一次函数图像应用题
初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
一次函数应用题精选

1、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费 元; (2)当100x ≥时,求y 与x 之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1) 分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量t 的取值范围)(2) 当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;(3) 在(2)的条件下,设乙同学从A 处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y (cm )与燃烧时间()x h 的关系如图所示.请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是 , 从点燃到燃尽所用的时间分别是 ; (2)分别求甲、乙两根蜡烛燃烧时y 与x 之间的函数关系式; (3)当x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?4、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.100 200(分钟)时)5 )(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y (元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式;(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.5、某房地产开发公司计划建A 、B 两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案? (2)该公司如何建房获得利润最大? (3)根据市场调查,每套B 型住房的售价不会改变,每套A 型住房的售价将会提高a 万元(a >0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?6、今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费y (元)与用电量x (度)的函数图像是一条折线(如图所示),根据图像解答下列问题:(1) 分别写出100x 0≤≤和100x ≥时,y 与x(2) 利用函数关系式,说明电力公司采取的收费标准;(3) 若该用户某月用电62度,则应缴费多少元?(4) 若该用户某月缴费1057台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈方案一:甲、乙两店各配货10箱,其中A 种水果两店各5箱,B 种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A 种水果甲店 箱,乙店 箱;B 种水果甲店 箱,乙店 箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元; (2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多? (3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少? 8、一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图像解答下列问题.(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆.x (度)9、某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg ;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg (每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x 名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y (元)与x (人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w 元,求w 与x 的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?10、小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时. (2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇3次.请在图中..画出小李距甲地的路程y (千米)与时间x (小时)的函数的大致图象.(1) 小王与小张同时出发,按相同路线前往乙地,距甲地的路程y (千米)与时间x (小时)的函数关系式为1210y x =+.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.11、小文家与学校相距1000米.某天小文上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小文与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小文走了多远才返回家拿书?