西邮MATLAB光波偏振态的仿真实验报告

合集下载

【2018最新】仿真实验偏振光实验报告-推荐word版 (10页)

【2018最新】仿真实验偏振光实验报告-推荐word版 (10页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==仿真实验偏振光实验报告篇一:偏振光实验报告仿真课程:系别:专业班级:大学物理仿真实验电信学院实验报告------ 物理仿真实验实验名称:偏振光实验实验报告日期: 201X 年 11 月 28 日学号:*******************姓名: *******教师审批签字1.实验原理:偏振光原理:按电磁波理论,光是横波,它的振动方向和光的传播方向垂直.实际中最常见的光的偏振态大体为五种,即自然光、线偏振光、部分偏振光、圆偏娠光和椭圆偏振光.1. 自然光是各方向的振幅相同的光。

对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等。

2.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个方向振动。

起偏器是将非偏振光变成线偏振光的器件;检偏器是用于鉴别光的偏振光状态的器件。

常见的起偏或检偏的元件构成有两种:偏振片:它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光.光学棱镜:如尼科耳棱镜、格兰棱镜等,它是利用光学双折射的原理制成的;3.部分偏振光:除了自然光和线偏振光外,还有一种偏振状态介于两者之间的光.如果用偏振片去检验这种光的时候,随着检偏器透光方向的转动,透射光的强度既不象自然光那样不变,又不象线偏振光那样每转90o。

交替出现强度极大和消光.其强度每转90o也交替出现极大和极小,但强度的极小不是0(即不消光)。

从内部结构看,这种光的振动虽然也是各方向都有,但不同方向的振幅大小不同,具有这种特点的光,叫做部分偏损光我们假定波是沿z轴传播的,在图中它垂直纸面迎面而系.这时若电矢量按逆时针方向旋转,我们称为左旋圆偏振光。

偏振态检测实验报告

偏振态检测实验报告

1. 理解偏振光的基本概念和特性。

2. 掌握使用偏振片检测不同偏振态光的方法。

3. 通过实验验证马吕斯定律,加深对偏振光理论的理解。

二、实验原理光是一种电磁波,具有横波性质。

当光波的振动方向在某一特定平面内时,我们称这种光为偏振光。

偏振光可分为线偏振光、圆偏振光和椭圆偏振光。

线偏振光:光波的振动方向在某一平面内,且该平面的方向与光传播方向垂直。

圆偏振光:光波的振动方向在某一平面内,且该平面的方向与光传播方向垂直,光波的振动方向在传播过程中始终保持在同一圆周上。

椭圆偏振光:光波的振动方向在某一平面内,且该平面的方向与光传播方向垂直,光波的振动方向在传播过程中始终保持在同一椭圆上。

偏振片是一种能够使自然光变为偏振光的器件。

当自然光通过偏振片时,只有与偏振片透振方向平行的光振动分量能够通过,而与透振方向垂直的光振动分量则被吸收。

马吕斯定律指出,当线偏振光通过偏振片时,透射光的强度与入射光的强度和偏振片透振方向与入射光振动方向的夹角余弦的平方成正比。

三、实验仪器与材料1. 自然光源2. 偏振片3. 激光器4. 光具座5. 光电探测器6. 数据采集系统7. 计算机软件1. 将自然光源、偏振片、激光器、光具座、光电探测器和数据采集系统连接好。

