(完整版)初二一元一次不等式组测试题及答案(提高)

合集下载

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)

一元一次不等式组 专题练习(含答案解析)一、计算题(本大题共25小题,共150.0分)1. 解不等式组,并在数轴上表示出解集:(1){8x +5>9x +62x −1<7(2){2x−13−5x+12≤15x −1<3(x +1).2. 解不等式组:{x +1>0x ≤x−23+2.3. 解不等式组{3(x +2)≥x +4x−12<1,并求出不等式组的非负整数解.4. 解不等式组:{2x −6≤5x +63x <2x −15. 求不等式组:{x −3(x −2)≤85−12x >2x 的整数解.6. 解下列不等式组并将不等式组的解集在数轴上表示出来.(1){3x <2(x −1)+3x+62−4≥x ; (2){5x +7>3(x +1)1−32x ≥x−83.7. 解不等式组{x −3(x −2)≥42x−15<x+12,并将它的解集在数轴上表示出来.8. 解不等式组 {3(x −2)+4<5x 1−x 4+x ≥2x −1.9. 解不等式组:{−3(x +1)−(x −3)<82x+13−1−x 2≤1,并求它的整数解的和.10. 试确定实数a 的取值范围,使不等式组{x 2+x+13>0x +5a+43>43(x +1)+a 恰有两个整数解.11. 解不等式组{2(x +2)≤x +3x 3<x+14.12. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.13. {x −3(x −2)≤42x−15>x+12.14. 求不等式组{1−x ≤0x+12<3的解集.15. 解下列不等式组(1){3x −2<82x −1>2(2){5−7x ≥2x −41−34(x −1)<0.5.16. 解不等式组:{2x −1>53x+12−1≥x,并在数轴上表示出不等式组的解集.17. 解不等式组:{x 2−1<xx −(3x −1)≥−5.18. 解不等式组:{2x +9<5x +3x−12−x+23≤019. 解不等式组:{3x +1<2x +3①2x >3x−12②20. 解不等式组:{3x +7≥5(x +1)3x−22>x +1.21. 解不等式组{1−2(x −1)≤53x−22<x +12.22. 解不等式组:{4x >2x −6x−13≤x+19,并把解集在数轴上表示出来.23. 若关于x 的不等式组{x 2+x+13>03x +5a +4>4(x +1)+3a恰有三个整数解,求实数a 的取值范围.24. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.25. 解不等式组{x−32<−1x 3+2≥−x .答案和解析1.【答案】解:(1), 解不等式①得,x <-1,解不等式②得,x <4,∴不等式组的解集是x <-1,在数轴上表示如下:;(2){2x−13−5x+12≤1①5x −1<3(x +1)②, 解不等式①得,x ≥-1,解不等式②得,x <2,∴不等式组的解集是-1≤x <2,在数轴上表示如下:.【解析】 本题考查了不等式的解法与不等式组的解法,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.(1)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解;(2)先求出两个不等式的解集,然后求出两个解集的公共部分即可得解.2.【答案】解:{x +1>0①x ≤x−23+2②, 由①得,x >-1,由②得,x ≤2,所以,原不等式组的解集是-1<x ≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.【答案】解:解不等式(1)得x ≥-1解不等式(2)得x <3∴原不等式组的解是-1≤x <3∴不等式组的非负整数解0,1,2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其非负整数解即可.本题旨在考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.【答案】解:解不等式①,得x ≥-4,解不等式②,得x <-1,所以不等式组的解集为:-4≤x <-1.【解析】先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.5.【答案】解:由x -3(x -2)≤8得x ≥-1由5-12x >2x 得x <2∴-1≤x <2∴不等式组的整数解是x =-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【答案】解:(1){3x <2(x −1)+3①x+62−4≥x②, 解①得x <1,解②得x ≤-2,所以不等式组的解集为x ≤-2,用数轴表示为:;(2){5x +7>3(x +1)①1−32x ≥x−83②, 解①得x >-2,解②得x ≤2,所以不等式组的解集为-2<x ≤2,用数轴表示为:. 【解析】(1)分别解两个不等式得到x <1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集; (2)分别解两个不等式得到x >-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.7.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.8.【答案】解:{3(x−2)+4<5x①1−x4+x≥2x−1②,由①得:x>-1;由②得:x≤1;∴不等式组的解集是-1<x≤1.【解析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.9.【答案】解:由①得x>-2,由②得x≤1,∴不等式组的解集为-2<x≤1∴不等式组的整数解的和为-1+0+1=0.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.【答案】解:由x 2+x+13>0,两边同乘以6得3x +2(x +1)>0,解得x >-25, 由x +5a+43>43(x +1)+a ,两边同乘以3得3x +5a +4>4(x +1)+3a ,解得x <2a ,∴原不等式组的解集为-25<x <2a .又∵原不等式组恰有2个整数解,即x =0,1;则2a 的值在1(不含1)到2(含2)之间,∴1<2a ≤2,∴0.5<a ≤1.【解析】先求出不等式组的解集,再根据x 的两个整数解求出a 的取值范围即可.此题考查的是一元一次不等式的解法,得出x 的整数解,再根据x 的取值范围求出a 的值即可. 求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.【答案】解:{2(x +2)≤x +3①x 3<x+14②, ∵由①得:x ≤-1,由②得:x <3,∴不等式组的解集是x ≤-1.【解析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可. 本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.12.【答案】解:由①得4x +4+3>x解得x >- 73,由②得3x -12≤2x -10,解得x ≤2,∴不等式组的解集为- 73<x ≤2.∴正整数解是1,2.【解析】 本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.13.【答案】解:{x −3(x −2)≤4①2x−15>x+12②, 由①得:x ≥1,由②得:x <-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.14.【答案】解:{1−x ≤0①x+12<3②, 解不等式①,得x ≥1.解不等式②,得x <5.所以,不等式组的解集是1≤x <5.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可.本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.15.【答案】解:(1){3x −2<8①2x −1>2②, 解不等式①,得x <103, 解不等式②,得x >32.∴原不等式组的解集是:32<x <103;(2){5−7x ≥2x −4①1−34(x −1)<0.5②, 解不等式①,得x ≤1,解不等式②,得x >53. ∴原不等式组无解.【解析】 本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x 大于较小的数、小于较大的数,那么解集为x 介于两数之间.(1)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;(2)先分别解答出方程组中的每一个不等式的解集,然后取这两个不等式的解集的交集即为不等式组的解集;如果两个不等式没有交集,说明原不等式组无解.16.【答案】解:{2x −1>5①3x+12−1≥x②解①得:x >3,解②得:x ≥1,则不等式组的解集是:x >3;在数轴上表示为:【解析】分别解两个不等式得到x >3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集. 本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.17.【答案】解:{x2−1<x①x −(3x −1)≥−5②, 由①得:x >-2,由②得:x ≤3,∴不等式组的解集是:-2<x ≤3.【解析】根据不等式的性质求出不等式的解集,根据找不等式组的解集得规律找出不等式组的解集即可.本题主要考查对不等式的性质,解一元一次不等式,解一元一次不等式组等知识点的理解和掌握,根据不等式的解集能找出不等式组的解集是解此题的关键.18.【答案】解:解不等式2x +9<5x +3,得:x >2,解不等式x−12-x+23≤0,得:x ≤7,则不等式组的解集为2<x ≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.【解析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.20.【答案】解:{3x+7≥5(x+1)①3x−22>x+1②,由①得,x≤1,由②得,x>4,所以,不等式组无解.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解.21.【答案】解:由①得:1-2x+2≤5∴2x≥-2即x≥-1由②得:3x-2<2x+1∴x<3.∴原不等式组的解集为:-1≤x<3.【解析】解先求出各不等式的解集,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.22.【答案】解:{4x>2x−6①x−13≤x+19②,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.23.【答案】解:{x2+x+13>0①3x+5a+4>4(x+1)+3a②,由①得:x>-25,由②得:x<2a,则不等式组的解集为:-25<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤32,故答案为:1<a≤32.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.24.【答案】解:由①得4x+4+3>x解得x>-73,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为-73<x≤2.∴正整数解是1、2.【解析】先解每一个不等式,求出不等式组的解集,再求出正整数解即可.此题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.25.【答案】解:{x−32<−1①x3+2≥−x②,解①得x<1,解②得x≥-32,所以不等式组的解集为-32≤x<1.【解析】分别解两个不等式得到x<1和x≥-,然后根据大于小的小于大的取中间确定不等式组的解集.本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.。

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习 (80题,附答案)