(2)求线段AB 所在直线的函数解析式;(3)当8x =分钟时,求小文与家的距离.12、我市某乡AB ,两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C D ,两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨;从A 村运往C D ,两处的费用分别为每吨20元和25元,从B 村运往C D ,两处的费用分别为每吨15元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,AB ,两村运往两仓库的柑桔运输费用分别为A y 元和B y 元. (1)请填写下表,并求出A B y y ,与x 之间的函数关系式;(2 y x (分钟)(3)考虑到B 村的经济承受能力,B 村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度()y 米与挖掘时间()x 时之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了 小时.开挖6小时时,甲队比乙队多挖了 米; (2)请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务. 问甲队从开挖到完工所挖河渠的长度为多少米?14、右图是某汽车行驶的路程S (km)与时间t (min)的 函 数关系图. 观察图中所提供的信息,解答下列问题: (1)汽车在前9分钟内的平均速度是多少? (2)汽车在中途停了多长时间?(3)当16≤t ≤30时,求S 与t 的函数关系式.15、如图,,A B l l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t的关系。
一次函数应用题精选

一次函数应用题精选1、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:(1)月通话为100 分钟时,应交话费元;(2)当 x≥ 100 时,求 y 与x之间的函数关系式;y(元 )( 3)月通话为280 分钟时,应交话费多少元?604020x(分钟 )1002002、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1)分别求出表示甲、乙两同学登山过程中路程s (千米)与时间 t (时)的函数解析式;(不要求写出自变量 t 的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点 A 处,求 A 点距山顶的距离;(3)在(2)的条件下,设乙同学从 A 处继续登山,甲同学到达山顶后休息 1 小时,沿原路下山,在点 B 处与乙相遇,此时点 B 与山顶距离为 1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?s(千米)甲 C D E 乙12B6O123Ft(时)图象与信息3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y / cmy (cm x(h)的关系如图所示.请根据图象所提供的信30甲)与燃烧时间25息解答下列问题:20(1)甲、乙两根蜡烛燃烧前的高度分别是,10从点燃到燃尽所用的时间分别是;乙(2)分别求甲、乙两根蜡烛燃烧时 y 与x之间的函数关系式;(3)当 x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相O122.5 3 x / h 等?4、种植草莓大户张华现有22 吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:销售渠道每日销量每吨所获纯(吨)利润(元)省城批发41200本地零售12000受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10 日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22 吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式;(2) 怎样安排这22 吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.5、某房地产开发公司计划建A、 B 两种户型的住房共80 套,该公司所筹资金不少于2 096 万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套 B 型住房的售价不会改变,每套 A 型成本(万元 / 套)住房的售价将会提高 a 万元( a>0),且所建的两种住房可全部售价(万元 / 套)售出,该公司又将如何建房获得利润最大?2 090 万元,但不超过A B252830347、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A, B 两种台湾水果各 10 箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店11 元17 元乙店9 元13 元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10 箱,其中A种水果两店各 5 箱,B种水果两店各 5 箱;方案二:按照甲、乙两店盈利相同配货,其中 A 种水果甲店箱,乙店箱; B 种水果甲店箱,乙店箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元;(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?(3)在甲、乙两店各配货 10 箱,且保证乙店盈利不小于 100 元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?9、某蔬菜基地加工厂有工人100 人,现对 100 人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润 1 元,精加工后再出售,每千克可获利润 3 元.