国外大牛的图像修复综述

国外大牛的图像修复综述
国外大牛的图像修复综述

Inpainting

Marcelo Bertalm′?o,Vicent Caselles,Simon Masnou,Guillermo

Sapiro

Synonyms

–Disocclusion

–Completion

–Filling-in

–Error concealment

Related Concepts

–Texture synthesis

De?nition

Given an image and a region?inside it,the inpainting problem consists in modifying the image values of the pixels in?so that this region does not stand out with respect to its surroundings.The purpose of inpainting might be to restore damaged portions of an image(e.g.an old photograph where folds and scratches have left image gaps)or to remove unwanted elements present in the image(e.g.a microphone appearing in a?lm frame).See?gure1.The region?is always given by the user,so the localization of?is not part of the inpainting problem.Almost all inpainting algorithms treat?as a hard constraint,whereas some methods allow some relaxing of the boundaries of?.

This de?nition,given for a single-image problem,extends naturally to the multi-image case therefore this entry covers both image and video inpainting. What is not however considered in this text is surface inpainting(e.g.how to?ll holes in3D scans),although this problem has been addessed in the literature.

Fig.1.The inpainting problem.Left:original image.Middle:inpainting mask ?,in black.Right:an inpainting result.Figure taken from[20].

Background

The term inpainting comes from art restoration,where it is also called re-touching.Medieval artwork started to be restored as early as the Renaissance, the motives being often as much to bring medieval pictures“up to date”as to ?ll-in any gaps.The need to retouch the image in an unobtrusive way extended naturally from paintings to photography and?lm.The purposes remained the same:to revert deterioration(e.g.scratches and dust spots in?lm),or to add or remove elements(e.g.the infamous“airbrushing”of political enemies in Stalin-era U.S.S.R).In the digital domain,the inpainting problem?rst appeared under the name“error concealment”in telecommunications,where the need was to ?ll-in image blocks that had been lost during data transmission.One of the?rst works to address automatic inpainting in a general setting dubbed it“image disocclusion,”since it treated the image gap as an occluding object that had to be removed,and the image underneath would be the restoration result.Popular terms used to denote inpainting algorithms are also“image completion”and “image?ll-in”.

Application

The extensive literature on digital image inpainting may be roughly grouped into three categories:patch-based,sparse,and PDEs/variational methods. From texture synthesis to patch-based inpainting

Efros and Leung[14]proposed a method that,although initially intended for texture synthesis,has proven most e?ective for the inpainting problem.The image gap is?lled-in recursively,inwards from the gap boundary:each“empty”pixel P at the boundary is?lled with the value of the pixel Q(lying outside the image gap,i.e.Q is a pixel with valid information)such that the neighborhood Ψ(Q)of Q(a square patch centered in Q)is most similar to the(available) neighborhoodΨ(P)of P.Formally,this can be expressed as an optimization problem:

Output(P)=V alue(Q),P∈?,Q/∈?,Q=arg min d(Ψ(P),Ψ(Q)),(1) where d(Ψ(P),Ψ(Q))is the Sum of Squared Di?erences(SSD)among the patches Ψ(P)andΨ(Q)(considering only available pixels):

d(Ψ1,Ψ2)=

i

j

|Ψ1(i,j)?Ψ2(i,j)|2,(2)

and the indices i,j span the extent of the patches(e.g.ifΨis an11×11patch then0≤i,j≤10.Once P is?lled-in,the algorithm marchs on to the next pixel at the boundary of the gap,never going back to P(whose value is,therefore,not altered again).See Figure2for an overview of the algorithm and Figure3for an example of the outputs it can achieve.The results are really impressive for a wide range of images.The main shortcomings of this algorithm are its computational cost,the selection of the neighborhood size(which in the original paper is a global user-selected parameter,but which should change locally depending on

image content),the?lling order(which may create unconnected boundaries for some objects)and the fact that it cannot deal well with image perspective(it was intended to synthesize frontal textures,hence neighborhoods are compared always with the same size and orientation).Also,results are poor if the image gap is very large and disperse(e.g.an image where80%of the pixels have been lost due to random salt and pepper noise).

Fig.2.Efros and Leung’s algorithm overview(?gure taken from[14]).Given a sample texture image(left),a new image is being synthesized one pixel at a time(right).To synthesize a pixel,the algorithm?rst?nds all neighborhoods in the sample image(boxes on the left)that are similar to the pixels neighborhood (box on the right)and then randomly chooses one neighborhood and takes its center to be the newly synthesized pixel.

Criminisi et al.[12]improved on this work in two aspects.Firstly,they changed the?lling order from the original“onion-peel”fashion to a priority scheme where empty pixels at the edge of an image object have higher prior-ity than empty pixels on?at regions.Thus,they are able to correctly inpaint straight object boundaries which could have otherwise ended up disconnected with the original formulation.See Figure4.Secondly,they copy entire patches instead of single pixels,so this method is considerably faster.Several shortcom-ings remain,though,like the inability to deal with perspective and the need to manually select the neighborhood size(here there are two sizes to set,one for the patch to compare with and another for the patch to copy from).Also,objects with curved boundaries may not be inpainted correctly.

Ashikhmin[2]contributed as well to improve on the original method of Efros and Leung[14].With the idea of reducing the computational cost of the proce-dure,he proposed to look for the best candidate Q to copy its value to the empty pixel P not searching the whole image but only searching among the candidates of the neighbors of P which have already been inpainted.See Figure5.The speed-up achieved with this simple technique is considerable,and also there is a very positive e?ect regarding the visual quality of the output.Other methods reduce the search space and computational cost involved in the candidate patch search by organizing image patches in tree structures,reducing the dimension-

Fig.3.Left:original image,inpainting mask?in black.Right:inpainting result obtained with Efros and Leung’s algorithm,images taken from their paper[14]. ality of the patches with techniques like Principal Component Analysis(PCA), or using randomized approaches.

While most image inpainting methods attempt to be fully automatic(aside from the manual setting of some parameters),there are user-assisted methods that provide remarkable results with just a little input from the user.In the work by Sun et al.[27]the user must specify curves in the unknown region, curves corresponding to relevant object boundaries.Patch synthesis is performed along these curves inside the image gap,by copying from patches that lie on the segments of these curves which are outside the gap,in the“known”region. Once these curves are completed,in a process which the authors call structure propagation,the remaining empty pixels are inpainted using a technique like the one by Ashikhmin[2]with priorities as in Criminisi et al.[12].Barnes et al.

[5]accelerate this method and make it interactive,by employing randomized searches and combining into one step the structure propagation and texture synthesis processes of Sun et al.[27].

The role of sparsity

After the introduction of patch-based methods for texture synthesis by Efros and Leung[14],and image inpainting by Criminisi et al[12],it became clear that the patches of an image provide a good dictionary to express other parts of the image.This idea has been successfully applied to other areas of image processing,e.g.denoising and segmentation.

More general sparse image representations using dictionaries have proven their e?ciency in the context of inpainting.For instance,using overcomplete dictionaries adapted to the representation of image geometry and texture,Elad et al.[15]proposed an image decomposition model with sparse coe?cients for

Fig.4.Left:original image.Right:inpainting result obtained with the algorithm of Criminisi et al.[12],images taken from their paper.

the geometry and texture components of the image,and showed that the model can be easily adapted for image inpainting.A further description of this model follows.