解一元一次不等式专项练习(80 题、附答案)(1)3(x+2)﹣8≥1﹣2(x﹣1);(2)x ﹣≤2﹣.(3)2(x﹣1)+2<5﹣3(x+1)(4).(5)﹣<1;(6)3﹣(3y﹣1)≥(3+y)(7)x ﹣≥﹣1(8)﹣>﹣1 (9)﹣1≤.(10)﹣3x+2≤8.(11)﹣3x﹣4≥6x+2.(12)﹣8x﹣6≥4(2﹣x)+3.(13)(14)(15).(16)2(x﹣1)<﹣3(1﹣x)(17)≤﹣1 (18)10﹣3(x﹣2)≤2(x+1)(19)﹣2≤.(20)﹣3x>2(21)x >﹣x﹣2(22)3(x+1)<4(x﹣2)﹣3 (23)≤1.(24)≥;(25)﹣>﹣2.(26)5x﹣4>3x+2(27)4(2x﹣1)>3(4x+2)(28)≤(29)﹣2≥.(30)4(x﹣1)+3≥3x;(31)2x﹣3<;(32)≤1.(33)3[x﹣2(x﹣2)]>6+3 (34)(35)(36).(37)3(x+2)﹣8≥1﹣2(x﹣1);(38)>;(39)≤;(40)<.(41)3(2x﹣3)≥2(x﹣4)(42)≥0(43)7(1﹣2x)>10﹣5(4x﹣3)(44).(45)﹣<0;(46)1﹣≤﹣x.(47)5x﹣12≤2(4x﹣3);(48)≥x﹣2.(49)4x﹣2(3+x)<0 (50)﹣≥0.(51)3x﹣2<﹣4(x﹣5);(52)﹣1<<2.(53);(54).(55)5x+15>4x﹣13(56)≤.(57)7(4﹣x)﹣2(4﹣3x)<4x;(58)10﹣4(x﹣3)≥2(x﹣1);(59)3[x﹣2(x﹣2)]>x﹣3(x﹣3);(60)(2x﹣1)+x﹣1+(1﹣2x)≤0;(61)﹣y ﹣;(62).(63)x(x+1)>(x﹣2)2;(64).(65)3(y﹣3)<7y﹣4(66)﹣21<6﹣3x≤9.(67);(68);(69)0.5x+3(1﹣0.2x)≥0.4x﹣0.6;(70)x ﹣<1﹣;(71)2[x﹣(x﹣1)+2]<1﹣x;(72).(73)3x﹣7<5x﹣3;(74).(75)(76)(77)≤.(78)3x﹣9≤0;(79)2x﹣5<5x﹣2;(80)2(﹣3+x)>3(x+2);参考答案:(1)3(x+2)﹣8≥1﹣2(x﹣1),3x+6﹣8≥1﹣2x+2,3x+2x≥1+2﹣6+8,5x≥5,x≥1;(2)x ﹣≤2﹣,6x﹣3(x﹣1)≤12﹣2(x+2),6x﹣3x+3≤12﹣2x﹣4,3x+2x≤8﹣3,5x≤5,x≤1(3)2(x﹣1)+2<5﹣3(x+1)2x﹣2+2<5﹣3x﹣3,2x+3x<5﹣3+2﹣2,5x<2,x,(4),3(1+x)≤2(2x﹣1)+6,3+3x≤4x﹣2+6,3x﹣4x≤﹣2+6﹣3,﹣x≤1,x≥﹣1(5)去分母得,2x﹣3(x﹣1)<6,去括号得,2x﹣3x+3<6,移项、合并同类项得,﹣x<3,把x的系数化为1得,x>﹣3.(6)去分母得,24﹣2(3y﹣1)≥5(3+y),去括号得,24﹣6y+2≥15+5y,移项、合并同类项,﹣11y≥﹣11,把x的系数化为1得,y≤1(7)去分母得,6x﹣2(2x﹣1)≥3(2+x)﹣6去括号得,6x﹣4x+2>6+3x﹣6,移项得,6x﹣8x﹣3x>6﹣6﹣2,合并同类项得,﹣5x>﹣2,把x的系数化为1得,x <﹣,(8)去分母得,6(2x﹣1)﹣4(2x+5)>3(6x﹣1),去括号得,12x﹣6﹣8x﹣20>18x﹣3,移项得,12x﹣8x﹣18x>﹣3+6+20,合并同类项得,﹣14x>23,把x的系数化为1得,x <﹣,(9)分子与分母同时乘以10得,﹣1≤,去分母得,2(2x﹣1)﹣6≤3(5x+2),去括号得,4x﹣2﹣6≤15x+6,移项得,4x﹣15x≤6+2+6,合并同类项得,﹣11x≤14,把x的系数化为1得,x ≥﹣(10)移项合并得:﹣3x≤6,解得:x≥﹣2,(11)移项合并得:9x≤﹣6,解得:x ≤﹣,(12)去括号得:﹣8x﹣6≥8﹣4x+3,移项合并得:﹣4x≥17,解得:x ≤﹣(13)去分母得:4x﹣8>6x+2,移项合并得:﹣2x>10,解得:x<﹣5;(14)去分母得:2x﹣4x+1<3,移项合并得:﹣2x<2,解得:x>﹣1;(15)去分母得:12+3x﹣6≥8x+8,移项合并得:5x≥﹣2,解得:x ≤﹣(16)去括号得,2x﹣2≤﹣3+3x,移项得,2x﹣3x≤﹣3+2,合并同类项得,﹣x≤﹣1把x的系数化为1得,x≥1,(17)去分母得,3(2﹣3x)≤2x﹣1﹣6,去括号得,6﹣9x≤3x﹣7,移项得,﹣9x﹣3x≤﹣7﹣6,合并同类项得,﹣12x≤13,x的系数化为1得,x ≥﹣,(18)去括号得,10﹣3x+6≤2x+2,移项得,﹣3x﹣2x≤2﹣10﹣6,合并同类项得,﹣5x≤﹣24把x的系数化为1得,x ≥﹣,(19)去分母得,2(1﹣5x)﹣24≤3(3﹣x)去括号得,2﹣10x﹣24≤9﹣3x,移项得,﹣10x+3x≤9﹣2+24,合并同类项得,﹣7x≤31,x的系数化为1得,x ≥﹣(20)﹣3x>2,解得:x <﹣;(21)去分母得:x>﹣2x﹣6,解得:x>﹣2;(22)去括号得:3x+3<4x﹣8﹣3,解得:x>14;(23)去分母得:2(2x﹣1)﹣3(5x+1)≤6,去括号得: 4x﹣2﹣15x﹣3≤6,解得: x≥﹣1(24)去分母得,3(x+4)≥﹣2(2x+1),去括号得,3x+12≥﹣4x﹣2,移项、合并同类项得,7x≥﹣14,把x的系数化为1得,x ≥﹣.(25)去分母得,4(x﹣1)﹣3(2x+5)>﹣24,去括号得,4x﹣4﹣6x﹣15>﹣24,移项、合并同类项得,﹣2x>﹣5,把x的系数化为1得,x <(26)移项得,5x﹣3x>2+4,合并同类项得,2x>6,把x的系数化为1得,x>3.(27)去括号得,8x﹣4>12x+6,移项得,8x﹣12x>6+4,合并同类项得,﹣4x>10,把x的系数化为1得,x<﹣.(28)去分母得,3(4x﹣1)≤1﹣5x,去括号得,12x﹣3≤1﹣5x,移项得,12x+5x≤1+3,合并同类项得,17x≤4,把x的系数化为1得,x ≤.(29)去分母得,2(5x+1)﹣24≥3(x﹣5),去括号得,10x+2﹣24≥3x﹣15,移项得,10x﹣3x≥﹣15﹣2+24,合并同类项得,7x≥7,把x的系数化为1得,x≥1(30)去括号得,4x﹣4+3≥3x,移项得,4x﹣3x≤4﹣3,合并同类项得,x≤1,(31)去分母得,3(2x﹣3)<x+1,去括号得,6x﹣9<x+1,移项得,6x﹣x<1+9,合并同类项得,5x<10,x的系数化为1得,x<2,(32)去分母得,2(2x﹣1)﹣(9x+2)≤6,去括号得,4x﹣2﹣9x﹣2≤6,移项得,4x﹣9x≤6+2+2,合并同类项得,﹣5x≤10,x的系数化为1得,x≥﹣2(33)3[x﹣2(x﹣2)]>6+3x解:去小括号,3[x﹣3x+4]>6+3x合并,3[﹣x+4]>6+3x去中括号,﹣3x+12>6+3x移项,合并,﹣6x>﹣6化系数为1,x<1.(34)解:去分母,2(2x﹣5)≤3(3x+1)﹣8x去括号,4x﹣10≤9x+3﹣8x移项合并,3x≤13化系数为1,x ≤.