设每天安排x 名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y (元)与x(人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w 元,求 w 与 x 的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?10、小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米/时.(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇 3 次.请....y (千米)与时间x y (千米)在图中画出小李距甲地的路程60(小时)的函数的大致图象.50(1)小王与小张同时出发,按相同路线前往乙地,40距甲地的路程y (千米)与时间x(小时)的函数关系式30为 y12x10 .小王与小张在途中共相遇几次?20请你计算第一次相遇的时间.10O1 2 3 4 5 6 x(小时)12、我市某乡A,B两村盛产柑桔,A村有柑桔 200 吨,B村有柑桔 300 吨.现将这些柑桔运到C,D两个冷藏仓库,已知 C 仓库可储存240吨, D 仓库可储存260吨;从 A 村运往 C,D 两处的费用分别为每吨20 元和 25 元,从B村运往C,D两处的费用分别为每吨 15 元和 18 元.设从A村运往C仓库的柑桔重量为 x 吨,A,B两村运往两仓库的柑桔运输费用分别为y A元和 y B元.(1)请填写下表,并求出y A,y B与 x 之间的函数关系式;收C D总计运地A地x 吨200 吨B300 吨总计240 吨260 吨500 吨(2)试讨论A, B 两村中,哪个村的运费较少;(3)考虑到 B 村的经济承受能力, B 村的柑桔运费不得超过4830 元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度y(米 ) 与挖掘时间x(时 ) 之间关系的部分图象.请解答下列问题:(1)乙队开挖到30 米时,用了小时.开挖 6 小时时,甲队比乙队多挖了米;(2)请你求出:y(米 )①甲队在 0 ≤ x ≤ 6的时段内,y 与x之间的函数关系式;60甲50乙②乙队在 2 ≤ x ≤ 6的时段内,y 与x之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?30(3) 如果甲队施工速度不变,乙队在开挖 6 小时后,施工速度增加到12 米/时,结果两队同时完成了任务.O2 6 x(时)问甲队从开挖到完工所挖河渠的长度为多少米?15、如图,l A, l B分别表示 A 步行与 B 骑车在同一路上行驶的路程S 与时间 t 的关系。
专题4.2 一次函数的图象与性质(一)【十大题型】(举一反三)(北师大版)(解析版)

专题4.2 一次函数的图象与性质(一)【十大题型】【北师大版】【题型1 一次函数的概念辨析】 (1)【题型2 待定系数法求一次函数解析式】 (3)【题型3 一次函数图象上点的坐标特征】 (6)【题型4 一次函数解析式与三角形面积问题】 (7)【题型5 根据实际问题列一次函数解析式】 (11)【题型6 判断一次函数的图象】 (15)【题型7 判断一次函数的增减性或经过的象限】 (18)【题型8 根据一次函数的性质求参数的范围】 (20)【题型9 根据一次函数的增减性求自变量的变化情况】 (21)【题型10 根据一次函数的增减性比较函数值大小】 (23)【知识点1 一次函数和正比例函数的概念】一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
特别地,当一次函数b kx y +=中的b=0时(即kx y =)(k 为常数,k ≠0),称y 是x 的正比例函数。
【题型1 一次函数的概念辨析】【例1】(2023春·山东菏泽·八年级统考期末)下列函数中,是一次函数但不是正比例函数的是( )A . y =−x 2B . y =−2xC .y =−x−12D .y =x 2−12【答案】C【分析】根据一次函数和正比例函数的概念解答即可.【详解】解:A .是一次函数,也是正比例函数,故选项不符合题意;B .不是一次函数,故选项不符合题意;C .是一次函数,但不是正比例函数,故选项符合题意;D .不是一次函数,故选项不符合题意.故选:C .【点睛】本题主要考查一次函数和正比例函数的概念:若两个变量x 和y 间的关系式可以表示成y =kx +b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量);一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.【变式1-1】(2023春·辽宁葫芦岛·八年级统考期末)若函数y=(a−2)x|a|−1+4是一次函数,则a的值为()A.−2B.±2C.2D.0【答案】A【分析】根据一次函数y=kx+b的定义可知,k、b为常数,k≠0,自变量的次数为1,即可求解.【详解】解:∵y=(a−2)x|a|−1+4是关于x的一次函数,∴|a|−1=1,且a−2≠0,∴|a|=2,且a≠2,∴a=±2且a≠2,∴a=−2.故选:A.【点睛】本题考查了一次函数的定义,熟练掌握一次函数的定义和性质是解题的关键.【变式1-2】(2023春·全国·八年级期中)在下列函数中,x是自变量,y是因变量,则一次函数有,正比+例函数有.(将代号填上即可)①y+1;②y=x2+2x;③y=5x;④y=1−4x;⑤y=1x【答案】①③④③【分析】根据一次函数及正比例函数的定义,即可一一判定.【详解】解:①y+1是一次函数,不是正比例函数;②y=x2+2x不是一次函数;③y=5x是正比例函数,因为正比例函数一定是一次函数,所以还是一次函数;④y=1−4x是一次函数;⑤y=1x故答案为:①③④,③.【点睛】本题考查了一次函数及正比例函数的定义,熟知正比例函数是一次函数的特例是解决本题的关键.【变式1-3】(2023春·广东东莞·八年级校考期中)已知函数y=(k−2)x+(k2−4).(1)若该函数是一次函数,求k的取值范围.(2)若该函数是正比例函数,求k的值.【答案】(1)k≠2(2)k=−2【分析】(1)根据一次函数的定义,即可进行解答;(2)根据正比例函数的定义,即可进行解答.【详解】(1)解:∵函数y=(k−2)x+(k2−4)是一次函数,∴k−2≠0,解得:k≠2;(2)解:∵函数y=(k−2)x+(k2−4)是正比例函数,∴k−2≠0k2−4=0,解得:k=−2.【点睛】本题主要考查了一次函数和正比例函数的定义,解题的关键是掌握一般形如y=kx+b的是一次函数(k,b是常数,k≠0),其中x是自变量,y是因变量.形如y=kx的是正比例函数(k≠0),其中x是自变量,y是因变量.【知识点2正比例函数和一次函数解析式的确定】确定一个正比例函数,就是要确定正比例函数定义式kxy=(k≠0)中的常数k。