Let u be an image represented as a vector in R N .Let the matrices D g ,D t of sizes N ×k g and N ×k t represent two dictionaries adapted to geometry and texture,respectively.If αg ∈R k g and αt ∈R k g represent the geometry and texture coe?cients,then u =D g αg +D t αt represents the image decomposition using the dictionaries collected in D g and D t .A sparse image representation is obtained by minimizing

min (αg ,αt ):u =D g αg +D t αt αg p + αt p ,(3)

where p =0,1.Although the case p =0represents the sparseness measure (i.e.,the number of non zero coordinates)it leads to a non-convex optimization problem whose minimization is more complex.The case p =1yields a convex and tractable optimization problem leading also to sparsness.Introducing the constraint by penalization (thus,in practice,relaxing it)and regularizing the ge-ometric part of the decomposition with a total variation semi-norm penalization,Elad et al [15]propose the variational model:

min (αg ,αt ) αg 1+ αt 1+λ u ?D g αg ?D t αt 22+γT V (D g αg ),(4)

where T V denotes the total variation,λ,γ>0.This model can be easily adapted to a model for image inpainting.Observe that u ?D g αg ?D t αt can be inter-preted as the noise component of the image and λis a penalization parameter

Fig.5.Ashikhmin’s texture synthesis method(?gure taken from[2]).Each pixel in the current L-shaped neighborhood generates a shifted candidate pixel(black) according to its original position(hatched)in the input texture.The best pixel is chosen among these candidates only.Several di?erent pixels in the current neighborhood can generate the same candidate.

that depends inversely on the noise power.Then the inpainting mask can be in-terpreted as a region where the noise is very large(in?nite).Thus,if M=0and =1identify the inpainting mask and the known part of the image,respectively, then the extension of(4)to inpainting can be written as

αg 1+ αt 1+λ M(u?D gαg?D tαt) 22+γT V(D gαg).(5) min

(αg,αt)

Writing the energy in(5)using u g:=D g u,u t:=D t u as unknown variables, it can be observed thatαg=D+g u g+r g,αt=D+t u t+r t,where D+g,D+t denote the corresponding pseudoinverse matrices and r g,r t are in the null spaces of D g and D t,respectively.Assuming for simplicity,as in Elad et al[15],that r g=0, r t=0,the model(5)can be written as

D+g u g 1+ D+t u t 1+λ M(u?u g?u t) 22+γT V(u g).(6) min

(αg,αt)

This simpli?ed model is justi?ed in Elad et al[15]by several reasons:it is an upper bound for(5),is easier to solve,it provides good results,it has a Bayesian interpretation,and is equivalent to(5)if D g and D t are non-singular,

or when using the 2norm in place of the 1norm.The model has nice features

since it permits to use adapted dictionaries for geometry and texture,treats the inpainting as missing samples and the sparsity model is included with 1norms that are easy to solve.

This framework has been adapted to the use of dictionaries of patches and has been extended in several directions like image denoising,?lling-in missing pixels (Aharon et al [1]),color image denoising,demosaicing and inpainting of small holes (Mairal et al [21],and further extended to deal with multiscale dictionaries and to cover the case of video sequences in Mairal et al [22].To give a brief review of this

model some notation is required.Image patches are squares of size n =√n ×√n .Let D be a dictionary of patches represented by a matrix of size n ×k ,where the elements of the dictionary are the columns of D .If α∈R k is a vector of coe?cients,then Dαrepresents the patch obtained by linear combination of the columns of D .Given an image v (i,j ),i,j ∈{1,...,N },the purpose is to ?nd a dictionary ?D ,an image ?u and coe?cients ?α={?αi,j ∈R k :i,j ∈{1,...,N }}which minimize the energy

min (α,D,u )λ v ?u 2+N

i,j =1μi,j αi,j 0+N

i,j =1 Dαi,j ?R i,j u 2,(7)

where R i,j u denotes the patch of u centered at (i,j )(dismissing boundary ef-fects),and μi,j are positive weights.The solution of the nonconvex problem (7)is obtained using an alternate minimization:a sparse coding step where one computes αi,j knowing the dictionary D for all i,j ,a dictionary update using a sequence of one rank approximation problems to update each column of D (Aharon,Elad,and Bruckstein [1]),and a ?nal reconstruction step given by the solution of

min u λ v ?u 2+N i,j =1

?Dαi,j ?R i,j u 2.(8)Again,the inpainting problem can be considered as a case of non-homogeneous noise.De?ning for each pixel (i,j )a coe?cient βi,j inversely proportional to the noise variance,a value of βi,j =0may be taken for each pixel in the inpainting mask.Then the inpainting problem can be formulated as

min (α,D,u )λ β?(v ?u ) 2+N

i,j =1μi,j αi,j 0+N

i,j =1 (R i,j β)?(Dαi,j ?R i,j u ) 2,(9)

where β=(βi,j )N i,j =1,and ?denotes the elementwise multiplication between two vectors.

With suitable adaptations,this model has been applied to inpainting (of relatively small holes),to interpolation from sparse irregular samples and super-resolution,to image denoising,demoisaicing of color images,and video denoising and inpainting,obtaining excellent results,see Mairal et al [22].

PDEs and variational approaches

All the methods mentioned so far are based on the same principle:a miss-ing/corrupted part of an image can be well synthetized by suitably sampling and copying uncorrupted patches (taken either from the image itself or built from a dictionary).A very di?erent point of view underlies many contributions in-volving either a variational principle,through a minimization process,or a (non necessarily variational)partial di?erential equation (PDE).

An early interpolation method that applies for inpainting is due to Ogden,Adelson,Bergen,and Burt [24].Starting from an initial image,a Gaussian ?lter-ing is built by iterated convolution and subsampling.Then,a given inpainting domain can be ?lled-in by successive linear interpolations,downsampling and upsampling at di?erent levels of the Gaussian pyramid.The e?ciency of such approach is illustrated in Figure 6.

Fig.6.An inpainting experiment taken from Ogden et al [24].The method uses a Gaussian pyramid and a series of linear interpolations,downsampling,and upsampling.

Masnou and Morel proposed in [23]to interpolate a gray-valued image by extending its isophotes (the lines of constant intensity)in the inpainting domain.This approach is very much in the spirit of early works by Kanizsa,Ullman,Horn,Mumford and Nitzberg to model the ability of the visual system to complete edges in an occlusion or visual illusion context.This is illustrated in Figure 7.The general completion process involves complicated phenomena that cannot be easily and univocally modeled.However,experimental results show that,in simple occlusion situations,it is reasonable to argue that the brain extrapolates broken edges using elastica-type curves,i.e.,curves that join two given points with prescribed tangents at these points,a total

length lower than a given L ,and minimize the Euler elastica energy |κ(s )|2ds ,with s the curve arc-length

and κthe curvature.

The model by Masnou and Morel [23]generalizes this principle to the isophotes of a gray-valued image.More precisely,denoting ??

a domain slightly larger than ?,it is proposed in [23]to extrapolate the isophotes of an image u ,known out-

Fig.7.Amodal completion:the visual system automatically completes the bro-ken edge in the left?gure.The middle?gure illustrates that,here,no global symmetry process is involved:in both?gures,the same edge is synthesized.In such simple situation,the interpolated curve can be modeled as a Euler’s elas-tica,i.e.a curve with clamped points and tangents at its extremities,and with minimal oscillations.

side?and valued in[m,M],by a collection of curves{γt}t∈[m,M]with no mutual crossings,that coincide with the isophotes of u on??\?and that minimize the

energy

M

m

γt

(α+β|κγ

t

|p)ds dt.(10)

Hereα,βare two context-dependent parameters.This energy penalizes a gener-alized Euler’s elastica energy,with curvature to the power p>1instead of2,of all extrapolation curvesγt,t∈[m,M].

An inpainting algorithm,based on the minimization of(10)in the case p=1, is proposed by Masnou and Morel in[23].A globally minimal solution is com-puted using a dynamic programming approach that reduces the algorithmical complexity.The algorithm handles only simply connected domains,i.e.,those with no holes.In order to deal with color images,RGB images are turned into a luma/chrominance representation,e.g.YCrCb,or Lab,and each channel is processed independently.The reconstruction process is illustrated in Figure8.