2. 将自然光源发出的光通过偏振片,使其变为线偏振光。

3. 将线偏振光通过光电探测器,并记录下光强。

4. 逐渐旋转偏振片,记录下不同角度下光电探测器接收到的光强。

5. 根据实验数据,验证马吕斯定律。

6. 改变自然光源的偏振态,重复上述步骤,观察不同偏振态光通过偏振片后的变化。

五、实验结果与分析1. 当偏振片透振方向与入射光振动方向平行时,光电探测器接收到的光强最大;当偏振片透振方向与入射光振动方向垂直时,光电探测器接收到的光强最小。

这验证了马吕斯定律。

2. 当自然光源发出的是线偏振光时,旋转偏振片可以改变光电探测器接收到的光强。

当自然光源发出的是圆偏振光或椭圆偏振光时,旋转偏振片同样可以改变光电探测器接收到的光强,但光强变化曲线与线偏振光不同。

《2024年基于Matlab的光学实验仿真》范文

《2024年基于Matlab的光学实验仿真》范文

《基于Matlab的光学实验仿真》篇一一、引言光学实验是物理学、光学工程和光学科学等领域中重要的研究手段。

然而,实际的光学实验通常涉及到复杂的光路设计和精密的仪器设备,实验成本高、周期长。

因此,通过基于Matlab的光学实验仿真来模拟光学实验,不仅能够为研究提供更方便的实验条件,而且还可以帮助科研人员更深入地理解和掌握光学原理。

本文将介绍基于Matlab的光学实验仿真的实现方法和应用实例。

二、Matlab在光学实验仿真中的应用Matlab作为一种强大的数学计算软件,在光学实验仿真中具有广泛的应用。

其强大的矩阵运算能力、图像处理能力和数值模拟能力为光学仿真提供了坚实的数学基础。

1. 矩阵运算与光线传播Matlab的矩阵运算功能可用于模拟光线传播过程。

例如,光线在空间中的传播可以通过矩阵的变换实现,包括偏振、折射、反射等过程。

通过构建相应的矩阵模型,可以实现对光线传播过程的精确模拟。

2. 图像处理与光场分布Matlab的图像处理功能可用于模拟光场分布和光束传播。

例如,通过傅里叶变换和波前重建等方法,可以模拟出光束在空间中的传播过程和光场分布情况,从而为光学设计提供参考。

3. 数值模拟与实验设计Matlab的数值模拟功能可用于设计光学实验方案和优化实验参数。

通过构建光学系统的数学模型,可以模拟出实验过程中的各种现象和结果,从而为实验设计提供依据。

此外,Matlab还可以用于分析实验数据和优化实验参数,提高实验的准确性和效率。

三、基于Matlab的光学实验仿真实现方法基于Matlab的光学实验仿真实现方法主要包括以下几个步骤:1. 建立光学系统的数学模型根据实际的光学系统,建立相应的数学模型。

这包括光路设计、光学元件的参数、光束的传播等。

2. 编写仿真程序根据建立的数学模型,编写Matlab仿真程序。

这包括矩阵运算、图像处理和数值模拟等步骤。

在编写程序时,需要注意程序的精度和效率,确保仿真的准确性。

3. 运行仿真程序并分析结果运行仿真程序后,可以得到光束传播的模拟结果和光场分布等信息。

光的偏振实验的实验报告(3篇)

光的偏振实验的实验报告(3篇)