人教版八年级下册数学一次函数应用题训练

人教版八年级下册数学一次函数应用题训练1.某爱心企业计划购进甲,乙两种呼吸机赠予当地医院.若购进甲种3台,乙种2台,则共需18000元;若购进甲种2台,乙种1台.则共需11000元. (1)求甲,乙两种呼吸机每台成本分别为多少元?(2)该公司决定购进甲,乙两种呼吸机共60台,且购进甲种呼吸机台数不低于乙种台数的一半,则如何购买两种机器能使花费最少?最少费用为多少?2.为了预防新冠肺炎,某药店销售甲、乙两种防护口罩,已知甲口罩每袋的售价比乙口罩多5元,小丽从该药店购买了3袋甲口罩和2袋乙口罩共花费115元. (1)求该药店甲、乙两种口罩每袋的售价分别为多少元?(2)根据消费者需求,药店决定用不超过8000元购进甲、乙两种口罩共400袋.已知甲口罩每袋的进价为22.2元,乙口罩每袋的进价为17.8元,要使药店获利最大,应该购进甲、乙两种口罩各多少袋?最大获利多少?3.某校举行运动会准备给运动员发放奖品.某种文具甲商场为40元/件;乙商场一次购买不超过10件,单价为50元/件,一次性购买超过10件时,其中有10件的价格仍为50元/件,超出10件部分的单价为30元/件.设准备买x 件文具(x 为非负整数). (1)根据题意填表:(2)设去甲商场购买费用为1y 元,去乙商场购买费用为2y 元,分别求1y ,2y 关于x 的函数解析式; (3)根据题意填空:①若在甲商场和在乙商场购买的数量相同,且费用相同,则在同一个商场一次购买的数量为______件; ②若在同一个商场一次购买15件,则在甲、乙两个商场中的______商场购买花费少:③若在同一个商场一次购买花费了1400元,则在甲、乙两个商场中的______商场购买的数量多.4.小明和爸爸周末骑自行车去大基山,如图所示的图象是小明和爸爸从9时到15时离家距离与时间之间的关系.(1)在上述变化过程中,_________是自变量,_________是因变量.(2)小明和爸爸_________时到达大基山.(3)求小明和爸爸从9时到10时的速度.(4)求小明和爸爸从9时到11时的平均速度.(5)小明和爸爸在途中休息了一段时间后,以10千米/小时速度到达大基山,求小明和爸爸他们途中休息的时间.(6)请计算:在返回途中,小明和爸爸何时离家还有10千米?5.小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如图是他们离家的距离s(单位:km)与小南离家的时间t(单位:h)之间的函数图象.请根据图象回答下列问题:(1)小南家到该度假村的距离是________km;(2)小南出发________h后爸爸驾车出发,爸爸驾车的平均速度为________km/h,图中点A表示________________;(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离是________km .6.周末,小明和爸爸从家出发去青龙湖公园露营,早上9:00小明徒步先行出发,爸爸带上露营物资骑自行车后出发,到达露营地扎营.行进过程中爸爸和小明行驶速度均保持不变,两人离家的距离与时间如图所示.请根据图象回答问题:(1)爸爸比小明晚出发_____min :小明徒步的速度是_____km/min ﹔爸爸骑自行车的速度是____km/min ; (2)爸爸比小明早多久到达营地?7.某公司的1号仓库与2号仓库共存粮450吨,如果从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,2号仓库所余粮食就比1号仓库所余粮食多30吨,从1号仓库、2号仓库调运存粮到加工厂的运价分别为120元/吨和100元/吨.(1)求1号仓库与2号仓库原来各存粮多少吨?(2)该公司将两个仓库中原来的存粮共调出300吨运往加工厂进行深加工,若2号仓库调出的粮食不少于1号仓库调出粮食的1.5倍,设从1号仓库调出m 吨粮食到加工厂,求m 的取值范围;(3)在(2)的条件下,若1号仓库到加工厂的运价可优惠a 元/吨(1530a ≤≤),2号仓库到加工厂的运价不变,当总运费的最小值为30360元时,请直接写出a 的值.8.为增强学生体质,某学校决定购买一些篮球和足球来促售学生的体育锻炼,已知每个篮球的售价比每个足球的售价多20元,并且花费6000元购买篮球的数量与花费4000元购买足球的数量相同. (1)求篮球和足球的售价分别是多少元?(2)根据学校的实际需求,需要一次性购买篮球和足球共200个,且篮球的个数不少于足球个数的3倍,求购买多少个足球时花费最少?9.我国水资源严重短缺,特别是西北地区,为了节约用水,某地区规定:每户每月用水量不超过7吨,按每吨a元收费;每户每月用水量超过7吨,其中7吨,按每吨a元收费,超过7吨的部分,按每吨b元收费(b>a).设某户月用水量x(吨),应交水费y(元),y与x的关系如图所示,根据图象解决下列问题:(1)求a和b的值.(2)该地区小宇家2月份用水14吨,应交水费多少元?(3)小宇家3月份应交水费24.9元,这个月用水多少吨?(4)当x>7时,求y与x的关系式.10.某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白,印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为彩页300元/张,黑白页50元/张,印刷费与印数关系见下表:a<51015a<2.2 2.00.70.6求:(1)印制这批纪念册的制版费是多少?