The word inpainting,in the image processing context,has been coined?rst by Bertalm′?o,Sapiro,Caselles,and Ballester in[7],where a PDE model is proposed in the very spirit of real paintings restoration.More precisely,being u a gray-valued image to be inpainted in?,a time stepping method for the transport-like equation

u t=?⊥u·??u in?,(11)

u given in?c,

is combined with anisotropic di?usion steps that are interleaved for stabilization, using the following di?usion model

u t=? (x)|?u|?·

?u

|?u|

,(12)

where? is a smooth cut-o?function that forces the equation to act only in?, and?·(?u/|?u|)is the curvature along isophotes.This di?usion equation,that

(a)(b)(c)

(d)(e)(f)

Fig.8.8(a)is the original image and8(b)the image with occlusions in white. The luminance channel is shown in Figure8(c).A few isophotes are drawn in Figure8(d)and their reconstruction by the algorithm of Masnou and Morel[23] is given in Figure8(e).Applying the same method to the luminance,hue,and saturation channels,yields the?nal result of Figure8(f).

has been widely used for denoising an image while preserving its edges,com-pensates any shock possibly created by the transport-like equation.What is the meaning of Equation(11)?Following Bertalm′?o et al[7],?u is a measure of im-age smoothness,and stationary points for the equation are images for which?u is constant along the isophotes induced by the vector?eld?⊥u.Equation(11) is not explicitly a transport equation for?u,but,in the equivalent form,

u t=??⊥?u·?u(13) it is a transport equation for u being convected by the?eld?⊥?u.Following Bornemann and M¨a rz[9],this?eld is in the direction of the level lines of?u, which are related to the Marr-Hildreth edges.Indeed,the zero crossings of(a convoluted version of)?u are the classical characterization of edges in the cel-ebrated model of Marr and Hildreth.In other words,as in the real paintings restoration,the approach of Bertalm′?o et al[7]consists in conveying the image intensities along the direction of the edges,from the boundary of the inpainting domain?towards the interior.The e?ciency of such approach is illustrated in Figure9.From a numerical viewpoint,the transport equation and the anisotropic di?usion can be implemented with classical?nite di?erence schemes.For color images,the coupled system can be applied independently to each channel of

any classical luma/chrominance representation.There is no restriction on the topology of the inpainting

domain.

Fig.9.An experiment taken from Bertalm′?o et al [7].Left:original image.Mid-dle:a user-de?ned mask.Right:the result with the algorithm of [7].

Another perspective on this model is provided by Bertalm′?o,Bertozzi,and Sapiro in [6],where connections with the classical Navier-Stokes equation of ?uid dynamics are shown.Indeed,the steady state equation of Bertalm′?o et al [7],

?⊥u ·??u =0,

is exactly the equation satis?ed by steady state inviscid ?ows in the two-dimensional incompressible Navier-Stokes model.Although the anisotropic di?usion equa-tion (12)is not the exact couterpart of the viscous di?usion term used in the Navier-Stokes model for incompressible and Newtonian ?ows,yet a lot of the numerical knowledge on ?uid mechanics seems to be adaptable to design sta-ble and e?cient schemes for inpainting.Results in this direction are shown in Bertalm′?o,Bertozzi,and Sapiro [6].

Chan and Shen propose in [11]a denoising/inpainting ?rst-order model based on the joint minimization of a quadratic ?delity term outside ?and a total variation criterion in ?,i.e.,the joint energy A

|?u |dx +λ ?|u ?u 0|2dx,with A ???the image domain and λa Lagrange multiplier.The existence of so-lutions to this problem follows easily from the properties of functions of bounded variation.As for the implementation,Chan and Shen look for critical points of the energy using a Gauss-Jacobi iteration scheme for the linear system associ-ated to an approximation of the Euler-Lagrange equation by ?nite di?erences.

More recent approaches to the minimization of total variation with subpixel ac-curacy should nowadays be preferred.From the phenomenological point of view, the model of Chan and Shen

[11]yields inpainting candidates with the smallest possible isophotes.It is therefore more suitable for thin or sparse domains.An illustration of the model’s performances is given in Figure10

Fig.10.An experiment taken from Chan and Shen[11].Left:original image. Right:after denoising and removal of text.

Turning back to the criterion(10),a similar penalization on??of both the length and the curvature of all isophotes of an image u yields two equivalent forms,in the case where u is smooth enough(see Masnou and Morel[23]): +∞

?∞

{u=t}∩??

(α+β|κ|p)ds dt=

??

|?u|

α+β

?·?u

|?u|

p

dx.(14)

There have been various contributions to the numerical approximation of critical points for this criterion.A fourth-order time-stepping method is proposed by Chan,Kang,and Shen in[10]based on the approximation of the Euler-Lagrange equation,for the case p=2,using upwind?nite di?erences and a min-mod formula for estimating the curvature.Such high-order evolution method su?ers from well-known stability and convergence issues that are di?cult to handle.

A model,slightly di?erent from(14),is tackled by Ballester,Bertalm′?o, Caselles,Sapiro,and Verdera in[4]using a relaxation approach.The key idea is to replace the second-order term?·?u

|?u|

with a?rst-order term depending on an auxiliary variable.More precisely,Ballester et al study in[4]the minimization of

??

|?·θ|p(a+b|?k?u|)dx+α

??

(|?u|?θ·?u)dx,

under the constraint thatθis a vector?eld with subunit modulus and prescribed normal component on the boundary of??,and u takes values in the same range as in?c.Clearly,θplays the role of?u/|?u|but the new criterion is much less singular.As for k,it is a regularizing kernel introduced for technical reasons in order to ensure the existence of a minimizing couple(u,θ).The main di?erence

between the new relaxed criterion and (14),besides singularity,is the term ??|?·θ|p which is more restrictive,despite the relaxation,than ??|?u | ?·?u |?u | p dx .

However,the new model has a nice property:a gradient descent with respect to (u,θ)can be easily computed and yields two coupled second-order equations whose numerical approximation is standard.Results obtained with this model are shown in Figure 11.

Fig.11.Two inpainting results obtained with the model proposed by Ballester et al [4].Observe in particular how curved edges are restored.

The Mumford-Shah-Euler model by Esedoglu and Shen [17]is also varia-tional.It combines the celebrated Mumford-Shah segmentation model for images and the Euler’s elastica model for curves,i.e.,denoting u a piecewise weakly smooth function,that is a function with integrable squared gradient out of a discontinuity set K ???

,the proposed criterion reads ??\K |?u |2dx + K

(α+βk 2)ds.Two numerical approaches to the minimization of such criterion are discussed in Esedoglu and Shen [17]:?rst,a level set approach based on the representation of K as the zero-level set of a sequence of smooth functions that concentrate,and the explicit derivation,using ?nite di?erences,of the Euler-Lagrange equations associated with the criterion;the second method addressed by Esedoglu and Shen is a Γ-convergence approach based on a result originally conjectured by De Giorgi and recently proved by Sch¨a tzle.In both cases,the ?nal system of discrete equations is of order four,facing again di?cult issues of convergence and stability.

More recently,following the work of Grzibovskis and Heintz on the Willmore ?ow,Esedoglu,Ruuth,and Tsai [16]have addressed the numerical ?ow associ-

ated with the Mumford-Shah-Euler model using a promising convolution/thresholding method that is much easier to handle than the previous approaches.

Tschumperl′e proposes in [28]an e?cient second-order anisotropic di?usion model for multi-valued image regularization and inpainting.Given a R N -valued image u known outside ?,and starting from an initial rough inpainting obtained by straightforward advection of boundary values,the pixels in the inpainting domain are iteratively updated according to a ?nite di?erence approximation to the equations ?u i ?t

=trace(T ?2u i ),i ∈{1,···,N }.Here,T is the tensor ?eld de?ned as

T =1(1+λmin +λmax )α1v min ?v min +1(1+λmin +λmax )α2

v max ?v max ,with 0<α1<<α2,and λmin ,λmax ,v min ,v max are the eigenvalues and eigen-vectors,respectively,of G σ? N i =1?u i ??u i ,being G σa smoothing kernel and N

i =1?u i ??u i the classical structure tensor,that is known for representing well the local geometry of u .Figure 12reproduces an experiment taken from Tschumperl′e [28].

Fig.12.An inpainting experiment (the middle image is the mask de?ned by the user)taken from Tschumperl′e [28].

The approach of Auroux and Masmoudi in [3]uses the PDE techniques that have been developed for the inverse conductivity problem in the context of crack detection.The link with inpainting is the following:missing edges are modeled as cracks and the image is assumed to be smooth out of these cracks.Given a crack,two inpainting candidates can be obtained as the solutions of the Laplace equation with Neumann condition along the crack and either a Dirichlet,or a Neumann condition on the domain’s boundary.The optimal cracks are those for which the two candidates are the most similar in quadratic norm,and they

can be found through topological analysis,i.e.they correspond to the set of points where putting a crack mostly decreases the quadratic di?erence.Both the localization of the cracks and the associated piecewise smooth inpainting solutions can be found using fast and simple?nite di?erences schemes.