第1篇一、实验目的1. 观察光的偏振现象,加深对光波偏振特性的理解。

2. 学习直线偏振光、圆偏振光和椭圆偏振光的产生与检验方法。

3. 掌握利用偏振光进行相关物理量测量的原理与技巧。

二、实验原理1. 光的偏振现象:光波是横波,其电矢量振动方向与传播方向垂直。

自然光在传播过程中,电矢量振动方向在垂直于传播方向的平面内取所有可能的方向,称为非偏振光。

而偏振光是指电矢量振动方向局限在某一确定平面内的光波。

2. 偏振光的产生:自然光通过起偏器(如偏振片)后,只有某一方向的振动成分能够通过,从而产生偏振光。

3. 偏振光的检验:利用检偏器(如偏振片)可以检验光的偏振状态。

当偏振光通过检偏器时,若电矢量振动方向与检偏器光轴平行,则光强不变;若电矢量振动方向与检偏器光轴垂直,则光强为零。

4. 偏振光的分解:利用波片可以将偏振光分解为两个正交的偏振光。

其中,1/4波片可以将线偏振光分解为圆偏振光和椭圆偏振光。

三、实验仪器1. 激光器:产生单色光。

2. 偏振片:产生和检验偏振光。

3. 波片:分解偏振光。

4. 光具座:固定实验器材。

5. 照度计:测量光强。

6. 支架:固定实验器材。

四、实验步骤1. 将激光器发出的光通过偏振片,得到线偏振光。

2. 将线偏振光通过1/4波片,得到圆偏振光和椭圆偏振光。

3. 利用偏振片和检偏器检验圆偏振光和椭圆偏振光的偏振状态。

4. 通过改变偏振片和检偏器的相对位置,观察光强变化,验证马吕斯定律。

5. 测量圆偏振光和椭圆偏振光的光强,分析其偏振特性。

五、实验数据及处理1. 观察到线偏振光通过偏振片后,光强减弱;圆偏振光和椭圆偏振光通过检偏器时,光强有规律地变化。

2. 当偏振片和检偏器的光轴平行时,光强最大;当偏振片和检偏器的光轴垂直时,光强为零。

验证了马吕斯定律。

3. 测量得到圆偏振光和椭圆偏振光的光强,分析其偏振特性。

六、实验结果与分析1. 通过实验,观察到光的偏振现象,加深了对光波偏振特性的理解。

西安邮电大学光学实验matlab仿真结果分析与程序

西安邮电大学光学实验matlab仿真结果分析与程序

光学实验实验报告课程名称:光学实验*名:***学院:电子工程学院系部:光电子技术系专业:电子科学与技术年级:科技1201学号:********指导教师:**2014年12 月24 日光波在介质中界面上的反射及透射特性一.实验目的:1.掌握反射系数及透射系数的概念;2.掌握反射光与透射光振幅和相位的变化规律; 3.掌握布儒斯特角和全反射临界角的概念。

二.实验原理:1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。

现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入射、反射和折射光均为平面光波,其电场表示式为)(0r k t i l l l l e E E ⋅--=ω l =i, r, t式中,脚标i 、r 、t 分别代表入射光、反射光和折射光;r 是界面上任意点的矢径,在图2-1所示的坐标情况下,有r=ix+jy图2-1 平面光波在界面上的反射和折射 图2-2 k i 、k r 、k t 三波矢关系根据电磁场的边界条件,可以得到如下关系)(0)(t i r i tr i =⋅-=⋅-==r k k r k k ωωω 这些关系表明:①入射光、反射光和折射光具有相同的频率;②入射光、反射光和折射光均在入射面内,k i 、k r 和k t 波矢关系如图2-2所示。

进一步可得tt i i r r i i sin sin sin sin θθθθk k k k == 或tt i i r r i i sin sin sin sin θθθθn n n n ==即介质界面上的反射定律和折射定律,它们给出了反射光、折射光的方向。

折射定律又称为斯涅耳(Snell)定律。

2 菲涅耳公式 s 分量和p 分量通常把垂直于入射面振动的分量称做s 分量,把平行于入射面振动的分量称做p 分量。

为讨论方便起见,规定s 分量和p 分量的正方向如图2-3所示。

图2-3 s 分量和p 分量的正方向反射系数和透射系数 假设介质中的电场矢量为)(i 0e r k t l l l E E ⋅--=ω l =i, r, t其s 分量和p 分量表示式为)(i 0e r k t lm lm l E E ⋅--=ω m =s,p则定义s 分量、p 分量的反射系数、透射系数分别为tmtm m im rmm E E t E E r 0000==菲涅耳公式假设界面上的入射光、反射光和折射光同相位,根据电磁场的边界条件及s 分量、p 分量的正方向规定,可得ts rs s E E E i =+和2tp 1rp 1ip cos cos cos θθθH H H =-利用E H εμ=,上式变为22ts 11rs is cos cos )(θθn E n E E =-再利用折射定律,消去E ts ,经整理可得)sin()sin(1212is rs θθθθ+-=E E 根据反射系数定义,得到)sin()sin(2121θθθθ+--=s r221111cos cos cos 2θθθn n n t s +=将所得到的表示式写成一个方程组,就是著名的菲涅耳公式:212122112*********tan tan tan tan cos cos cos cos )sin()sin(θθθθθθθθθθθθ+--=+-=+--==n n n n E E r is rs s 2121211221122121002sin 2sin 2sin 2sin cos cos cos cos )tan()tan(θθθθθθθθθθθθ+-=+-=+-==n n n n E E r iprp p 21121121112100221111212100cos cos cos 2)cos()sin(sin cos 2cos cos cos 2)sin(sin cos 2θθθθθθθθθθθθθθθθn n n E E t n n n E E t iptp p is ts s +=-+==+=+==这些系数首先是由菲涅耳用弹性波理论得到的,所以又叫做菲涅耳系数。