(2)若印制2千册,共需多少费用?a a<千册所需费用为y元,请写出y与a之间的关系式.(3)若印制(510)11.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.12.甲、乙两位同学从A地出发,在同一条路上骑自行车到B地,他们离出发地的距离S(千米)与甲行驶时间t(小时)之间的函数关系图象如图所示,根据图中提供的信息解答下列问题:(1)A地到B地的距离多少千米?甲中途停留了多长时间?(2)求乙骑行的速度多少?(3)求甲在停留时离A地的距离是多少千米?(4)求甲在停留后,他离出发地的距离S和t之间的函数关系式;(5)求乙到达B地时,甲离B地的距离是多少?13.一方有难,八方支援,新冠肺炎疫情来袭,除了医务人员主动请缨逆行走向战场外,众多企业也伸出援助之手,某公司用甲、乙两种货车向武汉运送爱心物资,两次满载的运输情况如下表:(1)甲、乙两种货车每次满载分别能运输多少吨物资?(2)目前有46.4吨物资要运输到武汉,该公司拟安排甲、乙两种货车共10辆,全部物资一次运完其中每辆甲种货车一次运送花费500元,每辆乙种货车一次运送花费300元,那么该公司应如何安排车辆最节省费用?14.冰墩墩(BingDwenDwen),是2022年北京冬季奥运会的吉祥物.将熊猫形象与富有超能量的冰晶外壳相结合,头部外壳造型取自冰雪运动头盔,装饰彩色光环,整体形象酷似航天员.冬奥会来临之际,冰墩墩玩偶非常畅销.小冬在某网店选中A,B两款冰墩墩玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如表:(1)第一次小冬用550元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小冬进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小冬计划购进两款玩偶共45个,应如何设计进货方案才能获得最大利润,最大利润是多少?15.某超市计划购进甲、乙两种水果进行销售,经了解,甲种水果的进价比乙种水果的进价每千克少4元,且用6400元购进甲种水果的数量与用8000元购进乙种水果的数量一样多. (1)求甲、乙两种水果每千克的进价分别是多少元?(2)该超市根据平常的销售情况确定,购进两种水果共2000千克,其中甲种水果的数量不超过乙种水果数量的3倍,且购买资金不超过34200元.购回后,该超市决定将甲种水果的销售价定为每千克20元,乙种水果的销售价定为每千克25元,则该超市应如何进货,才能获得最大利润,最大利润是多少?16.某饰品店一次性购进“冰墩墩”和“雪容融”共100件进行销售,其中“冰墩墩”的进价为200元/件,售价为300元/件:“雪容融”的进价为100元/件,售价为150元/件.设购进“冰墩墩”的数量为x (件),销售完这些吉样物的总利润为y (元). (1)请求出y 与x 之间的函数关系式;(2)如果购进的“冰墩墩”的数量不多于“雪容融”的数量的3倍,求购进“冰墩墩”多少件时,这批吉样物销售完利润最多?最多可以获利多少元?17.2022 年北京冬奥会和冬残奥会的吉祥物冰墩墩和雪容融深受国内外广大朋友的喜爱,官方特许零售店账目记录显示:购买 2 个冰墩墩和 1 个雪容融需要400 元;购买 1 个冰墩墩和 2 个雪容融需要350 元.(1)冰墩墩和雪容融每个的售价分别是多少元?(2)官方特许零售店开始销售的第一天 4 个小时内全部售完,于是从厂家紧急调配 12000 个商品,根据市场需求冰墩墩的数量不多于雪容融数量的两倍,写出这批商品的销售额w (单位:元)关于冰墩墩的数量m (单位:个)的函数解析式,并说明怎样安排进货可以使销售额达到最大?18.一辆货车从甲地到乙地,一辆轿车从乙地到甲地,两车沿同一条公路分别从甲、乙两地同时出发,匀速行驶.已知轿车比货车每小时多行驶30km ,两车恰好在途中的服务区相遇,休息一段时间后,再同时以原速继续行驶,下图是两车之间的距离(km)y 与货车行驶的时间(h)x 之间的关系图,根据图像回答问题:(1)甲、乙两地之间的距离是________km;(2)两车的速度分别是多少km/h?(3)求m的值;(4)直接写出货车出发多长时间,与轿车相距30千米.19.成都是一座休闲又充满幸福感的城市,眼下露营正成为成都人民一种新的周末休闲娱乐方式,经营户外用品店的小明决定采购一批帐篷进行销售,已知防晒帐篷的采购价是普通帐篷的2倍,且用4500元购买的防晒帐篷比用1500元购买的普通帐篷多5件.(1)求防晒帐篷和普通帐篷的采购价;(2)小明准备拿出7500元全部用于采购防晒帐篷和普通帐篷并进行销售,设防晒帐篷采购a件,普通帐篷采购b件.①用含a的式子表示b;②经过市场调研,小明决定将防晒帐篷售价定为380元/件,普通帐篷售价定为180元/件.若采购的普通帐篷不超过30件且采购的普通帐篷数量多于防晒帐篷数量,为了使销售完采购的帐篷时所获得的利润最大,请你为小明制定采购方案并求出最大利润.20.已知老张的家、书报亭、体育场在同一直线上,图中的信息反映的过程是:老张从家跑步去体育场,在体育场锻炼了一段时间后,走到书报亭,在书报亭呆了5分钟后再走回家.图中x表示老张离家的时间(h),y表示老张离家的距离(km).依据图中的信息,完成以下问题:(1)老张从家到体育场的平均速度是多少km/h?(2)如果老张是早上6:30离开家去体育场,且老张从书报亭回家的平均速度是3.6km/h,那么老张回到家的时间是多少?(3)在这个过程中,老张离家的距离为1km时,他离开家的时间为多少h?。
专题4.2 一次函数的图象与性质(一)【十大题型】(举一反三)(北师大版)(原卷版)