Finally,Bornemann and M¨a rz propose in[9]a?rst-order model to advect the image information along the integral curves of a coherence vector?eld that extends in?the dominant directions of the image gradient.This coherence ?eld is explicitly de?ned,at every point,as the normalized eigenvector to the minimal eigenvalue of a smoothed structure tensor whose computation carefully avoids boundary biases in the vicinity of??.Denoting c the coherence?eld, Bornemann and M¨a rz show that the equation c·?u=0with Dirichlet boundary constraint can be obtained as the vanishing viscosity limit of an e?cient fast-marching scheme:the pixels in?are synthezised one at a time,according to their distance to the boundary.The new value at a pixel p is a linear combination of both known and previously generated values in a neighborhood of p.The key ingredient of the method is the explicit de?nition of the linear weights according to the coherence?eld c.Although the Bornemann-M¨a rz model requires a careful tune of four parameters,it is much faster than the PDE approaches mentioned so far,and performs very well,as illustrated in Figure13

Fig.13.An inpainting experiment taken from Bornemann and M¨a rz[9],with a reported computation time of0.4sec.

Combining and extending PDEs and patch models

In general,most PDE/variational methods that have been presented so far per-form well for inpainting either thin or sparsely distributed domains.However, there is a common drawback to all these methods:they are unable to restore texture properly,and this is particularly visible on large inpainting domains,like for instance in the inpainting result of Figure12where the di?usion method is not able to recover the parrot’s texture.On the other hand,patch-based meth-ods are not able to handle sparse inpainting domains like in Figure14,where no valid squared patch can be found that does not reduce to a point.On the contrary,most PDE/variational methods remain applicable in such situation, like in Figure14where the model proposed by Masnou and Morel[23]yields the

inpainting result.Obviously,some geometric information can be recovered,but no texture.

Fig.14.A picture of a mandrill,the same picture after removal of15×15 squares(more than87%of the pixels are removed),and the reconstruction with the method introduced by Masnou and Morel[23]using only the one-pixel wide information at the squares’boundaries.

There have been several attempts to explicitly combine PDEs and patch-based methods in order to handle properly both texture and geometric struc-tures.The contribution of Criminisi,P′e rez,and Toyama[12]was mentioned already.The work of Bertalm′?o,Vese,Sapiro,and Osher[8]uses an additive decomposition of the image to be inpainted into a geometric component that contains all edges information,and a texture component.Then the texture im-age is restored using the Efros and Leung’s algorithm of[14],while the geometric image is inpainted following the method proposed in Bertalm′?o et al[7](several subsequent works have proposed other methods for the individual reconstruc-tion of each component).The?nal image is obtained by addition of the restored texture and geometric components.In a few situations where the additive decom-position makes sense,this approach does indeed improve the result and extends the applications domain of inpainting.

In Komodakis and Tziritas[20]the authors combine variational and patch-based strategies by de?ning an inpainting energy over a graph whose nodes are the centers of patches over the image.The inpainting energy has two terms, one being a texture synthesis term and the other measuring the similarity of the overlapping area of two neighboring patches(centered on nodes which are neighbors in the graph).By minimizing this energy with Belief Propagation,a label is assigned to each node,which amounts to copying the patch corresponding to the label over the position of the node.The results are very good on a variety of di?erent images(e.g.Fig.1)and the method is fast.Some potential issues: there is no assurance that the iterative process converges to a global minimum, and visual artifacts may appear since the method uses a?xed grid and entire patches are copied for each pixel of the mask.

The work by Drori,Cohen-Or,and Yeshurun in[13]does not involve any ex-plicit geometry/texture decomposition,but the search for similar neighborhoods is guided by a prior rough estimate of the inpainted values using a multiscale sampling and convolution strategy,in the very spirit of Ogden et al[24].In addition,in constrat with many patch-based methods,the dictionary of valid patches is enriched using rotations,rescalings,and re?ections.An example ex-tracted from Drori et al[13]is shown in Figure15.

Fig.15.An experiment from Drori et al[13]illustrating the proposed multiscale di?usion/patch-based inpainting method.The upper-left image is the original, the upper-right image contains the mask de?ned by the user,the bottom-left image is the result,and the bottom-right image shows what has been synthesized in place of the elephant.

Beyond single image inpainting

All the methods mentioned above involve just a single image.For the multi-image case,there are two possible scenarios:video inpainting,and inpainting a single image using information from several images.

Basic methods for video inpainting for data transmission(where the problem is known as“error concealment”and involves restoring missing image blocks) and for?lm restoration applications(dealing with image gaps produced by dust, scratches or the abrasion of the material)assume that the missing data changes

location in correlative frames,and therefore use motion estimation to copy in-formation along pixel trajectories.A particular di?culty in video inpainting for ?lm restoration is that,for good visual quality of the outputs,the detection of the gap and its?lling-in are to be tackled jointly and in a way which is robust to noise,usually employing probabilistic models in a Bayesian framework,see for example the book by Kokaram[19].

Wexler et al.[29]propose a video inpainting algorithm that extends to space-time the technique of Efros and Leung[14]and combines it with the idea of coherence among neighbors developed by Ashikhmin[2].First,for each empty pixel P they consider a space-time cube centered in P,compare it with all possible cubes in the video,?nd the most similar and keep its center pixel Q, which will be the correspondent of P.For each cube the information considered and compared is not only color but also motion vectors.Then,instead of copying the value of Q to P,they copy to P the average all the values of the shifted correspondents of the neighbors of P:for instance,if R is at the right of P, and S is the correspondent of R,then the pixel to the left of S will be involved in the average to?ll-in P.This is based on the idea by Ashikhmin[2],see Fig.5.The shortcomings of this video inpainting method are that the results present signi?cant blur(due to the averaging),it seems to be limited only to static-camera scenarios(probably due to the simple motion estimation procedure involved)and periodic motion without change of scale,and the computational cost is quite high(due to the comparison of3D blocks).

Shiratori et al.[26]perform video inpainting by?rstly inpainting the motion ?eld with a patch based technique like that of Efros and Leung[14]and then propagating the colors along the(inpainted)motion trajectories.The method assumes that motion information is su?cient to?ll-in holes in videos,which isn’t always the case(e.g.with a static hole over a static region).The results present some blurring,due to the bilinear interpolation in the color propagation step.

Patwardhan et al.[25]propose a video inpainting method consisting of three steps.In the?rst step they decompose the video sequence into binary motion layers(foreground and background),which are used to build three image mosaics (a mosaic is the equivalent of a panorama image created by stitching together several images):one mosaic for the foreground,another for the background and a third for the motion information.The other two steps of the algorithm per-form inpainting,?rst from the foreground and then from the background:these inpainting processes are aided and sped-up by using the mosaics computed in the?rst step.See Figure16for some results.The algorithm is limited to se-quences where the camera motion is approximately parallel to the image plane, and foreground objects move in a repetitive fashion and do not change size:these restrictions are imposed so that a patch-synthesis algorithm like that of Efros and Leung[14]can be used.

Hays and Efros[18]perform inpainting of a single image using information from a database with several millions of photographs.They use a scene-descriptor to reduce the search space from two million to two hundred images,those images from the database which are semantically closer to the image the user wants

Fig.16.Top row:some frames from a video.Middle row:inpainting mask ?in black.Bottom row:video inpainting results obtained with the algorithm of Patwardhan et al.[25].

Fig.17.Left:original image.Middle:inpainting mask ?,in white.Right:in-painting result obtained with the method by Hays and Efros [18],images taken from their paper.

to https://www.360docs.net/doc/937427966.html,ing template matching they align the two hundred best matching scenes to the local image around the region to inpaint.Then they composite each matching scene into the target image using seam ?nding and image blending.Several outputs are generated so the user may select among them,and the results can be outstanding,see Figure 17.The main shortcoming of this method is that it relies on managing and operating a huge image database.When the algorithm fails,it can be due to a lack of good scene matches (if the target image is atypical),or because of semantic violations (e.g.failure to recognize people hence copying only part of them),or in the case of uniformly textured backgrounds (where this algorithm might not ?nd the precise same texture in another picture of the database).

Open Problems

Inpainting is a very challenging problem and it is far from being solved,see Figure 18.Patch-based methods work best in general,although for some appli-cations (e.g.very spread,sparsely distributed gap ?)geometry-based methods might be better suited.And when the image gap lies on a singular location,with surroundings that can’t be found anywhere else,then all patch-based methods give poor results,regardless if they consider or not geometry.For video inpainting the situation is worse,the existing algorithms are few and with very constrain-ing limitations on camera and object motion.Because video inpainting is very relevant in cinema post-production,in order to replace the current typical labor intensive systems,important developments are expected in the near future.

(a)(b)(c)

(d)(e)(f)

Fig.18.An example where no inpainting method seems to work.(a)Original image,from the database provided by Hays and Efros [18].(b)In white,the mask to be inpainted,that is not the initial mask proposed by Hayes and Efros,but derives from the fuzzy mask actually used by their algorithm.(c)Result courtesy of D.Tschumperl′e using the algorithm from [28].(d)Result courtesy of T.M¨a rz and F.Bornemann using the algorithm from [9].(e)Result using a variant of the algorithm from Criminisi et al.[12].(f)Result from Hays and Efros [18].

Recommended Readings

[1]M.Aharon,M.Elad,and A.Bruckstein.K-SVD:An algorithm for designing overcomplete dictionaries for sparse representation.IEEE Transactions on

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生

活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出

图像复原方法综述

图像复原方法综述 1、摘要 图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像处理技术类似,也是以获取视觉质量某种程度的改善为目的,所不同的是图像复原过程实际上是一个估计过程,需要根据某些特定的图像退化模型,对退化图像进行复原。简言之,图像复原的处理过程就是对退化图像品质的提升,并通过图像品质的提升来达到图像在视觉上的改善。 由于引起图像退化的因素众多,且性质各不相同,目前没有统一的复原方法,众多研究人员根据不同的应用物理环境,采用了不同的退化模型、处理技巧和估计准则,从而得到了不同的复原方法。 图像复原算法是整个技术的核心部分。目前,国内在这方面的研究才刚刚起步,而国外

数字图像处理技术现状及发展趋势

数字图像处理技术现状及发展趋势 摘要现今是计算机技术、网络技术以及多媒体技术高速发展的时代,更多高科技技术正在全面发展,数字图像处理技术作为一种新式技术,如今已经广泛地应用于人们的生产生活中。数字图像处理技术的应用和发展为人们的生活发展带来了很多的便利,在遥感技术、工业检测方面发展迅速,在医学领域,气象通信领域也有很大的成就。由此,本文主要探讨数字图像处理技术的现状及发展趋势。 关键词数字图像处理技术;现状;发展趋势 现今是计算机和网络技术高速发展的时代,计算机的应用给人们的生产生活带来了很大的便利,人们应用计算机处理各种复杂的数据,将传统方式不能处理的问题以全新的技术和方式有效解决[1]。数字图像处理技术是应用较为广泛的一种技术,在具体应用过程中,能够经过增强、复原、分割等过程对数据进行处理,且具有多样性、精度高、处理量大的显著优势,本文对数字图像处理技术的现状及发展趋势进行研究和探讨。 1 数字图像处理技术发展现状 数字图像处理技术是近年来发展较为迅速的一种技术,具体是指应用计算机对图像进行一系列的处理,最终达到人们要求的水平,在具体的处理过程中,以改善图像的视觉效果为核心,最终呈现出人们想要表达的意思。笔者查阅国内外诸多文献库,发现对数字图像处理技术的研究多数集中于图像数字化、图像增强、图像还原、图像分割等领域[2]。最初数字图像处理技术产生于20世纪20年代,当时普遍将其应用于报纸业,发展至20世纪50年代,图像处理技术跟随着计算机的发展而迅速发展,也有更多的人开始关注和应用该技术,当时在各国的太空计划中发挥了巨大作用,尤其是对月球照片的处理,获得了很大的成功。发展到20世纪70年代时,数字图像处理技术的应用已经很普遍了,尤其是在计算机断层扫面(CT)等方面,该技术的应用得到了一致好评,而现今,数字图像处理技术随处可见,已广泛应用在各行各业中。 2 数字图像处理技术的特点 数字图像处理技术有以下几个特点:①图像处理的多样性特点。数字图像处理技术可以编写多样的算法,以不同的程序模式施加于数字图像技术上,根据实际需求对图像进行处理,因此最终获取的图像效果也截然不同。②图像处理精度高。应用数字图像处理技术处理的图像,其精度和再现性都提高了一个层次,尤其是在各种算法和程序的支撑下,进一步确保了计算的精度和正确性。③交叉融合了多门学科和新技术。数字图像处理的应用基础包含了众多学科和技术,其中数学和物理是关键,而通信、计算机、电子等技术则是确保其处理质量的关键技术。④数据处理量大[3]。图像本身就包含了大量的信息,数字图像处理技术可以更好地区分有用信息和冗余信息,从而获取处理的关键性信息。

图像运动模糊复原算法综述概要

752b=———=;———#==——====—#==;=————=—=——=====——===——=—#一a以科学发展观促进科技创新(下)21EichmannG,StojancicM.Superresolvingsignalandimagerestorationusingory.Appl.Opt.1987。V01.26:1911~1918linearassociativemem—22collectivecomputationalabilities.HopfieldJJ.NeuralnetworksandphysicalsystemwithemergentProcNatAcadSciUSA。1982,(79):2554~2558ininverseandwienerfilterrestorationsofmotion—blurred2324StenderJ.(ed).ParallelGeneticAlgorithms:TheoryandApplication.10SPress.1993errorsLimH。TanKC,TanBTG.Edgeimagesandtheirwindowingtreatmen

t.CVGIP.1991,53:186。195作者简介刘晶晶,现为北京大学遥感所、中国矿业大学(北京)机电学院计算机硕士。研究方向:图像处理与模式识别。电话:(010)51733380;E—mail:ljj010@126.com。晏磊,现为北京大学地球与空间科学学院教授,博士生导师,北京市空间信息集成与3S工程应用重点实验室主任。何凯,现为北京大学遥感所博士后。研究方向:分形、小波理论及其在遥感影像处理方面的应用。宁书年,现为中国矿业大学(北京)博士生导师,地球探测与信息技术博士点学科带头人。LED显示技术及其发展趋势罗妙宣1王华1’2夏华丽21.北京大学空间信息集成与3S工程应用北京市重点实验室,北京,100871;2.中国矿业大学(北京)机电与信息工程学院,北京,100083摘要本文介绍了LED显示技术的工作原理、简要介绍了它的系统组成;并与CRT技术、LCD技术进行了比较,阐明了该技术的发展趋势及其应用前景。关键词LED显示技术半导体一、引言随着时代步伐的前进,信息已经日益成为人们关注的焦点,信息发布的方式就显得尤为重要,基于LED显示技术的显示屏就这样应运而生了。LED显示屏是由发光二极管组成的平面点阵来显示图像信息的器件。它以其自身的高亮度、低能耗、长寿命、响应快和无辐射的优点在短短的几十年发展成为现代信息发布的重要手段,并被广泛地应用于证券交易、金融、交通、体育、广告等领域。最近几年以GaN为基础的2%族半导体材料和器件方面取得了突破性进展,导致了GaN基蓝光LED进入市场,并被用于全色大屏幕显示器,使LED显示器的发展进入了一个全新阶段。LED材料分无机和有机两种,无机材料激发电压低、设备工艺简单、亮度高;近年来基于有机发光二极管(OLED)的平板显示器,由于其新颖的特性正在成为平板显示器领域的一个新增长点。二、LED显示技术的工作原理LED(LightEmittingDiode)是指通过一定的控制方式,用于显示文字、文本图形图像和行情等各种 图像运动模糊复原算法综述作者:作者单位:刘晶晶,晏磊,何凯,宁书年刘晶晶(北京大学遥感与地理信息系统研究所,北京,100871;中国矿业大学(北京机电与信息工程学院,北京,100083,晏磊,何凯(北京大学遥感与地理信息系统研究所,北京,100871,宁书年(中国矿业大学(北京机电与信息工程学院,北京,100083 本文读

