ≤-≤,解得:3550x ≤≤, 由⑤得:0310047x ≤-≤,解得:100493x ≤≤, 综上:3549x ≤≤,所以甲种盐水最多取49克,最少取35克. 【总结】考查不等式在实际问题中的应用,综合性较强,注意进行分析.【习题9】 解不等式:3315x -≥. 【难度】★★【答案】64x x ≥≤-或.【解析】由题意得:33153315x x -≥-≤-或,解得:64x x ≥≤-或. 【总结】考查含绝对值的不等式的解法.【习题10】 解关于x 的不等式ax b cx d +>+. 【难度】★★★ 【答案】见解析.【解析】由题意得:()a c x d b ->-,分类讨论如下:①当0a c ->时,原不等式的解为:d bx a c ->-; ②当0a c -<时,原不等式的解为:d bx a c-<-; ③当0a c -=,0d b -<时,原不等式有无数解; ④当0a c -=,0d b -≥时,原不等式无解.【总结】考查含字母系数的不等式的解法,注意分类讨论.【习题11】 如果不等式()312x a --≤的正整数解是1、2,求a 的取值范围. 【难度】★★★ 【答案】14a ≤<.【解析】由题意整理得:31x a ≤-,解得:13ax -≤, 因为原不等式的正整数解是1、2,则1233a-≤<,解得:14a ≤<. 【总结】考查不等式的应用,注意对解得取值范围的准确判定.【习题12】 已知关于x 的不等式()432a b x b a ->-的解集是49x <,求ax b >的解集. 【难度】★★★【答案】56x <.【解析】由题意得:430a b -<,24439b a x a b -<=-,得56b a =,即56ab =, 代入430a b -<,得0a <, 所以不等式ax b >的解集为:b x a<,即56x <.【总结】考查不等式的简单应用,注意对字母的正负进行判定.【作业1】 解下列不等式(组).(1)31362232x x xx +--+≤-; (2)()()3116.5 5.52184y y y +--<-++; (3)427336452335x x x x x x +≥+⎧⎪+>+⎨⎪-≤-⎩.【难度】★★ 【答案】见解析.【解析】(1)化简得:31226(2x x x x ++-≤--,整理得31452x x x +-≤+, 解得原不等式的解集为:2513x ≥; (2)去分母得:523(1)442(1)16(1)y y y -+<--++,整理得:1713y >-, 解得原不等式的解集为:1317y >-; (3)由①得:15x ≤;由②得:592x >-;由③得:2x ≥, 可画图发现原不等式组无解. 【总结】考查解不等式的简单应用.【作业2】 下面四个结论中,正确的个数有( )(1)ax b =,当0a ≠时,解为b x a =; (2)ax b <,当0a ≠时,解集为bx a<;(3)ax b ->,当0a <,解集为b x a >-; (4)()21a x b +>-的解集为21bx a <-+.A .1个B .2个C .3个D .4个【难度】★★ 【答案】B【解析】(1)正确;(2)错误,本题需分类讨论;(3)正确;(4)错误,21bx a >-+,综上可得只有(1)、(3)正确,故选B .【总结】考查不等式的解法,注意对字母系数的正负进行判定.课后作业【作业3】 已知不等式组212x a x a >+⎧⎨<-⎩无解,则a 的取值范围是( ) A .3a ≤-B .3a <-C .3a ≥-D .3a >-【难度】★★【答案】C 【解析】由题意可得212a a +≥-,即3a ≥-,故选C .【总结】考查不等式组的解法:大大小小是空集.【作业4】 a 的3倍与5的和不大于16与a 的差,求正整数a .【难度】★★【答案】1或2.【解析】根据题意可得:3516a a +≤-,解得:114a ≤,所以正整数a 可能是1或2. 【总结】考查不等式的应用及解法.【作业5】 求使代数式23375x x ---的值不大于1的最大整数x . 【难度】★★【答案】9.【解析】由题意可得:233175x x ---≤,去分母得5(23)7(3)35x x ---≤, 化简得:329x ≤,解得:293x ≤,所以x 的最大整数解为9. 【总结】考查不等式的简单应用.【作业6】 如果方程组42533x y k y x +=-⎧⎨-=⎩的解同号,求k 的取值范围. 【难度】★★【答案】732k k <->或. 【解析】由题意可得方程组的解为:618132713k x k y -⎧=⎪⎪⎨+⎪=⎪⎩,因为方程组的解同号, 得:6182701313k k -+⋅>,即(3)(27)0k k -+>,解得732k k <->或 【总结】本题主要考查不等式组与方程组的综合应用,注意“同号得正”的运用.【作业7】 把一箱苹果分给若干个小孩,如果每人分2个,还剩37个;如果每人分6个,那么最后一个小孩少于6个,求共有多少个小孩?【难度】★★【答案】10个.【解析】设有x 个小孩,由题意可得:662376x x x -<+<,解得:374344x <<,因为人数为整数,所以有10个小孩. 【总结】考查不等式在实际生活中的的简单应用.【作业8】 工程队原计划6天内完成300土方工程,第一天完成60土方,现决定比原计划提前2天超额完成,问后几天每天平均至少完成多少土方?【难度】★★【答案】80.【解析】设后几天平均每天完成x 土方.具根据题意有:60(612)30x +--≥,解得:80x ≥,即后几天平均每天至少完成80土方.【总结】考查不等式在实际生活中的的简单应用.【作业9】 某童装加工企业今年五月份,工人每人平均加工童装300套,最不熟练的工人加工的童装套数为平均套数的60%.为了提高工人的劳动积极性,按照完成完成外商订货任务,企业计划从六月份起进行工资改革.改革后每位工人的工资分两部分:一部分为每人每月基本工资900元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人的每月工资收入不低于1260元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(2)根据经营情况,企业决定每加工1套童装奖励5元.工人小张争取六月份工资不少于2000元,问小张在六月份应至少加工多少套童装?【难度】★★★【答案】(1)2元;(2)220套.【解析】(1)设企业每套奖励x 元,则90060%3001260x +⋅≥,解得:2x ≥;(2)设小张在六月份加工y 套,则90052000y +≥,解得:220y ≥,故工人每加工1套童装企业至少应奖励2元;小张在六月份应至少加工220套童装.【总结】考查不等式在实际问题中的简单应用,注意认真分析题目中的条件.【作业10】 解关于x 的不等式()()11ax x a a >++-.【难度】★★★【答案】见解析.【解析】由题意可得:(1)(1)(1)a x a a ->+-当10a ->时,解得:1x a >+;当10a -<时,解得:1x a <+.【总结】考查解含字母系数的不等式,注意分类讨论.【作业11】 解不等式组:2539x ≤-<. 【难度】★★★【答案】413x -<≤或71433x ≤<. 【解析】由题意:539532x x ⎧-<⎪⎨-≥⎪⎩①②,由①得:9539x -<-<,解得:41433x -<<; 由②得:532532x x -≥-≤-或,解得:713x x ≤≥或; 综上,原不等式组的解为413x -<≤或71433x ≤<. 【总结】本题综合性较强,主要考查含绝对值的不等式组的解法,最后注意引导学生用画图的方法帮助确定不等式组的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火车站有某公司待运的甲种货物1530吨, 吨 火车站有某公司待运的甲种货物 乙种货物1150吨,现计划用 节A、B两 现计划用50节 、 两 乙种货物 吨 现计划用 种型号的车厢将这批货物运至北京, 种型号的车厢将这批货物运至北京,已知 每节A型货厢的运费是 型货厢的运费是0.5万元 每节 节货 万元,每节 每节 型货厢的运费是 万元 每节B节货 厢的运费是0.8万元 甲种货物 吨和乙种 万元;甲种货物 厢的运费是 万元 甲种货物35吨和乙种 货物15吨可装满一节 型货厢,甲种货物 吨可装满一节A型货厢 甲种货物25 货物 吨可装满一节 型货厢 甲种货物 吨和乙种货物35吨可装满一节 型货厢,按 吨可装满一节B型货厢 吨和乙种货物 吨可装满一节 型货厢 按 此要求安排A、 两种货厢的节数 两种货厢的节数,共有哪几 此要求安排 、B两种货厢的节数 共有哪几 种方案?请你设计出来 请你设计出来;并说明哪种方案的 种方案 请你设计出来 并说明哪种方案的 运费最少? 运费最少
小结与收获
1:经过本节课的学习,你有那些 收获?
2:列一元一次不等式组解实际问题的一般 步骤: (1) 审题; (2)设未知数,找不等 量关系;(3)根据不等量关系列不等式 (组) (4)解不等式组;(5)检验并作答。
解:设有X间宿舍,则有(4X+19)名女生, 根据题意,得
{
6 x > 4 x +19 6 ( x −1) < 4 x +9(2)解不等式组,得
你能归纳出 列不等式组 解决实际问 题的基本过 程吗?
9.5<X<12.5
因为X是整数,所以X=10,11,12 因此有三种可能,第一种,有10间宿舍,59名学生; 第二种,有11间宿舍,63名女生;第三种, 有12间宿舍,67名女生
{
x+ y = m 在方程组 2 x − y = 6 中,已知x>0,y<0
求m的取值范围.
一变:在方程组
x + y = m 2 x − y = 6 中,已知xy<0
求m的取值范围. x + y = m 二变: 在方程组 2 x − y = 6中,已知xy<0 且x,y都是整数,求m的值. x + y = m 三变: 三变: 已知在方程组 2 x − y = 6 中,xy<0 化简: m + 6 + m − 3
变式1:两个代数式 变式 :两个代数式x-1与x+3的值的 与 的值的 符号相同, 的取值范围是多少? 符号相同,则x的取值范围是多少? 的取值范围是多少 2 变式2: 变式 :若 a − 1 + (b + 3) = 0 ,不等式 的解集是多少? 组 x − a > 0 的解集是多少? x − b > 0
一元一次不等式组的应用(二) 二
x − 1 > 0 解不等式组: 解不等式组: x + 3 > 0
{
3x + 2 y − a = 0 变式3 变式3:方程组 2 x − y + b = 0 的解是 x =1 x − 2a > 0 解是多少? y = − 1则不等式组 x + b > 0 的解是多少?
.
是否存在这样的整数,使关于x,y 3x + 4 y = a 的二元一次方程组 4 x + 3 y = 5 的 解是一对非负数?如果存在,求出它的 解,如果不存在,请说明理由.
一群女生住若干间宿舍,每间住4人,剩19人 无房住;每间住6人,有一间宿舍不空也不满. (1)设有x间宿舍,请写出x应满足的不等式组 (2)可能有多少间宿舍和多少名学生?
1.一堆玩具分给若干个小朋友,若 一堆玩具分给若干个小朋友, 每人分2 则剩余3 每人分2件,则剩余3件;若前面每人分 则最后一个人得到的玩具数不足2 3件,则最后一个人得到的玩具数不足2 件.求小朋友的人数与玩具数
2.已知利民服装厂现有A种布料70米,B种 已知利民服装厂现有A种布料70米,B种 70 布料52 52米 现计划用这两种布料生产M,N M,N两 布料52米,现计划用这两种布料生产M,N两 种型号的时装共80 80套 已知做一套M 种型号的时装共80套,已知做一套M型号时装 种布料0 6 ,B种布料 9 种布料0 做一套N 需A种布料0.6米,B种布料0.9米;做一套N 型号时装需A种布料1 1 ,B种布料 4 种布料0 型号时装需A种布料1.1米,B种布料0.4米; 若设生产N型号的时装套数为X, X,用这批布料生 若设生产N型号的时装套数为X,用这批布料生 产这两种型号的时装有几种方案