专题4.2 一次函数的图象与性质(一)【十大题型】【北师大版】【题型1 一次函数的概念辨析】............................................................................................................................1【题型2 待定系数法求一次函数解析式】............................................................................................................2【题型3 一次函数图象上点的坐标特征】............................................................................................................2【题型4 一次函数解析式与三角形面积问题】....................................................................................................3【题型5 根据实际问题列一次函数解析式】........................................................................................................3【题型6 判断一次函数的图象】............................................................................................................................6【题型7 判断一次函数的增减性或经过的象限】................................................................................................7【题型8 根据一次函数的性质求参数的范围】....................................................................................................8【题型9 根据一次函数的增减性求自变量的变化情况】....................................................................................8【题型10 根据一次函数的增减性比较函数值大小】.. (8)【知识点1 一次函数和正比例函数的概念】一般地,若两个变量x ,y 间的关系可以表示成b kx y +=(k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。
九年级数学 专题一次函数应用题

一次函数应用题一次函数的应用题是近年中考试题中的热点之一,这类问题通常是从函数图象或图表中得出需要的信息,然后利用待定系数法求出一次函数解析式,再利用解析式解决问题. 一. 一次函数图象的应用由函数图象解决实际问题的关键是读图、识图,要弄清函数图象上点的意义.图象上点的横坐标反映函数自变量的取值,纵坐标反映对应的函数值. 例1甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题: ⑴乙队开挖到30m 时,用了h . 开挖6h 时甲队比乙队多挖了m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?分析:从图象观察可知,甲队在06x ≤≤26x ≤≤y 相等得到的关于x 的方程求得第(3)⑶问.解:⑴2,10;⑵设甲队在06x ≤≤的时段内y 与x 之间的函数关系式为1y k x =,由图可知,函数图象过点(660),,1660k ∴=,解得110k =,10y x ∴=.设乙队在26x ≤≤的时段内y 与x 之间的函数关系式为2y k x b =+,由图可知,函数图象过点(230)(650),,,,22230650k b k b +=⎧∴⎨+=⎩,.解得2520.k b =⎧⎨=⎩,520y x ∴=+.⑶由题意,得10520x x =+,解得4x =(h ).∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.点拨:这道题考查的是函数关系,要求从已知函数图象中获取信息,求出函数值、函数表达式并解答相应的问题.设置了这样一个问题情景后,把两工程队的开挖长度与时间的关系用图象直观地反映出来,更容易理解两个变量间的函数关系以及函数关系的表示,在解决实际问题的过程中考查了对“双基”的理解和掌握.有助于改变对知识过分形式化的记忆和理解,克服单纯记忆知识和机械操作的倾向. 二.实际问题中的一次函数此类问题一般是利用一次函数与方程、不等式的关系解决实际问题并进行简单的决策,或根据已画出的图象进行决策.例2:小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的一次函数关系式(不要求写出自变量的取值X 围);(3)量桶中至少放入几个小球时有水溢出?分析:从图2中可以观察出加入3个球水位增长了6cm ,从而就可以求出放入一个小球量筒中水面升高的量为2cm ,对于一次函数解析式的求法,我们可以考虑筒中已有的水量为一次函数的常数项,再利用增长的量求出相应的k. 解:(1)2.(2)设y kx b =+,把()030,,()336,代入得:30336b k b =⎧⎨+=⎩,.解得230k b =⎧⎨=⎩,.即230y x =+. (3)由23049x +>,得9.5x >,即至少放入10个小球时有水溢出.点拨:本题从中国古老的故事中找到存在的函数关系,情景新颖,同时具有一定的文化底蕴.我们在平时复习中要关注一些具有文化底蕴的背景并从中挖掘出蕴含的数学问题. 三.一次函数最优化问题例3:日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种品种 先期投资养殖期间投资产值 西施舌 9 3 30 对虾41020养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨 (1)求x 的取值X 围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?