数字图像处理发展及现状

数字图像处理的发展及现状 网络092 张海波 0904681468 摘要: 简述了数字图像处理技术的发展及应用现状,系统分析了数字图像处理技术的主要优点,不足及制约其发展的因素,阐述了数字图像处理技术研究的主要内容和将来的研究重点,概述了数字图像处理技术未来的应用领域,并提出了该技术未来的研究方向。 关键词:数字图像;图像处理;现状与展望;计算机技术 1 前言: 图像处理技术基本可以分成两大类:模拟图像处理(Analog Image Processing)和数字图像处理(Digtal Image Processing)。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以处理内容[1]。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理(Geometrical Processing)、算术处理(Arithmetic Processing)、图像增强(Image Enhancement)、图像复原(Image Restoration)、图像重建(Image Reconstruction)、图像编码(Image Encoding)、图像识别(Image Recognition)、图像理解(Image Understanding)。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科[2],因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 2 数字图像处理技术发展: 数字图像处理技术使20世纪60年代随着计算机技术和 VLSY Very Large Scale Integration的发展而产生、发展和不断成熟起来的一个新兴技术领域,它在理论上和实际应用中都取得了很大的成就。 视觉是人类最重要的感知手段,图像又是视觉的基础[3]。早期图像处理的目的是改善图像质量,它以人为对象,以改善人的视觉效果为目的。图像处理中输入的是质量低的图像,输出的是改善质量后的图像。常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片进行图像处理,如几何校正、灰度变换、去除噪声等,并考虑了太阳位置和月球环境的影响。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,获得了月球的地形图、彩色图及全景镶嵌图,为人类登月创举奠定了基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术探测研究中,数字图像处理技术都发挥了巨大的作用。 数字图像处理技术取得的另一个巨大成就是在医学上。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT

数字图像处理技术的研究现状与发展方向

数字图像处理技术的研究现状与发展方向 孔大力崔洋 (山东水利职业学院,山东日照276826) 摘要:随着计算机技术的不断发展,数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词:数字图像处理;特征提取;分割;检索 引言 图像是指物体的描述信息,数字图像是一个物体的数字表示,图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理,它是一门新兴的应用学科,其发展速度异常迅速,应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言,对图像进行加工和分析主要有以下三方面的目的[1]: (1)提高图像的视感质量,以达到赏心悦目的目的。如去除图像中的噪声,改变图像中的亮度和颜色,增强图像中的某些成分与抑制某些成分,对图像进行几何变换等,从而改善图像的质量,以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2)提取图像中所包含的某些特征或特殊信息,以便于计算机进行分析,例如,常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面,如频域特性、灰度/颜色特性、边界/区域特性、纹理特性、形状/拓扑特性以及关系结构等。 (3)对图像数据进行变换、编码和压缩,以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分,主要有以下三类,即图像到图像的处理、图像到数据的处理和数据到图像的处理[2]。 (1)图像到图像。图像到图像的处理,其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先,各类图像系统中图像的传送和转换中,总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因,只将图像中感兴趣的特征有选择地突出,衰减次要信息,提高图像的可读性,增强图像中某些特征,使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如,对图像的灰度值进行修正,可以增强图像的对比度;对图像进行平滑,可以抑制混入图像的噪声;利用锐化技

数字图像处理技术的现状及其发展方向

数字图像处理技术的现状及其发展方向 人类通过眼、耳、鼻、舌、身接受信息,感知世界。约有75%的信息是通过视觉系统获取的。数字图象处理是用数字计算机处理所获取视觉信息的技术,上世纪20年代Bartlane 电缆图片传输系统(纽约和伦敦之间海底电缆)传输一幅图片所需的时间由一周多减少到小于3个小时;上世纪5O年代,计算机的发展,数字图像处理才真正地引起人们的巨大兴趣;1964年,数字图像处理有效地应用于美国喷气推进实验室(J.P.L)对“徘徊者七号”太空船发回的大批月球照片的处理;但是直到上世纪六十年代末至七十年代初,由于离散数学理论的创立和完善,使之形成了比较完整的理论体系。成为一门新兴的学科。数字图像处理的两个主要任务:如何利用计算机来改进图像的品质以便于人类视觉分析;对图像数据进行存储、传输和表示,便于计算机自动化处理。图像处理的范畴是一个受争论的话题,因此也产生了其他的领域比如图像分析和计算机视觉等等。 1.数字图像处理主要技术概述 不论图像处理是基于什么样的目的,一般都需要通过利用计算机图像处理对输入的图像数据进行相关的处理,如加工以及输出,所以关于数字图像处理的研究,其主要内容可以分为以下几个过程。图像获取:这个过程基本上就是把模拟图像通过转换转变为计算机真正可以接受的数字图像,同时,将数字图像显示并且体现出来(例如彩色打印)。数据压缩和转换技术:通过数据压缩和数据转换技术的研究,减少数据载体空间,节省运算时间,实现不同星系遥感数据应用的一体化。图像分割:虽然国内外学者已提出很多种图像分割算法,但由于背景的多变性和复杂性,至今为止还没有一种能适用于各种背景的图像分割算法。当前提出的小波分析、模糊集、分形等新的智能信息处理方法有可能找到新的图像分割方法。图像校正:在理想情况下,卫星图像上的像素值只依赖于进入传感器的辐射强度;而辐射强度又只与太阳照射到地面的辐射强度和地物的辐射特性(反射率和发射率)有关,使图像上灰度值的差异直接反映了地物目标光谱辐射特性的差异,从而区分地物目标。图像复原:以图像退化的数学模型为基础,来改善图像质量表达与描述,图像分割后,输出分割标记或目标特征参数;特征提取:计算描述目标的特征,如目标的几何形状特征、统计特征、矩特征、纹理特征等。图像增强:显示图像中被模糊的细节,或是突出图像中感兴趣的特征。图像识别:统计模式识别、模糊模式识别、人工神经网络等。 2.数字图像处理设备研究 通常,要把模拟图像转化为数字图像,需要用到相应的一些图像数字化设备。常见的数字化设备有数字相机、扫描仪、数字化仪等。一般来说,图像的数字化包括采样和量化两个过程。图像在空间上的离散化称为采样。用空间上部分点的灰度值代表图像,这些点称为采样点。模拟图像经过采样后,离散化为像素。但像素值(即灰度值)仍是连续量。把采样后所得的各像素的灰度值从模拟量到离散量的转换称为图像灰度的量化。通常来说,采样点数越多,图像质量越好,但占空间大。当图像的采样点数一定时,量化级数越多,图像质量越好。数字图像处理系统由图像数字化设备、图像处理计算机和图像输出设备组成。 为完成上述功能,图像数字处理系统应当包含以下五个组成部分:1)采样孔;2)图像扫描机构;3)光传感器;4)量化器:将传感器输出的连续量转化为整数值;5)输出存储装置。 3.数字图像处理的应用领域研究 目前,数字图像处理主要被应用在以下几个方面:通信:图象传输,电视电话,HDTV 等;生物特征识别:基于生理特征的身份识别:指纹、人脸、虹膜等,基于行为特征的身份识别:步态、语音等,可以用于安保、视频监控等;光学字符识别:印刷体识别(例如:扫描识别软件),手写体识别(例如:手机手写字符识别);宇宙探测:星体图片处理;遥感:地形、地质、矿藏探查,森林、水利、海洋、农业等资源调查,自然灾害预测,环境污染的

数字图像处理文献综述

数字图像处理技术综述 摘要:随着计算机的普及,数字图像处理技术也获得了迅速发展,逐渐走进社会生产生活的各个方面。本文是对数字图像处理技术的一个总体概述,包括其内涵、优势、主要方法及应用,最后对其发展做了简单的总结。 关键词:数字图像、图像处理技术、处理方法、应用领域 Overview of digital image processing technology Abstract: With the popularization of computer, digital image processing technology also won the rapid development, and gradually go into all aspects of social life and production. This paper is a general overview of the digital image processing technology, including its connotation, advantage, main method and its application. And finally, I do a simple summary of the development. Keywords: digital image, image processing technology, processing method, application field