光偏振实验报告实验记载

光偏振实验报告实验记载

一、实验目的1. 观察光的偏振现象,加深对光波横波性的认识。

2. 理解并验证马吕斯定律,掌握偏振光的产生和检验方法。

3. 掌握起偏器和检偏器的使用,熟悉不同偏振态光的产生与转换。

二、实验原理1. 光的偏振现象:光波是一种电磁波,其振动方向垂直于传播方向。

当光波通过某些特定介质或器件时,其振动方向发生改变,形成偏振光。

2. 马吕斯定律:当一束完全线偏振光通过一个偏振器时,透射光的光强与入射光的光强成正比,且透射光的光强与偏振器的偏振方向和入射光的光矢量振动方向的夹角有关。

3. 偏振光的产生和检验:利用起偏器和检偏器可以产生和检验偏振光。

起偏器可以使自然光变为线偏振光,检偏器可以检验光是否为偏振光。

三、实验仪器与用具1. 光具座2. 半导体激光器3. 偏振片4. 1/4波片5. 激光功率计6. 光屏四、实验步骤1. 将半导体激光器放置在光具座上,调整激光器的光束方向,使其垂直照射到偏振片上。

2. 将偏振片放置在光具座上,调整其偏振方向,观察光屏上的光强变化。

3. 在偏振片后放置1/4波片,调整1/4波片的光轴方向,观察光屏上的光强变化。

4. 将检偏器放置在1/4波片后,调整检偏器的偏振方向,观察光屏上的光强变化。

5. 改变偏振片和1/4波片的相对位置,观察光屏上的光强变化,验证马吕斯定律。

6. 利用偏振片和1/4波片产生椭圆偏振光和圆偏振光,观察光屏上的现象。

五、实验结果与分析1. 在实验过程中,当偏振片的偏振方向与入射光的光矢量振动方向平行时,光屏上的光强达到最大;当偏振片的偏振方向与入射光的光矢量振动方向垂直时,光屏上的光强达到最小。

2. 当1/4波片的光轴方向与偏振片的偏振方向平行时,光屏上的光强达到最大;当1/4波片的光轴方向与偏振片的偏振方向垂直时,光屏上的光强达到最小。

3. 在实验过程中,改变偏振片和1/4波片的相对位置,验证了马吕斯定律。

4. 通过实验观察,产生了椭圆偏振光和圆偏振光,并观察到了相应的现象。

光偏振现象的实验报告

光偏振现象的实验报告

一、实验目的1. 观察光的偏振现象,加深对光波偏振性的理解。

2. 掌握起偏器和检偏器的使用方法,以及马吕斯定律的应用。

3. 学习偏振光在光学技术中的应用。

二、实验原理光是一种电磁波,具有横波特性。

当光波在传播过程中,其电场矢量(E)和磁场矢量(H)垂直于传播方向。

在自然光中,E矢量在所有可能的方向上振动,而在偏振光中,E矢量只在特定方向上振动。

起偏器(如偏振片)可以将自然光转化为偏振光,检偏器(如第二个偏振片)可以用来检测和调节偏振光的偏振方向。

根据马吕斯定律,当偏振光通过检偏器时,其强度与入射光的偏振方向和检偏器偏振方向的夹角有关。

三、实验仪器1. 自然光源(如激光器)2. 起偏器(偏振片)3. 检偏器(偏振片)4. 光屏5. 支架和固定装置6. 量角器四、实验步骤1. 将自然光源、起偏器和光屏依次放置在支架上,调整光路使其成为直线传播。