(35)解:去分母,3(2﹣x)﹣3(x﹣5)>2(﹣4x+1)+8 去括号,6﹣9x﹣3x+15>﹣8x+2+8移项合并,﹣4x>﹣11化系数为1,x <.(36)解:利用分数基本性质化小数分母为整数去括号,4x﹣1﹣10x+7>2﹣4x移项合并,﹣2x>﹣4化系数为1,x<2(37)去括号,得:3x+6﹣8≥1﹣2x+2,移项、合并同类项,得:5x≥5,系数化成1得:x≥1;(38)去分母,得:3(x﹣3)﹣6>2(x﹣5),去括号,得:3x﹣9﹣6>2x﹣10,移项、合并同类项得:x>5;(39)去分母,得:6x﹣3(x﹣1)≤12﹣2(x+2),去括号,得:6x﹣3x+3≤12﹣2x﹣4,移项、合并同类项得:5x≤5系数化成1得:x≤1;(40)去分母,得:6x﹣3x<6+x+8﹣2(x+1),去括号,得:6x﹣3x<6+x+8﹣2x﹣2,移项得:6x﹣3x﹣x+2x<6﹣2+8合并同类项得:4x<12系数化成1得:x<3(41)去括号,得6x﹣9≥2x﹣8,移项,得6x﹣2x≥﹣8+9,合并同类项,得4x≥1,两边同除以4,得x ≥,(42)去分母,得4﹣8x≥0,移项得﹣8x≥﹣4,两边同除以﹣8,得x ≤,(43)去括号,得7﹣14x>10﹣20x+15,移项,得﹣14x+20x>10+15﹣7,合并同类项得6x>18,两边同除以6得x>3,(44)去分母,得2x+6<﹣6x﹣3(x+10),去括号,得2x+6<﹣6x﹣3x﹣30,移项,得2x+6x+3x<﹣30﹣6,合并同类项,得11x<﹣36,两边同除以11得x <﹣(45)去分母得:2(2x+1)﹣(5﹣2x)<0,去括号得:4x+2﹣5+2x<0,移项合并得:6x<3,解得:x <,表示在数轴上,如图所示:;(46)去分母得:6﹣2(x﹣1)≤3(2x+3)﹣6x,去括号得:6﹣2x+2≤6x+9﹣6x,移项合并得:﹣2x≤1,解得:x ≥﹣(47)去括号得,5x﹣12≤8x﹣6,移项得,5x﹣8x≤﹣6+12,合并同类项得,﹣3x≤6,x的系数化为1得,x≥﹣2;(48)去分母得,x﹣3≥2(x﹣2),去括号得,x﹣3≥2x﹣4,移项得,x﹣2x≥﹣4+3,合并同类项得,﹣x≥﹣1,x的系数化为1得,x≤1(49)去括号得4x﹣6﹣2x<0,移项、合并同类项得2x<6,系数化为1得x<3;这个不等式的解集在数轴上表示如图1:(50)去分母得3(2x﹣3)﹣4(x﹣2)≥0,去括号得6x﹣9﹣4x+8≥0,移项、合并同类项得2x≥1,系数化为1得x≥0.5(51)3x﹣2<﹣4(x﹣5);去括号得3x﹣2<﹣4x+20,移项得3x+4x<20+2合并同类项得7x<22未知项的系数化为1得x <,(52)﹣1<<2,去分母得﹣3<2﹣x<6,移项得﹣3﹣2<﹣x<6﹣2,合并同类项得﹣5<﹣x<4未知项的系数化为1得﹣4<x<5(53)去分母得,2(x﹣1)﹣3(x+4)>﹣12,去括号得,2x﹣2﹣3x﹣12>﹣12,移项、合并同类项得﹣x<2,化系数为1得x<﹣2.(54)去分母得,(x﹣2)﹣3(x﹣1)<3,去括号得,x﹣2﹣3x+3<3,移项、合并同类项得﹣2x<2,化系数为1得x>﹣120.解:(55)移项,得:5x﹣4x>﹣13﹣15,合并同类项,得:x>﹣28;(56)去分母,得:2(2x﹣1)≤3x﹣4,去括号,得:4x﹣2≤3x﹣4,移项,得:4x﹣3x≤﹣4+2,合并同类项,得:x≤﹣2(57)去括号得,28﹣7x﹣8+6x<4x,移项得,﹣7x+6x﹣4x<8﹣28,合并同类项得,﹣5x<﹣20,系数化为1得,x>4.(58)去括号得,10﹣4x+12≥2x﹣2,移项得,﹣4x﹣2x≥﹣2﹣10﹣12,合并同类项得,﹣6x≥﹣24,系数化为1得,x≤4.(59)去括号得,3x﹣6x+12>x﹣3x+9,移项得,x﹣6x﹣x+4x>9﹣12,合并同类项得,﹣3x>﹣3,系数化为1得,x<1.(60)去分母得,(2x﹣1)+3x﹣3+(1﹣2x)≤0,去括号得,2x﹣1+3x﹣3+1﹣2x≤0,移项得,2x+3x﹣2x≤3+1﹣1,合并同类项得,3x≤3,系数化为1得,x>1.(61)去分母得,﹣10y﹣5(y﹣1)≥20﹣2(y+2),去括号得,﹣10y﹣5y+5≥20﹣2y﹣4,移项得,﹣10y﹣5y+2y≥20﹣4﹣5,合并同类项得,﹣13y≥11,系数化为1得,y ≤﹣.(62)去分母得,2(3x+2)﹣(7x﹣3)>16,去括号得,6x+4﹣7x+3>16,移项得,6x﹣7x>16﹣4﹣3,合并同类项得,﹣x>9,系数化为1得,x<﹣9(63)由原不等式,得x2+x>x2﹣4x+4,移项、合并同类项,得5x>4,不等式两边同时除以5,得x >,即原不等式的解集是x >;(64)由原不等式,得﹣17x+1<12﹣10x,移项、合并同类项,得﹣7x<11,不等式两边同时除以﹣7(不等号的方向发生改变),得x >﹣,即原不等式的解集是x >﹣(65)去括号,得:3y﹣9<7y﹣4,移项,得:3y﹣7y<9﹣4,即﹣4y<5,;(66)﹣21<6﹣3x≤9两边同时减去6再除以﹣3,不等号的方向改变,得:﹣1≤x<9(67)去分母得,2(1﹣2x)≥4﹣3x,去括号得,2﹣4x≥4﹣3x,移项得,﹣4x+3x≥4﹣2,合并同类项得,﹣x≥2,化系数为1得,x≤﹣2;(68)去分母得,2(x+4)﹣3(3x﹣1)<6,去括号得,2x+8﹣9x+3<6,移项得,2x﹣9x<6﹣8﹣3,合并同类项得,﹣7x<﹣5,化系数为1得,x >;(69)去括号得,0.5x+3﹣0.6x≥0.4x﹣0.6,移项得,0.5x﹣0.6x﹣0.4x≥﹣0.6﹣3,合并同类项得,﹣0.5x≥﹣3.6,化系数为1得,x≤7.2.(70)去分母得,6x﹣3x﹣(x+8)<6﹣2(x+1),去括号得,6x﹣3x﹣x﹣8<6﹣2x﹣2,移项得,6x﹣3x﹣x+2x<6﹣2+8,合并同类项得,4x<12,化系数为1得,x<3;(71)去括号得,2x﹣2x+2+4<1﹣x,移项得,2x﹣2x+x<1﹣2﹣4,合并同类项得,x<﹣5;(72)去分母得,2(2x﹣1)﹣3(5x+1)≤6,去括号得,4x﹣2﹣15x﹣3≤6,移项得,4x﹣15x≤6+2+3,合并同类项得,﹣11x≤11,化系数为1得,x≥﹣1(73)移项合并得:﹣2x<4,解得:x>﹣2;(74)去分母得:3(x+5)﹣2(2x+3)≥12,去括号得:3x+15﹣4x﹣6≥12,移项合并得:﹣x≥3,解得:x≤﹣3(75)原不等式的两边同时乘以6,得2x+6>21﹣3x,移项,合并同类项,得5x>15,不等式的两边同时除以5,得x>3,∴原不等式的解集是x>3.(76)原不等式的两边同时乘以6,得8x+2≤14﹣x,移项,合并同类项,得9x≤16,不等式的两边同时除以9,得x≤;所以,原不等式的解集是x≤;(77)原不等式的两边同时乘以6,得8﹣2x≤9,移项,合并同类项,得﹣2x≤1,不等式的两边同时除以﹣2,得x≥﹣,所以,原不等式的解集是x≥﹣(78)移项得,3x≤9,x的系数化为1得,x≤3.(79)移项得,2x﹣5x<﹣2+5,合并同类项得,﹣3x<3,把x的系数化为1得,x>﹣1.。