前言: 图像处理技术被分为模拟图像处理和数字图像处理两大类。数字图像处理技术一般都用计算机处理或实时的硬件处理,因此也称之为计算机图像处理[1]。而时至今日,随着计算机的迅速普及,数字图像处理技术也飞速发展着,因为其用途的多样性,可以被广泛运用于医学、交通、化学等各个领域。 一、数字图像处理技术的概念内涵 数字图像处理技术是指将一种图像信号转变为二进制数字信号,经过计算机对而其进行的图像变换、编码压缩、增强和复原以及分割、特征提取等处理,而高精准的还原到显示器的过程[2]。在数字图像处理中,图像被分割成像素(每英寸的像素的数目取决于图像的分辨率) [7].可以说图像处理是对图像数据的一种操作或者运算,一般是由计算机或者专用图像处理硬件来实现的。我国常用的数字图像处理技术主要有两种,一种是光学处理法,一种是数字(电子)处理法。当前,数字图像处理技术已经逐步完善。数字图像处理技术与人们的生活紧密相关,如常用的数字电视、数码照相机、数码摄像机等所输出的图像都是数字图像,即数字像处理技术的成果。目前数字图像处理已发展成为信息处理技术的一个综合性边缘学科,成为了信息处理的一个重要的学科分支,并与相关学科相互联系、相互交叉。如计算机图形学、模式识别、计算机视觉等学科的研究内容均与图像电信号转变、图像数据描述、图像信息输出等有关,所以,它们之间各有侧重而又相互补充,并在各项新理论、新技术的支持下得到了长足发展[3]。 数字图像处理最早出现于20世纪70年代,当时是以人为对象的,为了改善图像的视觉效果。到目前为止,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,使图像处理成为一门引人注目、前景远大的新型学科[4]。而它发展至今,在原有的基础上又有了新的技术支持,已经逐渐覆盖至方方面面,在各个学科都有着难以忽视的作用。 二、数字图像处理技术的优势 数字图像处理技术之所以发展如此迅速,是因为它具有许多的优点,可以带来极大便利,而这些优点也使得数字图像处理的应用越来越广泛。 第一,再现性好。数字图像处理技术不会因对图像进行的变换操作而导致图像质量退化,数字图像能始终保持图像的再现[3]; 第二,处理精度高。数字图像处理的是由计算机进行的,因而可以处理极高精度的数据,而且精度可以随着计算机计算能力的增强而增加。可以快速准确地拍摄照片,可以精确测量数百万像素的强度[8];

图像识别技术综述

图像处理与识别技术综述 摘要:本文简要介绍了图像处理与识别技术的相关知识,介绍了图像识别过程中的判别函数和判别规则,特征提取和选择的方法。设计一个基于16位处理器MC9S12XS128的图像识别系统在实际中的具体硬件实现。 关键词:图像识别特征提取MC9S12XS128 数字摄像头 An Overview of Image Recognition And Identifying Technology Abstract:This paper introduces some knowledge of image recognition and identifying technology,introduces the discriminant function discriminant rule in the image identifying progress, feature extraction and selection method. Designed an image identifying system based on 16-bit controller MC9S12XS128,and it has specific hardware implementation in fact. Key words: image identifying discriminaut rule MC9S12XS128 digital cameral

1 引言 图像是与视觉相关的最贴近生活的信息,它是客观世界的物体直接或间接作用于人眼而产生视知觉的实体。传统的图像处理技术就是对图像进行保存、处理、压缩、传输和重现。随着信息时代的到来,用于计算机处理的各种信息的需求越来越多,多媒体信息处理技术已经成为日常生活各个领域的迫切需要。人们更希望利用计算机技术处理人类视觉问题,如:人脸、指纹识别技术实现处理与个人有关的一切事物,利用视觉自动监视系统监视环境中发生的非常事件,利用字符识别技术实现文档图像的自动录入与处理。因此把传统的图像处理技术与模式识别处理技术相结合是图像处理的新趋势。 2 传统的图像处理技术 图像处理技术始于20世纪50年代,1964年美国喷射推进实验室(JPL )使用计算机对太空船送回的大批月球照片处理后得到了清晰逼真的图像,这是这门技术发展的里程碑,此后这门技术得到了广泛的发展。 传统图像处理技术包含图像的获取、变换、增强、编码、分割等方面的内容。 2.1 图像获取 图像可以根据其形式或产生方法来分类。 照片图画 光图像连续函数 离散函数 (数字图像)不可见的 物理图像 物体图像 可见的图像图片数学函数 图1 图像的分类 图像的获取[4]是指将其变为计算机可识别的信息。通常是数字化的过程,及扫描、采样、量化三个步骤。经过数字化过程后就得到了一幅图的数字表示,即数字图像。一般这个过程由摄像头等设备完成。反过来还可将数字图像进行显示。 2.2 图像变换 图像变换[6]广泛应用于图像滤波[2]、统计滤波[5]、图像数据压缩以及图像描述等。图像变换是将N ×N 维空间图像数据变换成另外一组基向量(通常是正交向量空间)的坐标参数,我们希望这些离散图像信号坐标参数更集中代表了图像中的有效信息,或者是更便于达到某种处理目的。 通常采用的方法有:傅里叶变换、相关分析、小波变换[7]、离散余弦变换(DCT )、正弦变

数字图像复原技术综述

数字图像复原技术综述 摘要图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像复原是图像处理中的一个重要问题,对于改善图像质量具有重要的意义。解决该问题的关键是对图像的退化过程建立相应的数学模型,然后通过求解该逆问题获得图像的复原模型并对原始图像进行合理估计。 本文主要介绍了图像退化的原因、图像复原技术的分类和目前常用的几种图像复原方法,详细的介绍了维纳滤波、正则滤波、LR算法和盲区卷积,并通过实验证明了该方法的可行性和有效性。 关键词:图像退化、图像复原、维纳滤波、正则滤波、LR算法、盲区卷积、 1 引言 数字图像复原技术(以下简称复原技术)是数字图像处理的重要组成部分。最早的复原技术研究可以追溯到19世纪50至60年代早期美国和前苏联的空间项目。恶劣的成像环境、设备的振动,飞行器旋转等因素使图像产生不同程度的退化。在当时的技术背景下,这些退化造成了巨大的经济损失。为此,业内人士围绕着解决退化问题展开了复原技术的研究。反映复原技术的发展现状和趋势。考虑到彩色图像复原问题的特殊性,也归人到该部分进行讨论;最后,对复原技术的研究方法进行总结与展望。 2、图像复原概述 在图像的获取、传输以及保存过程中,由于各种因素,如大气的湍流效应、摄像设备中光学系统的衍射、传感器特性的非线性、光学系统的像差、成像设备与物体之间的相对运动、感光胶卷的非线性及胶片颗粒噪声以及电视摄像扫描的非线性等所引起的几何失真,都难免会造成图像的畸变和失真。通常,称由于这些因素引起的质量下降为图像退化。 图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,在图像接受端显示的图像已不再是传输的原始图像,图像效果明显变差。为此,必须对退化的图像进行处理,才能恢复出真实的原始图像,这一过程就称为图像复原[1]。 图像复原技术是图像处理领域中一类非常重要的处理技术,与图像增强等其他基本图像

数字图像处理技术的发展现状及趋势

数字图像处理技术的发展现状及趋势 摘要:近年来,多媒体和通信技术发展迅速,具有大量数据内容的数字图像处理技术也随着这些技术的发展有了更新的进步,所以必须对之进行及时的了解。文章从数字图像处理的概述、发展现状及发展趋势几个方面对之进行了基本论述。 关键词:数字图像;处理技术;电子信息 不论在哪种通讯手段中,人们都更愿意选择直观的图像表达,因此,未来社会对图像传递信息的要求越来越高,及时性、直观性、客观性等发展条件都对现有的数字图像处理技术提出了挑战。 1数字图像处理技术概述 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。这一过程包括对图像进行增强、除噪、分割、复原、编码、压缩、提取特征等内容,图像处理技术的产生离不开计算机的发展、数学的发展以及各个行业的应用需求的增长。20世纪60年代,图像处理的技术开始得到较为科学的应用,人们用这种技术进行输出图像的理想化处理。 经过多年的发展,现在的电子图像处理技术已具有了以下特点:更好的再现性:数字图像处理与传统的模拟图像处理相比,不会因为图像处理过程中的存储、复制或传输等环节引起图像质量的改变;占用的频带更宽:这一点是相对于语言信息而言的,图像信息比语言信息所占频带要大好几个数量级,因此图像信息在实现操作的过程中难度更大;适用面宽:可以从各个途径获得数据源,从显微镜到天文望远镜的图像都可以进行数字处理;具有较高的灵活性:只要可以用数学公式和数理逻辑表达的内容,几乎都可以用电子图像来进行表现处理. 2数字图像处理技术的发展 自从美国在1964年开始通过卫星获得大量月球图片并运用数字技术对之进行处理之后,越来越多的相应技术开始被运用到图像处理方面,数字图像处理也作为一门科学占据了一个独立的学科地位,开始被各个领域的科学研究运用。图像技术再一次的飞跃式发展出现在1972年,标志是CT医学技术的诞生,在这种技术指导下,运用X射线计算机断层摄影装置,根据人的头部截面的投影,计算机对数据处理后重建截面图像,这种图像重建技术后来被推广到全身CT的装置中,为人类发展做出了跨时代的贡献,随后,数字图像处理技术在更多的领域里被运用,发展成为一门具有无限前景的新型学科。之后十年数字图像处理技术也朝着更高深的方向发展,人们开始通过计算机构建出数字化的人类视觉系统,这项技术被称为图像理解或计算机视觉。很多国家已在这方面投入了很多的研究精力,并取得了高深的研究成果,其中,20世纪70年代末提出的视觉计算理论为后来计算机数字图像技术的理论发展提供了主导思想,但理论上如此,在实际操作中还存在着很多的困难。

基于Lucy-Richardson算法图像复原

实景图像的复原处理 一、设计意义和目的 意义: 图像复原是数字图像处理中的一个重要课题。它的主要目的是改善给定的图像质量并尽可能恢复原图像。图像在形成、传输和记录过程中,受多种因素的影响,图像的质量都会有不同程度的下降,典型的表现有图像模糊、失真、有噪声等,这一质量下降的过程称为图像的退化。图像复原的目的就是尽可能恢复被退化图像的本来面目。 在成像系统中,引起图像退化的原因很多。例如,成像系统的散焦,成像设备与物体的相对运动,成像器材的固有缺陷以及外部干扰等。成像目标物体的运动,在摄像后所形成的运动模糊。当人们拍摄照片时,由于手持照相机的抖动,结果像片上的景物是一个模糊的图像。由于成像系统的光散射而导致图像的模糊。又如传感器特性的非线性,光学系统的像差,以致在成像后与原来景物发生了不一致的现象,称为畸变。再加上多种环境因素,在成像后造成噪声干扰。人类的视觉系统对于噪声的敏感程度要高于听觉系统,在声音传播中的噪声虽然降低了质量,但时常是感觉不到的。但景物图像的噪声即使很小都很容易被敏锐的视觉系统所感知。图像复原的过程就是为了还原图像的本来面目,即由退化了的图像恢复到能够真实反映景物的图像。 目的: 图像复原的目的也是改善图像的质量。图像复原可以看作图像退化的逆过程,是将图像退化的过程加以估计,建立退化的数学模型后,补偿退化过程造成的失真,以便获得未经干扰退化的原始图像或图像的最优估计值,从而改善图像质量。图像复原是建立在退化的数学模型基础上的,且图像复原是寻求在一定优化准则下的原始图像的最优估计,因此,不同的优化准则会获得不同的图像复原,图像复原结果的好坏通常是按照一个规定的客观准则来评价的,因此,建立图像恢复的反向过程的数学模型和确定导致图像退化的点扩散函数,就是图像复原的主要任务。

数字图像修复技术的研究与应用

西安建筑科技大学硕士学位论文 数字图像修复技术的研究与应用 专 业:信号与信息处理 硕 士 生:李苏莉 指导教师:王慧琴 教授 摘要 数字图像修复可以对局部区域内有数据丢失或损坏的数字图像按照某种特定规则进行修复,使其恢复图像的完整性。该技术在修复文物字画、修复由网络传输等原因引起的残缺图像、去除图像及视频中的文字和划痕、以及移除图像中的目标物等方面得到广泛应用。 本文概述了数字图像修复技术的基本原理和研究现状,分析了多种典型的数字图像修复算法的优缺点及其适用范围。在此基础上,提出了两种数字图像修复算法: (1) 基于p-Laplace算子的CDD图像修复算法。该算法利用图像的局部正交坐标系,分析其扩散能力。利用了p-Laplace算子的可变参数p值介于1与2之间时既能克服由CDD模型引入的阶梯效应,又能杜绝由调和模型引入的边缘模糊的优点来填充受损区域,采用半点差分格式,设计图像修补的数值算法。该算法主要修复有划痕的旧照片和被文字覆盖的图像。仿真实验表明,该算法能快速收敛,图像边缘过渡更加自然,修复效果得到改善。 (2) 自适应模板的图像修复算法。该算法在进行搜索匹配时采用自适应模板,即匹配模板的大小可根据图像的局部块均匀度而自适应地变化;在更新置信度时,为了避免“累计误差”导致错误匹配的持续发生,取“累计误差”的双曲正切函数作为更新后的置信度,从而可以截断错误匹配。仿真实验结果证明,该方法比基于样本的图像修复方法能更好地修复图像边缘和复杂纹理,减少了因“累计误差”而产生的“垃圾物”。 关 键 词:数字图像修复;曲率驱动扩散;p-Laplace算子;块均匀度;置信度; 优先值

数字图像处理技术的研究现状与发展方向.

2012年 12月 第 4期 数字图像处理技术的研究现状与发展方向孔大力崔洋 (山东水利职业学院 , 山东日照 276826 摘要 :随着计算机技术的不断发展 , 数字图像处理技术的应用领域越来越广泛。本文主要对数字图像处理技术的方法、优点、数字图像处理的传统领域及热门领域及其未来的发展等进行相关的讨论。 关键词 :数字图像处理 ; 特征提取 ; 分割 ; 检索 引言 图像是指物体的描述信息 , 数字图像是一个物体的数字表示 , 图像处理则是对图像信息进行加工以满足人的视觉心理和应用需求的行为。数字图像处理是指利用计算机或其他数字设备对图像信息进行各种加工和处理 , 它是一门新兴的应用学科 , 其发展速度异常迅速 , 应用领域极为广泛。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代 , 图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业 , 对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大 , 而计算机运行处理速度相对较慢 , 这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高 , 运行速度大大提高 , 价格迅速下降 , 图像处理设备从中、小型计算机迅速过渡到个人计算机 , 为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计 , 在人类获取的信息中 , 视觉信息占 60%, 而图像正是人类获取

信息的主要途径 , 因此 , 和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。 1数字图像处理的目的 一般而言 , 对图像进行加工和分析主要有以下三方面的目的 [1]: (1提高图像的视感质量 , 以达到赏心悦目的目的。如去除图像中的噪声 , 改变图像中的亮度和颜色 , 增强图像中的某些成分与抑制某些成分 , 对图像进行几何变换等 , 从而改善图像的质量 , 以达到或真实的、或清晰的、或色彩丰富的、或意想不到的艺术效果。 (2提取图像中所包含的某些特征或特殊信息 , 以便于计算机进行分析 , 例如 , 常用做模式识别和计算机视觉的预处理等。这些特征包含很多方面 , 如频域特性、灰度 /颜色特性、边界 /区域特性、纹理特性、形状 /拓扑特性以及关系结构等。 (3对图像数据进行变换、编码和压缩 , 以便于图像的存储和传输。 2数字图像处理的方法 数字图像处理按处理方法分 , 主要有以下三类 , 即图像到图像的处理、图像到数据的处理和数据到图像的处理 [2]。 (1 图像到图像。图像到图像的处理 , 其输入和输出均为图像。这种处理技术主要有图像增强、图像复原和图像编码。 首先 , 各类图像系统中图像的传送和转换中 , 总要造成图像的某些降质。第一类解决方法不考虑图像降质的原因 , 只将图像中感兴趣的特征有选择地突出 , 衰减次要信息 , 提高图像的可读性 , 增强图像中某些特征 , 使处理后的图像更适合人眼观察和机器分析。这类方法就是图像增强。例如 , 对图像的灰度值进行修正 , 可以增强图像的对比度 ; 对图像进行平滑 , 可以抑制混入图像的噪声 ; 利用锐化技

数字图像处理技术的应用综述--课程论文

《数字图像处理》课程论文 题目:数字图像处理技术的应用综述

1 绪论 1.1数字图像处理简介 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 1.2数字图像处理技术的基本特点 1)处理信息量很大。数字图像处理的信息大多是二维信息,处理信息量很大。如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。 2)占用频带较宽。数字图像处理占用的频带较宽。与语言信息相比,占用的频带要大几个数量级。如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要。 3)各像素相关性大。数字图像中各个像素是不独立的,其相关性大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。因此,图像处理中信息压缩的潜力很大。 4)无法复现三维景物的全部几何信息。由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5)受人的因素影响较大。数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机

相关文档
最新文档