2. 在光路上放置起偏器,调整其角度,观察光屏上的光强度变化。

3. 在起偏器后放置检偏器,调整其角度,观察光屏上的光强度变化。

4. 改变起偏器和检偏器的相对角度,观察光屏上的光强度变化,并记录实验数据。

5. 通过实验验证马吕斯定律,并分析实验结果。

五、实验结果与分析1. 在实验过程中,观察到当起偏器和检偏器的偏振方向平行时,光屏上的光强度最大;当两者偏振方向垂直时,光屏上的光强度最小。

2. 通过实验数据,验证了马吕斯定律:光强度与入射光的偏振方向和检偏器偏振方向的夹角的余弦平方成正比。

3. 分析实验结果,得出以下结论:- 偏振光具有方向性,其强度与偏振方向有关。

- 起偏器和检偏器可以用来调节和检测偏振光的偏振方向。

- 马吕斯定律是描述偏振光性质的重要定律。

六、实验讨论1. 实验过程中,光屏上的光强度变化可能受到多种因素的影响,如起偏器和检偏器的质量、环境光线等。

为了提高实验结果的准确性,应尽量减小这些因素的影响。

2. 实验结果表明,偏振光在光学技术中具有重要的应用价值,如液晶显示、光学通信、光学成像等。

波的偏振实验报告

波的偏振实验报告

一、实验目的1. 观察光的偏振现象,加深对光的偏振特性的理解。

2. 验证马吕斯定律,了解1/2波片和1/4波片的作用。

3. 掌握椭圆偏振光和圆偏振光的产生与检测方法。

二、实验原理1. 光的偏振性光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。

在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。

如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面。

此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。

若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。

如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态。

2. 偏振片虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光。

有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光。

3. 1/2波片和1/4波片1/2波片可以将线偏振光转换为圆偏振光,而1/4波片可以将圆偏振光转换为椭圆偏振光。

三、实验仪器1. He-Ne激光器2. 光具座3. 偏振片(两块)4. 632.8nm的1/4波片(两块)5. 玻璃平板及0°、90°任意刻度盘6. 白屏等四、实验步骤1. 将激光器发射的光通过第一块偏振片,使其成为线偏振光。

2. 将线偏振光通过1/4波片,使其变为圆偏振光。

3. 将圆偏振光通过第二块偏振片,观察出射光的偏振状态。

4. 改变第二块偏振片的角度,观察出射光的偏振状态变化,验证马吕斯定律。

5. 将圆偏振光通过1/4波片,使其变为椭圆偏振光。

6. 将椭圆偏振光通过第二块偏振片,观察出射光的偏振状态。

五、实验数据与处理1. 观察到当第二块偏振片与第一块偏振片垂直时,出射光为暗光;当第二块偏振片与第一块偏振片平行时,出射光为亮光。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学仿真课程设计实验报告
课程名称:光学仿真课程设计
姓名:
学院:电子工程学院
系部:光电子技术系
专业:
年级:
学号:
指导教师:***
职称:讲师
时间:2013-11-18至2013-11-29
光波偏振态的仿真
一、实验目的
对两相互垂直偏振态的光合成进行计算,绘出电场的轨迹。

画出不同情况下的偏振态曲线并总结规律。

二、实验原理
光波的偏振态
根据空间任一点光电场E的矢量末端在不同时刻的轨迹不同,其偏振态可分为线偏振、圆偏振和椭圆偏振。

设光波沿z方向传播,电场矢量为E=E0cos(ωt−kz+φ0)为表征该光波的偏振特性,可将其表示为沿x、y方向振动的两个独立分量的线性组合,即E= iE x+jE y其中
E x=E0x cos(ωt−kz+φx)
E y=E0y cos(ωt−kz+φy)
将上二式中的变量t消去,经过运算可得
(E x
E0x )
2
+(
E y
E0y
)
2
−2(
E x
E0x
)(
E y
E0y
)cosφ=(sinφ)2
式中,φ=φy−φx。