初中数学分式方程一元一次不等式组练习题(附答案)

初中数学分式方程一元一次不等式组练习题(附答案)

初中数学分式方程一元一次不等式组练习题一、单选题1.已知关于x 的分式方程211x kx x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠2.若分式293x x --的值为0,则x 的值等于( )A.0B.3±C.3D.3-3.方程2131x x =+-的解是( ) A.53x =B.5x =C.4x =D.5x =-4.已知: 3x =是分式方程2121kx k x x--=-的解,那么实数是k 的值为( ) A. 1- B.0 C.1 D.25.已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A.1-B.0C.1D.26.关于x 的方程32211x mx x -=+++无解,则m 的值为( ) A.5- B.8- C.2- D.57.已知关于x 的分式方程213x m x -=-的解是非正数,则m 的取值范围是( )A .3m ≤B .3m <C .3m >-D .3m ≥-8.解分式方程1101x +=-,正确的结果是( ) A.0x =B.1x =C.2x =D.无解9.对于非零的两个实数a ,b ,规定11a b b a=-,若2(21)1x -=,则x 的值为( )A.56 B.54C.32 D.16- 10.若关于x 的方程2230x x +-=与213x x a=+-有一个解相同,则a 的值为( ) A.1 B.1或3- C.1- D.1-或311.不等式32xx ->的解为( ) A.1x < B.1x <- C.1x > D.1x >- 12.不等式()215x -<的正整数解的个数为( ) A.2 B.3 C. 4 D. 5 13.不等式组2(2)22323x x x x -≤-⎧⎪++⎨>⎪⎩的解集是( )A.02x <≤B.06x <≤C.0x >D.2x ≤14.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的正整数解的个数是( )A.5B.4C.3D.215.若数a 使关于x 的分式方程2311a x x x --=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩有解,则所有符合条件的整数a 的个数为( ) A .1B .2C .3D .416.不等式293(2)x x +≥+的解集是( ) A .3x ≤ B .3x ≤-C .3x ≥D .3x ≥-17.不等式932122x x --+<的负整数解有( ) A.1个 B.2个 C.3个 D.4个18.下列各数轴上表示的x 的取值范围可以是不等式组2(21)60x aa x +>⎧⎨--<⎩的解集的是( )A .B .C .D .19.不等式组12,92x x x +⎧⎨-<⎩的解集在数轴上表示正确的是( )A. B. C.D.20.如果关于x 的分式方程1311a x x x --=++有负分数解,且关于x 的不等式组()24,3412a x x x x -≥--⎧⎪⎨+<+⎪⎩的解集为2x <-,那么符合条件的所有整数a 的积是( ) A 、3-B 、0C 、3D 、9二、解答题 21.解方程: (1)21133x x x x =+++; (2)241111x x x -+=-+. 22.对于实数m n ,,定义一种新运算”©”为:21m n m n ©=-,这里等式右边是实数运算.求方程2(2)14x x ©-=--的解. 23.如果230x x +-=,求321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 24.解下列方程: (1)125210x x x x --=--; (2)214111x x x ++=--. 25.解不等式组:2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩并在数轴上表示它的解集.26.解不等式组131722324334x x x x x ⎧+<-⎪⎪⎨--⎪≥+⎪⎩并写出它的所有整数解.27.解不等式组205121123x x x ->⎧⎪+-⎨+≥⎪⎩,并把解集在数轴上表示出来.28.如果一元一次方程的解是一元一次不等式组的解,那么称该一元一次方程为该不等式组的关联方程.(1)若不等式组122136x x x ⎧-<⎪⎨⎪+>-+⎩,的一个关联方程的解是整数,则这个关联方程可以 是 (写出一个即可);(2)若方程1322(2)3x x x x -=+=+,都是关于的不等式组22x x m x m <-⎧⎨-≤⎩,的关联方程,试求的取值范围. 三、填空题 29.若关于x 的方程2222x mx x++=--有增根,则m 的值是__________ 30.分式方程2332x x =--的解是_____. 31.若关于x 的分式方程1322m xx x-=---有增根,则实数m 的值是 . 32.方程3122x x x =++的解是__________. 33.分式方程11233x x x-=---的解为 .34.若3311m m m m m --⋅=--,则m = . 35.不等式组30412x x -<⎧⎪⎨+≥⎪⎩的解为___________.36.不等式组23182x x x >-⎧⎨-≤-⎩的最小整数解是 .37.不等式组302321xx -⎧≤⎪⎨⎪+≥⎩的解集是________________。

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)

完整版)一元一次不等式组练习题及答案(经典)1、选择题1、选B。

解集为2<x<3的不等式组是x<3且x>2.2、选B。

根据题意可列出不等式组:a<1+a,1+a<-a,-a<a,解得a<0.3、选D。

将不等式组化简可得x≤1或x>2,所以解集在数轴上表示为(-∞,1]∪(2,+∞)。

4、选C。

将不等式组化简可得2<x<5/3,所以整数解的个数是3个。

5、选C。

根据题意可列出不等式组:2x-6>0,x-5<0,解得-5<x<3.6、选D。

将每个不等式化简,得到①x>1,②x>4,③x <2,④x<3,所以选项D符合条件。

7、选B。

根据题意可得2-b<a<2-a,即b-2<x<a-2.8、选A。

将方程组化简可得x=(3m-2)/7,y=(8x-m)/3,代入x>y中得到4m<25,即m>9/4,所以m的取值范围是m>xxxxxxx。

二、填空题9、解得y<1或y>3,所以取值范围为y<1或y>3.10、将不等式组化简可得x<2或x≥3,所以解集是(-∞,2)∪[3,+∞)。

11、将不等式组化简可得x≤-0.25或x≥0.8333,所以解集是(-∞,-0.25]∪[0.8333,+∞)。

12、将不等式组化简可得m≤0.5或m≥1.5,所以取值范围是m≤0.5或m≥1.5.13、解得x≥2,所以解集为[2,+∞)∩(-∞,5)=[2,5)。

14、将不等式组化简可得x>a且x>2,所以解得a<2.15、将不等式组化简可得x<2b-1且x>(x+3)/2,所以解得b>3/2且a<1/2,所以(a+1)(b-1)=ab+a-b+1=(3/2)a+1/2.16、将不等式组化简可得x<4a-1且x>x-2b-3,所以解得a<(x+1)/4且b<(x-3)/2,所以(a+1)(b-1)<(x+1)/4·(x-3)/2=(x²-2x-3)/8.1)解不等式组begin{cases}3x-2<8\\2x-1>2end{cases}化简得begin{cases}x<10/3\\x>3/2end{cases}因此解集为$(3/2,10/3)$。

八年级数学上册一元一次不等式专题卷(附答案)

八年级数学上册一元一次不等式专题卷(附答案)

八年级数学上册一元一次不等式专题卷(附答案)评卷人得分一、选择题(题型注释)1.如果不等式组无解,那么m 的取值范围是()A.m>5 B.m≥5 C.m<5 D.m≤52.不等式组840312xx-⎩≤-⎧⎨>的解集在数轴上表示为()3.如果不等式无解,则b的取值范围是()A.b>﹣2 B.b<﹣2 C.b≥﹣2 D.b≤﹣24.不等式2x﹣6<0的解集是()A.x>3 B.x<3 C.x>﹣3 D.x<﹣35.已知不等式组,其解集在数轴上表示正确的是()6.关于x的不等式x-b>0恰有两个负整数解,则b的取值范围是()A.-3<b<-2 B.-3<b≤-2C.-3≤b≤-2 D.-3≤b<-27.不等式组的解集在数轴上表示为()A. B .C . D.8.在数轴上表示不等式组202(1)1xx x+>⎧⎨-≤+⎩的解集,正确的是()A. B. C . D.9.不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<310.如果不等式组有解,那么m的取值范围是()A.m>8 B.m<8 C.m≥8 D.m≤811.已知不等式组1x a x >⎧⎨≥⎩的解集是x ≥1,则a 的取值范围是( ) A .a <1 B .a ≤1 C .a ≥1 D .a >1 评卷人得分二、填空题(题型注释) 12.学校举行百科知识抢答赛,共有20道题,规定每答对一题记10分,答错或放弃记﹣4分,八年级一班代表的得分目标为不低于88分,则这个队至少要答对 道题才能达到目标要求.13.不等式组⎩⎨⎧-≤->+x x x 81212的最大整数解是 .14.不等式组的解集为 .15.不等式组10241x x x +⎧⎨+-⎩>≥的解集为 . 16.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x <13的解集为 。