分析:根据两个“不超过”可以列出相应的不等式组,从而求出x 的取值X 围.总产值为西施舍和对虾的产值之和.至于最大值则需要正确解出x 的取值X 围. 解:设西施舌的投放量为x 吨,则对虾的投放量为(50-x )吨,49cm 30cm36cm 3个球有水溢出(第23题) 图2 图2根据题意,得:94(50)360,310(50)290.x x x x +-≤⎧⎨+-≤⎩ 解之,得:32,30.x x ≤⎧⎨≥⎩∴30≤x ≤32;(2)y =30x +20(50-x )=10x +1000.∵30≤x ≤32,100>0,∴1300≤x ≤1320,∴y 的最大值是1320, 因此当x =32时,y 有最大值,且最大值是1320千元.点拨:本题是一道表格信息题,既考查不等式,又考查一次函数解析式及一次函数的最值问题.通常一次函数的最值问题首先由不等式找到x 的取值X 围,进而利用一次函数的增减性在前面X 围内的前提下求出最值.函数与几何知识的综合问题,有些是以函数知识为背景考查几何相关知识,关键是掌握数与形的转化.有些题目是以几何知识为背景,从几何图形中建立函数关系,关键是运用几何知识建立量与量的等式.例4:元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量点,猜想y 与x 的函数关系,并求出函数关系式; (2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环? 分析:通过描点可以观察猜想出y 与x 之间满足一次函数关系,我们可以利用待定系数法求函数解析式. 解:(1)在所给的坐标系中准确描点,如图3所示. 由图象猜想到y 与x 之间满足一次函数关系. 设经过(119),,(236),两点的直线为y kx b =+,则可得19236.k b k b +=⎧⎨+=⎩,解得17k =,2b =.即172y x =+.当3x =时,173253y =⨯+=;当4x =时,174270y =⨯+=.即点(353)(470),,,都在一次函数172y x =+的图象上.所以彩纸链的长度y (cm )与纸环数x (个)之间满足一次函数关系172y x =+. (2)10m 1000cm=,根据题意,得1721000x +≥. 解得125817x ≥. 答:每根彩纸链至少要用59个纸环.点拨:描点猜想问题需要动手操作,故成为中考中一类“时髦”的问题,这类问题需要我们真正地去描点,观察图象后再判断是一次函数还是二次函数,再利用待定系数法求解相关的问题.图3题型五文字信息类例5. 某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
一次函数图像练习题

一次函数图像练习题一、选择题:1. 函数y=2x-3的图像是一条直线,其斜率k等于:A. -3B. 2C. -2D. 12. 一次函数y=kx+b的图像经过点(1,-1),则k的值不能为:A. 2B. -1C. 0D. 13. 函数y=-x+2与x轴的交点坐标是:A. (-2,0)B. (2,0)C. (0,2)D. (0,-2)4. 已知一次函数y=kx+b的图像经过点(-1,2),且与y轴交于点(0,-1),求k和b的值:A. k=-3, b=-1B. k=3, b=-1C. k=-1, b=2D. k=1, b=25. 若直线y=kx+b与直线y=2x-3平行,则k的值应为:A. 2B. -2C. 3D. -3二、填空题:1. 若直线y=kx+b与y轴交于点(0,4),则b的值为______。
2. 直线y=-2x+5与x轴的交点坐标为______。
3. 已知直线y=kx+b经过点(2,1)和(-1,5),求k和b的值,解得k=______,b=______。
4. 若一次函数的图像经过点(-3,6)且与x轴交于点(1,0),则该函数的解析式为y=______。
5. 函数y=kx+b的图像经过点(-1,-2),且与y轴交于点(0,3),求k和b的值,解得k=______,b=______。
三、解答题:1. 已知一次函数y=kx+b的图像经过点(-2,-1)和(1,6),求k和b的值,并写出函数的解析式。
2. 直线y=kx+b与x轴交于点A,与y轴交于点B,若点A的坐标为(-3,0),点B的坐标为(0,-2),求直线的解析式。
3. 已知一次函数y=kx+b的图像经过点(3,0)和(0,-6),求k和b的值,并判断该直线与坐标轴围成的三角形的面积。
4. 直线y=kx+b经过点(-1,1)且与直线y=2x-1平行,求k和b的值,并写出直线的解析式。
5. 已知一次函数y=kx+b的图像与x轴交于点(2,0),且与y轴交于点(0,4),求k和b的值,并画出该直线的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数图像应用题
例1、某学校组织野外长跑活动,参加长跑的同学出发后,另一些同学从同地骑自行车前去加油助威。
如图,线段L 1,L 2分别表示长跑的同学和骑自行车的同学行进的路程y (千米)
随时间x (分钟)变化的函数图象。
(1)分别求出长跑的同学和骑自行车的同学的行进路程y 与时间x 的函数表达式; (2)求长跑的同学出发多少时间后,骑自行车的同学就追上了长跑的同学?
举一反三
1、甲、乙两名自行车爱好者准备在一段长为3 500
米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s (米),比赛时间为t (秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s (米)与t (秒)的函数关系.根据图中信息,回答下列问题:
(1)乙的速度为________米/秒;(2)当乙追上甲时,求乙距起点多少米.
(3)求线段BC 所在直线的函数关系式.
2、甲、乙两人骑自行车前往A 地,他们距A 地的路程s (km )与行驶时间t (h )之间的关系如图所示,(1)甲、乙两人的速度各是多少?
(2)求出甲距A 地的路程s 与行驶时间t 之间的函数关系式.