这个二元二次方程在一般情况下表示的几何图形是椭圆,如图所示。

相位差φ和振幅比E x
E y
的不同,决定了椭圆形状和空间取向的不同,从而也就决定了光的不同偏振态。

图画出了几种不同φ值相应的椭圆偏振态。

实际上,线偏振态和圆偏振态都是椭圆偏振态的特殊情况。

1)线偏振光当E x、E y二分量的相位差φ=mπ(m=0,±1,±2,⋯)时,椭
圆退化为一条直线,称为线偏振光。

此时有E y
E x =E0y
E0x
e imπ
当m为零或偶数时,光振动方向在Ⅰ、Ⅲ象限内;
当m为奇数时,光振动方向在Ⅱ、Ⅳ象限内。

由于在同一时刻,线偏振光传播方向上各点的光矢量都在同一平面内,所以又叫做平面偏振光。

通常将包含光矢量和传播方向的平面称为振动面。

2)圆偏振光当E x、E y的振幅相等(E0x=E0y=E0),相位差φ=mπ
2
(m= 1,±3,±5,⋯)时,椭圆方程退化为圆方程E x2+E y2=E02该光称为圆偏振
光。

用复数形式表示时,有E y
E x
=e±iπ2=±i式中,正负号分别对应右旋和
左旋圆偏振光。

所谓右旋或左旋,与观察的方向有关,通常规定逆着光传播的方向看,E顺时针方向旋转时,称为右旋偏振光,反之,称为左旋偏振光。

3)椭圆偏振光在一般情况下,光矢量在垂直传播方向的平面内大小和
方向都在改变,它的末端轨迹是由
(E x
E0x )
2
+(
E y
E0y
)
2
−2(
E x
E0x
)(
E y
E0y
)cosφ=(sinφ)2
式决定的椭圆,故称为椭圆偏振光。

在某一时刻,传播方向上各点对应
的光矢量末端分布在具有椭圆截面的螺线上。

椭圆的长、短半轴和取向
与二分量E x、E y的振幅和相位差有关。

其旋向取决于相位差φ:当2mπ<
φ<(2m+1)π时,为右旋椭圆偏振光;当(2m−1)π<φ<2mπ时,为
左旋椭圆偏振光。

三、实验流程及程序
流程图:
程序:
clear all;
c=3e+8;
lamd=5e-7;
T=lamd/c;
t=linspace(0,T,1000);
z=linspace(0,5,1000);
w=2*pi/T;
k=2*pi/lamd;
Eox=10;Eoy=5;
Fx=0;
i=1;
for Fy=0:pi/4:7*pi/4
Ex=Eox*cos(w*t-k*z+Fx); Ey=Eoy*cos(w*t-k*z+Fy); subplot(4,4,i);
i=i+1;
plot3(Ex,Ey,z);
zlabel('z');
xlabel('x');
ylabel('y');
title('Fy-Fx=*pi/4'); end
n=9;
for Fy=0:pi/4:7*pi/4
Ex=Eox*cos(w*t+k*z);
Ey=Eoy*cos(w*t+k*z+Fy); subplot(4,4,n);
n=n+1;
plot(Ex,Ey);
title('Fy-Fx=*pi/4'); end
四、实验结果及结果分析
结果分析:
1.光的偏振态分为几种?
答:线偏振光,圆偏振光,椭圆偏振光。

2.决定光的偏振态的因素为哪几种?
答:相位差,振幅比
3.偏振光的旋向如何判断?
答:规定逆着光传播方向看,E为顺时针方向旋转时,称为右旋圆偏振光,反之,称为左旋圆偏振光。

通过本次光学仿真,使我对书本的知识有了更深的理解。

本来在光学实验室已经做了关于偏振光的实验,如果说那个是宏观的话,那么这次仿真就是很好的微观教学,本来书本上的东西时间久了容易混淆,这次实验那些仿真图十分生动形象,给我留下了很深的印象,作为仿真的第一个实验,刚开始接触觉得还是很有难度,但随着理解和小伙伴们一起研究,最终我们还是出色完成了这个实验,给人很大的成就感。

相关文档
最新文档