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)

第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。

2020年湘教版数学八年级上册第4章《一元一次不等式(组)》单元测试卷(含答案)

2020年湘教版数学八年级上册第4章《一元一次不等式(组)》单元测试卷(含答案)

2020-2021学年八年级数学上册第4章《一元一次不等式(组)》单元检测一.选择题(共10小题,每小题3分,共30分)1.已知a<b,下列不等式中正确的是()A.B.12a﹣3<12b﹣3C.a+3>b+3D.﹣3a<﹣3b2.已知12(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m的值为()A.4B.±4C.3D.±33.方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1B.a>1C.a<2D.a>24.不等式>x的最大整数解为()A.x=﹣1B.x=0C.x=1D.x=25.不等式3(x﹣2)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个6.“x的3倍与3的差不大于8”,列出不等式是()A.3x﹣3≤8B.3x﹣3≥8C.3x﹣3<8D.3x﹣3>87.把不等式组的解集表示在数轴上,下列选项正确的是()A.B.C.D.8.如果关于x的不等式组有解,则a的取值范围是()A.a≤3B.a≥3C.a>3D.a<39.若干个苹果分给x个小孩,如果每人分3个,那么余7个;如果每人分5个,那么最后一人分到的苹果不足5个,则x满足的不等式组为()A.0<(3x+7)﹣5(x﹣1)≤5B.0<(3x+7)﹣5(x﹣1)<5C.0≤(3x+7)﹣5(x﹣1)<5D.0≤(3x+7)﹣5(x﹣1)≤510.P,Q,R,S四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为()A .R <Q <P <SB .Q <R <P <SC .Q <R <S <PD .Q <P <R <S二.填空题(共8小题,每小题3分,共24分)11.若﹣2m <﹣6n ,则3m n .(填“<、>”或“=”号) 12.已知关于x 的不等式2x ﹣k ≥1的解在数轴上的表示如图,则k 的值是 .13.关于x ,y 的方程组的解x 与y 满足条件x +y ≤2,则4m +3的最大值是 .14.如果关于x 的不等式2x ﹣3≤2a +3只有4个正整数解,那么a 的取值范围是 .15.已知关于x 的不等式组的解集为3≤x <5,则b 的值为16.不等式组的解集是 .17.已知关于x 的不等式组无解,则m 的取值范围是 .18.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元,演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 .三.解答题(共6小题,满分46分,19题6分,20、21、22每小题7分,23题9分,24题10分)19.已知:x ,y 满足3x ﹣4y =5.(1)用含x 的代数式表示y ,结果为 ;(2)若y 满足﹣1<y ≤2,求x 的取值范围;(3)若x ,y 满足x +2y =a ,且x >2y ,求a 的取值范围.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.21.解不等式组,并求x 的整数解.22.解不等式组:,并把解集在数轴上表示出来.23.为保护环境,我市某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车3辆,B型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?参考简答一.选择题(共10小题)1.B.2.A.3.C.4.B.5.C.6.A.7.D.8.D.9.C.10.B.二.填空题(共8小题)11. > .(填“<、>”或“=”号) 12. 3- . 13. 5 . 14. 12a < .15. 6 16. 16x . 17. 3m . 18. 252368(x x <为整数).三.解答题(共6小题) 19.已知:x ,y 满足345x y -=.(1)用含x 的代数式表示y ,结果为; (2)若y 满足12y -<,求x 的取值范围;(3)若x ,y 满足2x y a +=,且2x y >,求a 的取值范围.【解】:解:(1)y =; 故答案为:;(2)根据题意得﹣1<≤2, 解得<x ≤;(3)解方程组得∵x >2y ,∴>2×,解得a <10.20.已知m 是不等式2(5m +3)≥m ﹣3(1﹣2m )的一个负整数解,请求出代数式m ﹣1+÷的值.【解】:解:m ﹣1+÷=m ﹣1+•=m ﹣1+==,∵解不等式2(5m +3)≥m ﹣3(1﹣2m )得:m ≥﹣3,∴m =﹣1或﹣3或﹣2,∵当m =﹣1或m =﹣3时,分式无意义,∴m 只能等于﹣2,当m =﹣2时,原式==﹣4.21.解不等式组3(2)8131322x x x x --<⎧⎪⎨-<-⎪⎩,并求x 的整数解. 【解】:解:∵解不等式①得:x >﹣1,解不等式②得:x <2, ∴不等式组的解集为﹣1<x <2,∴x 的整数解为01,22.解不等式组:,并把解集在数轴上表示出来.【解】:解不等式3(2)4x x --,得:1x ,解不等式21152x x ++<,得:3x >-, 则不等式组的解集为31x -<,将不等式组的解集表示在数轴上如下:23.为保护环境,我市某公交公司计划购买A 型和B 型两种环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A 型和B 型公交车每辆各需多少万元?(2)预计在某线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?【解】:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得:,解得.答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10)a-辆,由题意得,解得:68a,所以6a=,7,8;则(10)4a-=,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)①购买A型公交车6辆,则B型公交车4辆:100615041200⨯+⨯=万元;②购买A型公交车7辆,则B型公交车3辆:100715031150⨯+⨯=万元;③购买A型公交车8辆,则B型公交车2辆:100815021100⨯+⨯=万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.24.某班决定购买一些笔记本和文具盒做奖品.已知需要的笔记本数量是文具盒数量的3倍,购买的总费用不低于220元,但不高于250元.(1)商店内笔记本的售价4元/本,文具盒的售价为10元/个,设购买笔记本的数量为x,按照班级所定的费用,有几种购买方案?每种方案中笔记本和文具盒数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少费用是多少元?(3)经过还价,老板同意4元/本的笔记本可打八折,10元/个的文具盒可打七折,用(2)中的最少费用最多还可以多买多少笔记本和文具盒?【解】:(1)依题意,得:,解得:1 303411x.x为正整数,x∴可取30,31,32,33,34.又13x也必须是整数,∴13x可取10,11.∴有两种购买方案,方案一:笔记本30本,文具盒10个;方案二:笔记本33本,文具盒11个.(2)在(1)中,方案一购买的总数量最少,∴总费用最少,最少费用为:4301010220⨯+⨯=(元).答:方案一的总费用最少,最少费用为220元.(3)设用(2)中的最少费用最多还可以多买的文具盒数量为y ,则笔记本数量为3y , 依题意,得:480%(303)1070%(10)220y y ⨯++⨯+, 解得:21383y , y 为正整数,y ∴的最大值为3,39y ∴=.答:用(2)中的最少费用最多还可以多买9本笔记本和3个文具盒.1、盛年不重来,一日难再晨。

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

(必考题)初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》测试卷(有答案解析)2

一、选择题1.不等式251x -+≥的解集在数轴上表示正确的是( )A .B .C .D .2.如图,已知一次函数y =kx +b 的图象经过点A (﹣1,2)和点B (﹣2,0),一次函数y =mx 的图象经过点A ,则关于x 的不等式组0<kx +b <mx 的解集为( )A .﹣2<x <﹣1B .﹣1<x <0C .x <﹣1D .x >﹣1 3.某商贩去批发市场买西瓜,他上午买了300斤,每斤价格x 元,下午买了200斤,每斤价格y 元.后来他以每斤价格2x y +卖出,结果发现自己亏了钱,其原因是( ) A .x y < B .x y > C .x y ≤ D .x y ≥ 4.某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是( ).A .两胜一负B .一胜两平C .五平一负D .一胜一平一负 5.如果m n >,则下列各式不成立的是( )A .22m n +>+B .22m n ->-C .22m n >D .22m n -<- 6.已知实数 a 、b ,若 a b >,则下列结论错误的是( )A .31a b +>+B .25a b ->-C .33a b ->-D .55a b > 7.不等式2﹣3x≥2x ﹣8的非负整数解有( )A .1个B .2个C .3个D .4个 8.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定9.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2 10.已知a <b ,下列变形正确的是( ) A .a ﹣3>b ﹣3B .2a <2bC .﹣5a <﹣5bD .﹣2a +1<﹣2b +1 11.若a b >,则下列不等式中,不成立的是( ) A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 12.下列不等式变形中,一定正确的是( ) A .若ac>bc ,则a>bB .若a>b ,则ac>bcC .若ac²>bc²,则a>bD .若a>0,b>0,且11a b>,则a>b 二、填空题13.不等式21302x --的非负整数解共有__个. 14.若关于x 、y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足32x y +>-,则满足条件的m 的取值范围是____________.15.若不等式组30x a x >⎧⎨-≤⎩只有三个正整数解,则a 的取值范围为__________. 16.方程组24x y k x y +=⎧⎨-=⎩的解满足1x >,1y <,k 的取值范围是:__________.17.如图,数轴上所表示关于x 的不等式组的解集是__________.18.若不等式12x x -<的解都能使关于x 的一次不等式()11a x a -<+成立,则a 的取值范围是________. 19.某次知识竞赛共有10题,答对一题得10分,答错或不答扣5分,小华得分要超过70分,他至少要答对__________题20.在△ABC 中,∠A 是钝角,∠B =30°, 设∠C 的度数是α,则α的取值范围是___________三、解答题21.现对x ,y 定义一种新的运算T ,规定:(,)++=+ax by c T x y x y (其中a ,b ,c 为常数,且0abc ≠).例如:10(1,0)10⨯+⨯+==++a b c T a c . 已知(3,1)2,(2,3) 2.8,(1,1)3-===T T T .(1)求a ,b ,c 的值;(2)求关于m 的不等式组(4,54)3,(2,32)1T m m T m m -<⎧⎨->⎩的整数解. 22.解不等式组3(1)511242x x x x -<+⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.再求它的所有的非负整数.23.阅读下列材料,解答下面的问题:我们知道方程2312x y +=有无数个解,但在实际生活中我们往往只需求出其正整数解. 例:由2312x y +=,得1222433x y x -==-(x ,y 为正整数).要使243y x =-为正整数,则23x 为正整数,由2,3互质,可知x 为3的倍数,从而把3x =,代入243y x =-,得2y =.所以2312x y +=的正整数解为32x y =⎧⎨=⎩, 问题:(1)请你直接写出方程36x y -=的一组正整数解:__________.(2)若123x -为自然数,则满足条件的x 的正整数值有( )A .5个;B .6个;C .7个;D .8个 (3)七年级某班为了奖励学生学习的进步,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费48元,问有几种购买方案?写出购买方案.24.已知线段12AB =,点C ,E ,F 在线段AB 上,E 是线段AC 的中点.(1)如图1,当F 是线段BC 的中点时,求线段EF 的长;(2)如图2.当F 是线段AB 的中点时,EF a =,①求线段AC 的长(结果可用含a 的代数式表示);②若a 为正整数,请写出所有满足条件的a 的值.25.解不等式(或组):(1)2934x x ++≤ (2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩26.已知一次函数y x b =+的图像经过点(1,3)A -.(1)求该函数的表达式;(2)x 取何值时,0y >?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】解出不等式,在进行判断即可;【详解】251x -+≥,24x -≥-,2x ≤,解集表示为:;故答案选C .【点睛】本题主要考查了一元一次不等式的解集表示,准去计算是解题的关键.2.A解析:A【分析】利用函数图象,写出在x 轴上方且函数y=kx+b 的函数值小于函数y=mx 的函数值对应的自变量的范围即可.【详解】解:当x >﹣2时,y =kx +b >0;当x <﹣1时,kx +b <mx ,所以不等式组0<kx +b <mx 的解集为﹣2<x <﹣1.故选:A .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.3.B解析:B【分析】题目中的不等关系是:买西瓜每斤平均价>卖黄瓜每斤平均价.【详解】 解:根据题意得,他买西瓜每斤平均价是300200500x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱, 则300200500x y +>2x y +, 解之得,x >y .所以赔钱的原因是x >y .故选:B .【点睛】本题考查了一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式.4.B解析:B【分析】根据题意,每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y (x ,y 均是非负整数),则有y =5-3x ,且0≤y ≤3,由此即可求得x 、y 的值.【详解】由已知易得:每个小组有4支球队,每支球队都要进行三场比赛,设该球队胜场数为x ,平局数为y ,∵该球队小组赛共积5分,∴y =5-3x ,又∵0≤y ≤3,∴0≤5-3x ≤3,∵x 、y 都是非负整数,∴x =1,y =2,即该队在小组赛胜一场,平二场,故选:B .【点睛】读懂题意,设该队在小组赛中胜x 场,平y 场,知道每支球队在小组赛要进行三场比赛,并由题意得到y=5-3x 及0≤y≤3是解答本题的关键.5.B解析:B【分析】根据不等式的性质解答.【详解】A 、在不等式m >n 的两边同时加上2,不等式仍成立,即m+2>n+2,故本选项不符合题意.B 、在不等式m >n 的两边同时乘以-1然后再加上2,不等式号方向改变,即2-m <2-n ,故本选项符合题意.C 、在不等式m >n 的两边同时除以2,不等式仍成立,即22m n ,故本选项不符合题意. D 、在不等式m >n 的两边同时乘以-2,不等式号方向改变,即-2m <-2n ,故本选项不符合题意.故选:B .【点睛】本题主要考查了不等式的性质,在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.6.C解析:C【分析】根据不等式的性质逐个判断即可.【详解】解:A 、∵a >b ,∴a+1>b+1,a+3>a+1,∴a+3>b+1,故本选项不符合题意;B 、∵a >b ,∴a-2>b-2,b-2>b-5,∴a-2>b-5,故本选项不符合题意;C 、∵a >b ,∴-3a <-3b ,故本选项符合题意;D 、∵a >b ,∴5a >5b ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.7.C解析:C【解析】试题分析:首先移项,合并同类项,然后系数化成1,即可求得不等式的解集,然后确定非负整数解即可.解:移项,得:﹣3x ﹣2x≥﹣8﹣2,合并同类项,得:﹣5x≥﹣10,则x≤2.故非负整数解是:0,1,2共有3个.故选C .点评:本题考查了一元一次不等式的解法,理解解不等式的基本依据是不等式的基本性质是关键.8.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.9.D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-, 解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.10.B解析:B【分析】运用不等式的基本性质求解即可.【详解】由a <b ,可得:a ﹣3<b ﹣3,2a <2b ,﹣5a >﹣5b ,﹣2a+1>﹣2b+1,故选B .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.11.A解析:A【分析】根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立; D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.12.C解析:C【分析】根据不等式的基本性质分别进行判定即可得出答案.【详解】A.当c<0,不等号的方向改变.故此选项错误;B.当c=0时,符号为等号,故此选项错误;C.不等式两边乘(或除以)同一个正数,不等号的方向不变,正确;D.不等式的两边都乘以或除以同一个正数,不等号的方向不变,错误.故选:C.【点睛】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.二、填空题13.4【分析】不等式去分母合并后将x系数化为1求出解集找出解集中的非负整数解即可【详解】解:解得:则不等式的非负整数解为0123共4个故答案为:4【点睛】此题考查了一元一次不等式的非负整数解熟练掌握运算解析:4【分析】不等式去分母,合并后,将x系数化为1求出解集,找出解集中的非负整数解即可.【详解】解:2130 2x--,2160x--,27x,解得: 3.5x,则不等式的非负整数解为0,1,2,3共4个.故答案为:4.【点睛】此题考查了一元一次不等式的非负整数解,熟练掌握运算法则是解本题的关键.14.【分析】先将m看做常数解方程组求出再代入可得关于m的不等式解之可得答案【详解】①-②得:将代入②得:∵∴+∴故答案为:【点睛】本题主要考查了解二元一次方程组和解一元一次不等式熟练掌握运算法则是解本题解析:72 m<【分析】先将m 看做常数解方程组求出2x m =-、2y m =+,再代入32x y +>-可得关于m 的不等式,解之可得答案.【详解】 23224x y m x y +=-+⎧⎨+=⎩①② ①2⨯-②得:2x m =-,将2x m =-代入②得:2y m =+, ∵32x y +>-, ∴2m - +322m +>-, ∴72m <. 故答案为:72m <. 【点睛】本题主要考查了解二元一次方程组和解一元一次不等式,熟练掌握运算法则是解本题的关键.注意:不等式两边都乘以或除以同一个负数不等号方向要改变.15.【分析】先确定不等式组的整数解再求出的取值范围即可【详解】∵不等式组只有三个正整数解∴故答案为:【点睛】本题考查了解不等式组的整数解的问题掌握解不等式组的整数解的方法是解题的关键解析:01a ≤<【分析】先确定不等式组的整数解,再求出a 的取值范围即可.【详解】30x a x >⎧⎨-≤⎩30x -≤3x ≤∵不等式组只有三个正整数解∴01a ≤<故答案为:01a ≤<.【点睛】本题考查了解不等式组的整数解的问题,掌握解不等式组的整数解的方法是解题的关键. 16.【分析】先求出方程组的解再得出关于k 的不等式组求出不等式组的解集即可【详解】解:解方程组得:∵关于xy 的方程组的解满足∴解得:-1<k <3故答案为-1<k <3【点睛】本题考查了解二元一次方程组和解一解析:13k -<<【分析】先求出方程组的解,再得出关于k 的不等式组,求出不等式组的解集即可.【详解】解:解方程组得:22x k y k +⎧⎨-⎩==, ∵关于xy 的方程组24x y k x y +⎧⎨-⎩==的解满足1x >,1y <, ∴2121k k +⎧⎨-⎩><, 解得:-1<k <3,故答案为-1<k <3.【点睛】本题考查了解二元一次方程组和解一元一次不等式组,能得出关于k 的不等式组是解此题的关键.17.【分析】数轴的某一段上面表示解集的线的条数与不等式的个数一样那么这段就是不等式组的解集实心圆点包括该点空心圆圈不包括该点>向右<向左两个不等式的公共部分就是不等式组的解集【详解】解:由图示可看出从- 解析:12x -<≤【分析】数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,>向右<向左.两个不等式的公共部分就是不等式组的解集.【详解】解:由图示可看出,从-1出发向右画出的折线且表示-1的点是空心圆,表示x>-1;从2出发向左画出的折线且表示2的点是实心圆,表示x≤2,不等式组的解集是指它们的公共部分.所以这个不等式组的解集是:12x -<≤.故答案为:12x -<≤.【点睛】本题考查在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.18.【分析】求出不等式的解求出不等式的解集得出关于a 的不等式求出a 即可【详解】解:解不等式可得∵不等式的解都能使不等式成立∴∴解得故答案为:【点睛】本题考查解一元一次不等式不等式的性质等知识点能根据已知 解析:113a ≤< 【分析】 求出不等式12x x -<的解,求出不等式()11a x a -<+的解集,得出关于a 的不等式,求出a 即可.【详解】 解:解不等式12x x -<可得2x >-, ∵不等式12x x -<的解都能使不等式()11a x a -<+成立, ∴10a -<,11a x a +>-, ∴121a a +≤--, 解得113a ≤<, 故答案为:113a ≤<. 【点睛】本题考查解一元一次不等式,不等式的性质等知识点,能根据已知得到关于a 的不等式是解此题的关键..19.9【分析】设答对x 题则答错10-x 题然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可【详解】解:设答对x 题则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8故答解析:9【分析】设答对x 题,则答错10-x 题,然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可.【详解】解:设答对x 题,则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8.故答案为9.【点睛】本题考查了一元一次不等式的应用,设出未知数、确定不等关系、列出不等式是解答本题的关键.20.【分析】依据三角形的内角和定理表示∠A 根据它是钝角列出不等式组求解即可【详解】解:∵∠A+∠B+∠C=180°∴∠A=180°-30°-α=150°-α∵∠A 是钝角∴即故答案为:【点睛】本题考查解不解析:3060α︒<<︒【分析】依据三角形的内角和定理表示∠A ,根据它是钝角列出不等式组,求解即可.【详解】解:∵∠A+∠B+∠C=180°,∴∠A=180°-30°-α=150°-α.∵∠A 是钝角,∴90150180α︒<︒-<︒,即3060α︒<<︒,故答案为:3060α︒<<︒.【点睛】本题考查解不等式组,三角形内角和定理.能正确表示∠A 及利用它的大小关系列出不等式是解题关键.三、解答题21.(1)231a b c =⎧⎪=⎨⎪=⎩;(2)关于m 的不等式组(4,54)3(2,32)3T m m T m m -<⎧⎨->⎩的整数解有1,2,3. 【分析】(1)由题意易得323123 2.82311311a b c a b c a b c ⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,然后求解即可; (2)由题意,得243(54)135223(32)113m m m m ⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,则有大于14且小于72的整数有1,2,3,然后问题可求解.【详解】解:(1)由题意,得3231232.82311311a b ca b ca b c⨯-+⎧=⎪-⎪⨯+⨯+⎪=⎨+⎪⨯+⨯+⎪=⎪+⎩,整理,得34 23146a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩,解得231abc=⎧⎪=⎨⎪=⎩;(2)由题意,得243(54)135223(32)113m mm m⨯+-+⎧<⎪⎪⎨⨯+-+⎪>⎪⎩,解得17 42 <<m,∵大于14且小于72的整数有1,2,3,∴关于m的不等式组()()4,5432,323T m mT m m⎧-<⎪⎨->⎪⎩的整数解有1,2,3.【点睛】本题主要考查一元一次不等式的应用,熟练掌握一元一次不等式的应用是解题的关键.22.0,1,2【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来,写出符合条件的x 的非负整数解即可.【详解】解:3(1)51?124?2x xxx-<+⎧⎪⎨-≥-⎪⎩①②,由①得,x>-2,由②得,73x≤,故此不等式组的解集为:723x-<≤,在数轴上表示为:,它的所有的非负整数解为:0,1,2.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)33xy=⎧⎨=⎩;(2)B;(3)三种,方案见解析【分析】(1)求方程3x-y=6的正整数解,可给定x一个正整数值,计算y的值,如果y的值也是正整数,那么就是原方程的一组正整数解.(2)参照例题的解题思路进行解答;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.求该二元一次方程的正整数解即可.【详解】解:(1)由3x-y=6,得y=3x-6,要使y是正整数,则3x-6是正整数,所以需要x>2,故当x=3时,y=3,所以3x-y=6的一组正整数解可以是:33 xy=⎧⎨=⎩,故答案是:33 xy=⎧⎨=⎩;(2)若123x-为自然数,则满足条件的x的正整数值有4,5,6,7,9,15共6个,故答案是:B;(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=48,其中m、n均为自然数.于是有:n=4835m-,则有4835mm-⎧>⎪⎨⎪>⎩,解得:0<m<16.由于n=4835m-为正整数,则48-3m为正整数,且为5的倍数.∴当m=1时,n=9;当m=6时,n=6,当m=11时,n=3.答:有三种购买方案:即购买单价为3元的笔记本1本,单价为5元的钢笔9支; 或购买单价为3元的笔记本6本,单价为5元的钢笔6支;或购买单价为3元的笔记本11本,单价为5元的钢笔3支.【点睛】本题考查了二元一次方程的应用,解题关键是要读懂题目给出的已知条件,根据条件求解.注意笔记本和钢笔是整体,所有不可能出现小数和负数,这也就说要求的是正整数. 24.(1)6;(2)①122a -;② a 可取1,2,3,4,5【分析】(1)根据线段中点的性质,得12AE EC AC ==、12BF CF BC ==,再根据线段和差的性质计算,即可得到答案;(2)①根据线段中点的性质,得6AF BF ==;根据线段和差性质,得6AE a =-,再根据线段中点的性质计算,即可得到答案;②结合AC AB <,根据(2)①的结论,通过列不等式并求解,即可得到答案.【详解】(1)∵E 是线段AC 的中点 ∴12AE EC AC ==F 是线段BC 的中点 ∴12BF CF BC == ()11622EF EC CF AC BC AB =+=+==; (2)①F 是线段AB 的中点∴6AF BF == ∵EF a =,AC AB < ∴1122AE AC AB =<,即12AE AC AF =< ∴6AE AF EF a =-=-∴122AC a =- ②∵122AC a =-,且AC AB <∴012212a <-<∴06a <<∵a 为正整数∴a 可取1,2,3,4,5.【点睛】本题考查了线段、一元一次不等式的知识;解题的关键是熟练掌握线段中点、线段和差、一元一次不等式的性质,从而完成求解.25.(1)12x ≤;(2)6x >【分析】(1)解一元一次不等式,先去分母,然后移项,合并同类项,最后系数化1求解; (2)先分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:(1)2934x x ++≤ 去分母,得:4243108x x ++≤移项,得:4310824x x +≤-合并同类项,得:784x ≤系数化1,得:12x ≤∴不等式的解集为x≤12(2)()47512432x x x x ⎧-<-⎪⎨->-⎪⎩①② 解不等式①,得:2x >-解不等式②,得:6x >∴不等式组的解集为6x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(1)4y x =+;(2)4x >-【分析】(1)利用待定系数法求出b 的值,即可得出结果;(2)求得直线与x 轴的交点,然后根据一次函数的性质即可求解.【详解】解:(1)一次函数y =x +b 的图象经过点A (−1,3).∴3=−1+b ,∴b =4,∴该一次函数的解析式为y =x +4;(2)令y =0,则x +4=0,解得x =−4,∵k =1,∴y 随x 的增大而增大,∴x >−4时,y >0.【点睛】本题考查了待定系数法求一次函数的解析式及一次函数与一元一次不等式的关系,熟练掌握一次函数的图象与性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式组测试题(提高)一、选择题1.如果不等式213(1)x xx m->-⎧⎨<⎩的解集是x<2,那么m的取值范围是()A.m=2 B.m>2 C.m<2 D.m≥22.(贵州安顺)若不等式组530xx m-≥⎧⎨-≥⎩有实数解.则实数m的取值范围是()A.53m≤B.53m<C.53m>D.53m≥3.若关于x的不等式组3(2)432x xx a x--<⎧⎨-<⎩无解,则a的取值范围是()A.a<1 B.a≤l C.1 D.a≥14.关于x的不等式721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤75.某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有()A.20人B.19人C.11人或13人D.20人或19人6.某城市的一种出租车起步价是7元(即在3km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是()A.10km B.9 km C.8km D.7 km7.不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为().8.解集如图所示的不等式组为().A.12xx>-⎧⎨≤⎩B.12xx≥-⎧⎨>⎩C.12xx≤-⎧⎨<⎩D.12xx>-⎧⎨<⎩二、填空题1.已知24221x y kx y k+=⎧⎨+=+⎩,且10x y-<-<,则k的取值范围是________.2.某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .3.如果不等式组2223xax b⎧+≥⎪⎨⎪-<⎩的解集是0≤x<1,那么a+b的值为_______.4.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______个儿童,_______个橘子.5.对于整数a、b、c、d,规定符号a bac bdd c=-.已知13a bd c<<则b+d的值是________.6. 在△ABC中,三边为a、b、c,(1)如果3a x=,4b x=,28c=,那么x的取值范围是;(2)已知△ABC的周长是12,若b是最大边,则b的取值范围是;(3)=--++-----++cabbacacbcba.7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为.三、解答题13.解下列不等式组.(1)231313(1)6xxx x-⎧+<-⎪⎨⎪-+≥-⎩(2)2121x>-(3)210310320xxx-≥⎧⎪+>⎨⎪-<⎩(4)2153x-+≤14.已知:关于x,y的方程组27243x y ax y a+=+⎧⎨-=-⎩的解是正数,且x的值小于y的值.(1)求a的范围;(2)化简|8a+11|-|10a+1|.17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?18. 不等式组3(2)5(4) 2 (1)562(2)1, (2)32211 (3)23x xxxx x⎧⎪++-<⎪+⎪+≥+⎨⎪++⎪-≤⎪⎩是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.19,“5.12”四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为2x x m <⎧⎨<⎩,又知不等式组的解集是x <2根据不等式组解集的确定方法“同小取小”可知m ≥2.2. 【答案】A ;【解析】原不等式组可化为53x x m⎧≤⎪⎨⎪≥⎩而不等式组有解,根据不等式组解集的确定方法“大小小大中间找”可知m ≤53. 3. 【答案】B ;【解析】原不等式组可化为1,.x x a >⎧⎨<⎩根据不等式组解集的确定方法“大大小小没解了”可知a ≤1.4. 【答案】D ;【解析】解得原不等式组的解集为:3≤x <m ,表示在数轴上如下图,由图可得:6<m≤7.5. 【答案】D ;6. 【答案】B ;7,A 8,A【解析】设这人乘的路程为xkm ,则13<7+1.2(x-3)≤14.2,解得8<x ≤9. 二、填空题 1. 【答案】12<k <1; 【解析】解出方程组,得到x ,y 分别与k 的关系,然后再代入不等式求解即可. 2. 【答案】10≤x ≤30; 3.【答案】1【解析】由不等式22x a +≥解得x ≥4—2a .由不等式2x -b <3,解得32b x +<. ∵ 0≤x <1,∴ 4-2a =0,且312b +=,∴ a =2,b =-1.∴ a+b =1. 4.【答案】7, 37;【解析】设有x 个儿童,则有0<(4x+9)-6(x -1)<3. 5.【答案】3或-3 ;【解析】根据新规定的运算可知bd =2,所以b 、d 的值有四种情况:①b =2,d =1;②b =1,d =2;③b =-2,d =-1;④b =-1,d =-2.所以b+d 的值是3或-3. 6,【答案】(1) 4<x <28 (2)4<b <6 (3)2a ; 7.【答案】1<m <2;三、解答题13.解:(1)解不等式组231313(1)6x x x x -⎧+<-⎪⎨⎪-+≥-⎩①②解不等式①,得x >5,解不等式②,得x ≤-4. 因此,原不等式组无解.(2)把不等式121x x >-进行整理,得1021x x ->-,即1021xx ->-, 则有①10210x x ->⎧⎨->⎩或②10210x x -<⎧⎨-<⎩解不等式组①得112x <<;解不等式组②知其无解,故原不等式的解集为112x <<. (3)解不等式组210310320x x x -≥⎧⎪+>⎨⎪-<⎩①②③解①得:12x ≥, 解②得:13x >-,解③得:23x <,将三个解集表示在数轴上可得公共部分为:12≤x <23所以不等式组的解集为:12≤x <23(4) 原不等式等价于不等式组:21532153x x -+⎧≤⎪⎪⎨-+⎪≥-⎪⎩①②解①得:7x ≥-,解②得:8x ≤,所以不等式组的解集为:78x -≤≤14.解:(1)解方程组27243x y a x y a +=+⎧⎨-=-⎩,得81131023a x ay +⎧=⎪⎪⎨-⎪=⎪⎩14,根据题意,得811031020381110233a aa a +⎧>⎪⎪-⎪>⎨⎪+-⎪<⎪⎩①②③解不等式①得118a >-.解不等式②得a <5,解不等式③得110a <-,①②③的解集在数轴上表示如图.∴ 上面的不等式组的解集是111810a -<<-. (2)∵ 111810a -<<-. ∴ 8a +11>0,10a +1<0.∴ |8a +11|-|10a +1|=8a +11-[-(10a +1)]=8a +11+10a +1=18a +12.15,解:由不等式1023x x ++>,分母得3x+2(x+1)>0, 去括号,合并同类项,系数化为1后得x >25-.由不等式544(1)33a x x a ++>++去分母得3x+5a+4>4x+4+3a ,可解得x <2a . 所以原不等式组的解集为225x a -<<,因为该不等式组恰有两个整数解:0和l ,故有:1<2a ≤2,所以:12a <≤1. 16,解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.17.解:(1)设饮用水有x 件,蔬菜有y 件,依题意,得320,80,x y x y +=⎧⎨-=⎩解得200,120.x y =⎧⎨=⎩ 所以饮用水和蔬菜分别为200件和120件.(2)设租用甲种货车m 辆,则租用乙种货车(8-m )辆.依题意得4020(8)200,1020(8)120.m m m m +-≥⎧⎨+-≥⎩ 解得2≤m ≤4.又因为m 为整数,所以m =2或3或4.所以安排甲、乙两种货车时有3种方案. 设计方案分别为:①2×400+6×360=2960(元);②3×400+5×360=3000(元);③4×400+4×360=3040(元).所以方案①运费最少,最少运费是2960元. 18,解:解不等式(1),得:x <2;解不等式(2),得:x ≥-3; 解不等式(3),得:x ≥-2; 在数轴上分别表示不等式(1)、(2)、(3)的解集:∴原不等式组的解集为:-2≤x <2.∴原不等式组的整数解为:-2、-1、0、1.19,解:(1)设租用甲种汽车x 辆,则租用乙种汽车(8)x -,则:42(8)3038(8)20x x x x +-≥⎧⎨+-≥⎩, 解得:4785x ≤≤, ∵x 应为整数,∴7x =或8,∴有两种租车方案,分别为:方案1:租甲种汽车7辆,乙种汽车1辆;方案2:租甲种汽车8辆,乙种汽车0辆. (2)租车费用分别为:方案1: 8000×7+6000×1=62000(元);方案2:8000×:8=64000(元). ∴ 方案1花费最低,所以选择方案1.。

相关文档
最新文档