(3)在什么时间段内乙比甲离A 地更近? 例2、某通讯公司推出①、②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x (分钟)与收
费y (元)之间的函数关系如图所示.
(1)有月租费的收费方式是 (填①或②),月租费是 元; (2)分别求出①、②两种收费方式中y 与自变量x 之间的函数关系式; (3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.
②①100908070605040302010
500400300200(分钟)(元)y x O 100
(h)t 0 1 2 2.12345
6乙 甲 (km)s o x (分钟)y (千米)108642
605040302010
t (h )
Q (万A B C D 80 40 20 O a 405060 举一反三:某单位准备印制一批证书.现有两个印刷厂可供选择.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷教量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.
(1)请你直接写出甲厂的制版费及y 甲与x 的函数解析式.并求出其证书印刷单价.
(2)当印制证书8千个时.应选择哪个印刷厂节省费用.节省费用多少元?
(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
例3、甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量与时间的函数图象如图所示.(1)求甲组加工零件的数量y 与时间x 之间的函数关系式.(2)求乙组加工零件总量a 的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
举一反三
1、因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h ,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q (万m 3) 与时间t (h) 之间的函数关系.
(1)线段BC 的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?
2、如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.解答下列问题:
4-1 5-1
(1)图2中折线ABC 表示________槽中水的深度与注水时间的关系,线段DE 表示_______槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是________________________________;
(2)注水多长时间时,甲、乙两个水槽中水的深度相同?
(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;
(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)
例题4.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图4-1所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y (km )与已用时间x (h )之间
的关系,则小敏、小聪行走的速度分别是( )
A 、3km/h 和4km/h
B 、3km/h 和3km/h
C 、4km/h 和4km/h
D 、4km/h 和3km/h
例题5.汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县。
我省援建剑阁县,建筑物资先用火车源源不断的运往距离剑阁县180千米的汉中市火车站,再由汽车运往剑阁县。
甲车在驶往剑阁县的途中突发故障,司机马上通报剑阁县总部并立即检查和维修。
剑阁县总部在接到通知后第12分钟时,立即派出乙车前往接应。
经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇。
为了确保物资能准时运到,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达剑阁县。
下图是甲、乙两车离剑阁县的距离y (千米)与时间x (小时)之间的函数图象。
(1)请直接在坐标系中的( )内填上数据。
(2)求直线CD 的函数解析式,并写出自变量的取值范围。
(3)求乙车的行驶速度。
甲乙图1 y (厘米) 19
14 12 2 O 4 6 B C D
A E x (分钟)
图2 x y o D C A B 180 E 1 ( ) ( ) F 3 (小时) ( ) (千米) 甲车 乙车
例题6.甲、乙两车在连通A 、B 、C 三地的公路上行驶,甲车从A 地出发匀速向C 地行驶,同时乙车从C 地出发匀速向b 地行驶,到达B 地并在B 地停留1小时后,按原路原速返回到C 地.在两车行驶的过程中,甲、乙两车距B 地的路程y (千米)与行驶时间x (小时)之间的函数图象如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并在图中(_______)内填上正确的数:
(2)求乙车从B 地返回到C 地的过程中,y 与x 之间的函数关系式;
(3)当甲、乙两车行驶到距B 地的路程相等时,甲、乙两车距B 地的路程是多少?
例题7.小明从家骑自行车出发,沿一条直路到相距2400m 的邮局办事,小明出发的同时,他的爸爸以96m/min 速度从邮局同一条道路步行回家,小明在邮局停留2min 后沿原路以原速返回,设他们出发后经过t min 时,小明与家之间的距离为s 1 m ,小明爸爸与家之间的距离
为s 2 m ,图中折线OABD 、线段EF 分别表示s 1、s 2与t 之间的函数关系的图象。
(1)求s 2与t 之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
课下练习:
17.(2017•重庆)A ,B 两地之间的路程为2380米,甲、乙两人分别从A ,B 两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A ,B 之间的C 地相遇,相遇后,甲立即返回A 地,乙继续向A 地前行。
甲到达A 地时停止行走,乙到达A 地时也停止行走,在整个行走过程中,甲.乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y 与甲出发的时间x 之间的关系如图所示,则乙到达A 地时,甲与A 地相距的路程是 米。
17.(2017•重庆)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示,当乙到达终点A 时,甲还需 分钟到达终点B .
s(m)
A O
D C B
t(min)
2400
10 12 F
17.(2016•重庆)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.
17.(2016•重庆)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.
11.(2015•重庆)某星期天下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系.下列说法中错误的是(_______)
A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟
C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟。