单晶硅缺陷的分析

合集下载

单晶硅晶体应力缺陷表征技术

单晶硅晶体应力缺陷表征技术

单晶硅晶体应力缺陷表征技术单晶硅晶体应力缺陷表征技术引言:单晶硅是一种重要的半导体材料,广泛应用于集成电路、太阳能电池等领域。

然而,在单晶硅生长和制备过程中,会产生各种应力缺陷,这些缺陷对材料的性能和可靠性产生重要影响。

准确地表征单晶硅的应力缺陷是非常关键的。

本文将介绍几种常用的单晶硅晶体应力缺陷表征技术。

一、X射线衍射(X-ray Diffraction)X射线衍射技术是一种非常常用的表征单晶材料中应力缺陷的方法。

通过照射单晶样品,并测量散射出的X射线强度和角度,可以得到样品中原子之间的间距和结构信息。

由于应变会导致原子间距发生改变,因此通过分析X射线衍射图谱中的峰位移和峰宽等参数,可以推断出样品中存在的应力缺陷。

二、拉曼光谱(Raman Spectroscopy)拉曼光谱是一种基于光散射原理的表征材料结构和性质的技术。

对于单晶硅晶体,通过照射样品并测量散射光的频率和强度,可以得到样品中振动模式的信息。

由于应力会影响晶格振动,因此通过分析拉曼光谱中的频移和峰宽等参数,可以推断出样品中存在的应力缺陷。

三、电子背散射衍射(Electron Backscatter Diffraction,EBSD)电子背散射衍射技术是一种基于电子束与材料相互作用产生的衍射图样来表征材料晶体结构和缺陷的方法。

通过照射单晶样品,并测量散射出的电子衍射图样,可以得到样品中晶格取向和拓扑结构等信息。

由于应力会导致晶格畸变,因此通过分析电子背散射衍射图样中的峰位移和峰形等参数,可以推断出样品中存在的应力缺陷。

四、红外热成像(Infrared Thermography)红外热成像技术是一种基于物体辐射能量分布来表征其温度和热传导性质的方法。

对于单晶硅晶体,由于应力会导致热传导性质发生变化,因此通过红外热成像技术可以检测样品中存在的应力缺陷。

通过对样品进行加热或冷却,并观察红外热成像图像中的温度分布和变化,可以推断出样品中存在的应力缺陷。

单晶硅缺陷

单晶硅缺陷

解决办法
时的浓度与温度有关。温度越高,平衡 中过饱和的间隙原子和空位要消失。 碳等杂质原子 选择合适的晶体生长参数和原原生晶历史 (热场),主要调节生长参数是拉速、固 液面的轴向温度梯度、冷却速率等。另外 通过适宜的退火处理可减少或消除原声缺 陷。
各种形态的氧化物沉淀,它们是氧和碳 质成核和异质成核机理形成
固液界面落入不容固体颗粒, 1、缩颈,加大细晶长度 2、调节热场,选 较大的热应力时,更容易产生位错并增 择合理的晶体生长参数,维持稳定的固液 界面形状 3、防止不容固态颗粒落入固液 界面 的晶粒间界称为小角晶界。 1、保持炉内、石墨件清洁,防止颗粒落入 颗粒进入固液界面 2、晶体内存在较大 固液界面 2、调节径、轴向梯度,保持稳 面附近熔体过冷度较大 4、机械振动 定状态 3、对电器定时检测,防止机械故 生长过程中,固液界面处引入固态小颗 障(如拉速突变 ,埚升停止或突变等) 4 并不断长大形成孪晶。另外,机 、尽量减轻机械振动 度过快或拉速突变也可促使孪晶形成。 常见的有包裹体、气泡、空洞、微 可以通过增大埚转、晶转或延长恒温时间 。属于宏观缺陷。 等方法改进 由于种种原因,或引起固液界面 由此导致晶体围观生长速率 调整热场,使之具有良好的轴对称性,并 杂质边界层厚度起伏,以及小平面效应 使晶体的旋转轴尽量与热场中心轴同轴, 体之间的杂质有效分凝系数产生波动引 抑制和减弱熔体热对流,可以使晶体杂质 趋于均匀分布。 度分布发生相应变化,从而形成杂质条 。
分类 热点缺陷 空位、间 隙原子 点缺陷 杂质点缺陷 间隙杂质点缺陷 微缺陷
状态及产生原因
产生原因:单晶中空位和间隙原子在热平衡时的浓度与温度有关 浓度愈大。高温生长的单晶硅在冷却过程中过饱和的间隙原子和空位要 替位杂质点缺陷 如硅晶体中的磷、硼、碳等杂质原子 如硅晶体中的氧等

单晶硅片的晶体缺陷与光吸收特性关联研究

单晶硅片的晶体缺陷与光吸收特性关联研究

单晶硅片的晶体缺陷与光吸收特性关联研究单晶硅片是一种具有晶格完整性和高晶体质量的材料,被广泛应用于太阳能电池、光电器件等领域。

然而,单晶硅片在制备过程中难免存在着晶体缺陷,这些缺陷会对其光吸收特性产生影响。

因此,对单晶硅片的晶体缺陷与光吸收特性之间的关联进行研究,具有重要的科学意义和应用价值。

在研究单晶硅片的晶体缺陷与光吸收特性的关系前,我们需要了解单晶硅片的结构特点和制备方法。

单晶硅片是由纯净度高的硅材料通过Czochralski法或浮区法等制备而成。

其晶体结构为面心立方结构,具有非常高的晶格完整性和纯度。

晶体缺陷是指晶格中存在的结构缺失、原子错位或其他非理想状态。

常见的晶体缺陷包括点缺陷、线缺陷和面缺陷。

单晶硅片中常见的晶体缺陷有位错和杂质等。

位错是晶体中晶面的错配现象,可分为线性位错和面内位错两种。

线性位错是晶格的一种结构缺陷,是由于晶格中某一部分的原子排列方式与理想晶体不匹配而引起的。

线性位错会在晶格中引入额外的能量状态,降低晶体的电子迁移率和光学传导性能,从而影响光吸收特性的表现。

面内位错是晶体表面的错配现象,常引起性能上的变化和损坏,影响光吸收特性。

杂质是指晶格中的异质原子或离子,其引入会导致晶体中局部的位移和电荷不平衡。

杂质通常是掺杂元素,如硼、磷等,或者其他杂质原子,如氧、碳等。

这些杂质会改变晶格的能带结构和电子迁移行为,从而影响光的吸收和发射特性。

研究表明,晶体缺陷对单晶硅片的光吸收特性产生了显著影响。

首先,位错的存在会导致晶格的微扰,使得硅片的光电子迁移路径受阻,影响电子的输运性能。

其次,杂质的引入会改变硅片的能带结构和光电转化效率。

掺杂杂质可以在能带中形成本征能级或能带宽度发生变化,从而调整硅片的光吸收谱。

此外,在光照下,杂质还可与光生载流子发生相互作用,加速载流子复合速率,从而改变光电转化效率。

在实际应用中,为了提高单晶硅片的光转换效率,需要对晶体缺陷进行控制和优化。

一种常用的方法是通过表面修饰,例如采用光致化学腐蚀、氢原子处理等技术,以减少晶体缺陷和提高光吸收效率。

单晶硅片的晶格缺陷和应力分析

单晶硅片的晶格缺陷和应力分析

单晶硅片的晶格缺陷和应力分析单晶硅片是目前最常见的半导体材料之一,被广泛应用于电子设备制造和太阳能光伏系统等领域。

在单晶硅片的生产和使用过程中,晶格缺陷和应力是两个重要的问题,它们对硅片的性能和可靠性都有着至关重要的影响。

晶格缺陷是指单晶硅片中晶格排列不完美的部分,主要包括点缺陷、线缺陷和面缺陷。

点缺陷是指晶格中的原子位置发生位错,例如空位缺陷和杂质原子的存在。

线缺陷是指晶格中形成的线状缺陷,例如晶格错位和位错线。

面缺陷是指晶格中的平面缺陷,例如晶界和薄膜的存在。

晶格缺陷对单晶硅片的性能和可靠性有着重要的影响。

首先,晶格缺陷会影响材料的导电性能。

因为晶格缺陷会改变原子的排列方式,从而影响电子的传导和散射。

其次,晶格缺陷会导致材料的非均匀性增加。

晶格缺陷的存在会引起局部应力分布的不均匀,导致一些区域的应力过大,从而影响材料的机械性能和可靠性。

应力是指单晶硅片中存在的内部或外部力引起的应变效应。

在单晶硅片的制备和使用过程中,应力是不可避免的。

内部应力是指硅片内部原子之间的相互作用力引起的应力,例如晶格缺陷和材料的生长过程中的温度差异等因素会产生内部应力。

外部应力是指单晶硅片与外界施加的力或热应力引起的应力,例如材料在加工和封装过程中受到的力和温度变化等。

应力会影响单晶硅片的性能和可靠性。

首先,应力会影响材料的机械性能。

应力过大会导致材料的强度降低和脆性增加,从而降低了硅片的可靠性和耐久性。

其次,应力会影响材料的光学性能。

应力会引起材料的光学常数发生变化,从而影响光学器件的性能和效率。

最后,应力还会导致材料的失效和损坏。

应力过大会引起晶格缺陷的扩散和演化,最终导致材料的失效和损坏。

为了解决单晶硅片的晶格缺陷和应力问题,需要采取一系列的措施。

首先,可以使用高质量的单晶硅片进行制备,减少晶格缺陷的产生。

此外,可以通过调控材料的生长条件和参数来控制晶格缺陷的形成和演化。

其次,可以采用合适的工艺和技术来降低晶格缺陷和应力的影响。

单晶硅中可能出现的各种缺陷

单晶硅中可能出现的各种缺陷

单晶硅中可能出现的各样缺点缺点,是关于晶体的周期性对称的损坏,使得实质的晶体偏离了理想晶体的晶体构造。

在各样缺点之中,有着多种分类方式,假如依据缺点的维度,能够分为以下几种缺陷:点缺点:在晶体学中,点缺点是指在三维尺度上都很小的,不超出几个原子直径的缺点。

其在三维尺寸均很小,只在某些地点发生,只影响周边几个原子,有被称为零维缺陷。

线缺点:线缺点指二维尺度很小而第三维尺度很大的缺点,也就是位错。

我们能够经过电镜等来对其进行观察。

面缺点:面缺点常常发生在两个不一样相的界面上,或许同一晶体内部不一样晶畴之间。

界面两边都是周期摆列点阵构造,而在界面处则出现了格点的错位。

我们能够用光学显微镜观察面缺点。

体缺点:所谓体缺点,是指在晶体中较大的尺寸范围内的晶格摆列的不规则,比方包裹体、气泡、空洞等。

一、点缺点点缺点包含空位、空隙原子和微缺点等。

1、空位、空隙原子点缺点包含热门缺点(本征点缺点)和杂质点缺点(非本征点缺点)。

热门缺点此中热点缺点有两种基本形式:弗仑克尔缺点和肖特基缺点。

单晶中空位和空隙原子在热均衡时的浓度与温度有关。

温度愈高,均衡浓度愈大。

高温生长的硅单晶,在冷却过程中过饱和的空隙原子和空位要消逝,其消逝的门路是:空位和空隙原子相遇使复合消逝;扩散到晶体表面消逝;或扩散到位错区消逝并惹起位错攀移。

空隙原子和空位当前还没有法察看。

杂质点缺点A、替位杂质点缺点,如硅晶体中的磷、硼、碳等杂质原子B、空隙杂质点缺点,如硅晶体中的氧等点缺点之间相互作用一个空位和一个空隙原子联合使空位和空隙原子同时湮灭(复合),两个空位形成双空位或空位团,空隙原子聚成团,热门缺点和杂质点缺点相互作用形成复杂的点缺点复合体等。

2、微缺点产生原由假如晶体生长过程中冷却速度较快,饱和热门缺点齐集或许他们与杂质的络合物凝集而成空隙型位错环、位错环团及层错等。

Cz硅单晶中的微缺点,多半是各样形态的氧化物积淀,它们是氧和碳等杂质,在晶体冷却过程中,经过均质成核和异质成核机理形成。

单晶硅中可能出现的各种缺陷

单晶硅中可能出现的各种缺陷

创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*单晶硅中可能出现的各种缺陷缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。

在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷:点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。

其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。

线缺陷:线缺陷指二维尺度很小而第三维尺度很大的缺陷,也就是位错。

我们可以通过电镜等来对其进行观测。

面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。

界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。

我们可以用光学显微镜观察面缺陷。

体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。

一、点缺陷点缺陷包括空位、间隙原子和微缺陷等。

1、空位、间隙原子点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。

1.1热点缺陷其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。

单晶中空位和间隙原子在热平衡时的浓度与温度有关。

温度愈高,平衡浓度愈大。

高温生长的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。

间隙原子和空位目前尚无法观察。

1.2杂质点缺陷A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子B、间隙杂质点缺陷,如硅晶体中的氧等 1.3点缺陷之间相互作用一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。

2、微缺陷2.1产生原因如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。

单晶硅中可能出现的各种缺陷分析

单晶硅中可能出现的各种缺陷分析缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。

在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷:点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。

其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。

线缺陷:线缺陷指二维尺度很小而们可以通过电镜等来对其进行观测。

面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。

界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。

我们可以用光学显微镜观察面缺陷。

体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。

一、点缺陷点缺陷包括空位、间隙原子和微缺陷等。

1、空位、间隙原子点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。

1.1热点缺陷其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。

单晶中空位和间隙原子在热平衡时的浓度与温度有关。

温度愈高,平衡浓度愈大。

高温生长的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。

间隙原子和空位目前尚无法观察。

1.2杂质点缺陷A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子B、间隙杂质点缺陷,如硅晶体中的氧等1.3点缺陷之间相互作用一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。

2、微缺陷2.1产生原因如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。

Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。

单晶硅中可能出现的各种缺陷

单晶硅中可能出现的各种缺陷缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。

在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷:点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。

其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。

线缺陷:线缺陷指二维尺度很小而第三维尺度很大的缺陷,也就是位错。

我们可以通过电镜等来对其进行观测。

面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。

界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。

我们可以用光学显微镜观察面缺陷。

体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。

一、点缺陷点缺陷包括空位、间隙原子和微缺陷等。

1、空位、间隙原子点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。

1.1热点缺陷其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。

单晶中空位和间隙原子在热平衡时的浓度与温度有关。

温度愈高,平衡浓度愈大。

高温生长的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。

间隙原子和空位目前尚无法观察。

1.2杂质点缺陷A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子B、间隙杂质点缺陷,如硅晶体中的氧等1.3点缺陷之间相互作用一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。

2、微缺陷2.1产生原因如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。

Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。

单晶硅中可能出现的各种缺陷

单晶硅中大概出现的百般缺陷之阳早格格创做缺陷,是对付于晶体的周期性对付称的益害,使得本量的晶体偏偏离了理念晶体的晶体结构.正在百般缺陷之中,有着多种分类办法,如果依照缺陷的维度,不妨分为以下几种缺陷:面缺陷:正在晶体教中,面缺陷是指正在三维尺度上皆很小的,没有超出几个本子曲径的缺陷.其正在三维尺寸均很小,只正在某些位子爆收,只效率相近几个本子,有被称为整维缺陷.线缺陷:线缺陷指二维尺度很小而第三维尺度很大的缺陷,也便是位错.咱们不妨通过电镜等去对付其举止瞅测.里缺陷:里缺陷时常爆收正在二个分歧相的界里上,大概者共一晶体里里分歧晶畴之间.界里二边皆是周期排列面阵结构,而正在界里处则出现了格面的错位.咱们不妨用光教隐微镜瞅察里缺陷.体缺陷:所谓体缺陷,是指正在晶体中较大的尺寸范畴内的晶格排列的没有准则,比圆包裹体、气泡、空洞等.一、面缺陷面缺陷包罗空位、间隙本子战微缺陷等.1、空位、间隙本子面缺陷包罗热面缺陷(本征面缺陷)战纯量面缺陷(非本征面缺陷). 1.1热面缺陷其中热面缺陷有二种基础形式:弗仑克我缺陷战肖特基缺陷.单晶中空位战间隙本子正在热仄稳时的浓度与温度有闭.温度愈下,仄稳浓度愈大.下温死少的硅单晶,正在热却历程中过鼓战的间隙本子战空位要消得,其消得的道路是:空位战间隙本子相逢使复合消得;扩集到晶体表面消得;大概扩集到位错区消得并引起位错攀移.间隙本子战空位暂时尚无法瞅察.1.2纯量面缺陷A、替位纯量面缺陷,如硅晶体中的磷、硼、碳等纯量本子B、间隙纯量面缺陷,如硅晶体中的氧等 1.3面缺陷之间相互效率一个空位战一个间隙本子分离使空位战间隙本子共时湮灭(复合),二个空位产死单空位大概空位团,间隙本子散成团,热面缺陷战纯量面缺陷相互效率产死搀纯的面缺陷复合体等.2、微缺陷2.1爆收本果如果晶体死少历程中热却速度较快,鼓战热面缺陷汇集大概者他们与纯量的络合物凝结而成间隙型位错环、位错环团及层错等.Cz硅单晶中的微缺陷,普遍是百般形态的氧化物重淀,它们是氧战碳等纯量,正在晶体热却历程中,通过均量成核战同量成核机理产死. 2.2微缺陷瞅察要领1)择劣化教腐蚀:择劣化教腐蚀后正在横断里上呈匀称分集大概组成百般形态的宏瞅漩涡花纹(漩涡缺陷).宏瞅上,为一系列共心环大概螺旋状的腐蚀图形,正在隐微镜下微缺陷的微瞅腐蚀形态为浅底腐蚀坑大概腐蚀小丘(蝶形蚀坑).正在硅单晶的纵剖里上,微缺陷常常呈层状分集.2)热氧化处理:由于CZ硅单晶中的微缺陷,其应力场太小,往往需热氧化处理,使微缺陷缀饰少大大概转移为氧化层错大概小位错环后,才可用择劣腐蚀要领隐现.3)扫描电子隐微技能,X射线形貌技能,白中隐微技能等要领. 2.3微缺陷结构曲推单晶中微缺陷比较搀纯.TEM瞅察到正在本死曲推硅单晶中,存留着间隙位错环,位错团战小的堆跺层错等形成的微缺陷,以及板片状SiO2重积物,退火Cz硅单晶中的微缺陷为体层错、氧重淀物及重淀物-位错-络合物等.Cz硅中的本死缺陷分别是根据分歧的丈量要领而命名,有三种:1.使用激光集射层析摄影仪检测到的白中(IR)集射核心(LSTD);2.经一号荡涤液腐蚀后,正在激光颗粒计数器下检测为微弱颗粒的缺陷(COP);3.流型缺陷(FPD),它是正在Secco腐蚀液择劣腐蚀后,用光教隐微镜瞅察到的形如楔形大概扔物线形的震动图样的缺陷,正在其端部存留有很小的腐蚀坑.统造CZ硅单晶中本死缺陷的道路是采用符合的晶体死少参数战本死晶体的热履历.要安排的主要死少参数是推速、固液界里的轴背温度梯度G(r)(含符合的v/G(r)比值)、热却速率等.其余通过相宜的退火处理可缩小大概与消本死缺陷.二、线缺陷位错:包罗螺位错战刃位错1、爆收本果1)籽晶中位错的蔓延;2)晶体死少历程中,固液界里附近降进没有溶固态颗粒,引进位错;3)温度梯度较大,正在晶体中爆收较大的热应力时,更简单爆收位错并删殖.2、位错形态及分集1)择劣化教腐蚀:位错蚀坑正在{100}里上呈圆形,但是其形态还与位错线走背、晶背偏偏离度、腐蚀剂种类、腐蚀时间、腐蚀液的温度等果素有闭.硅单晶横断里位错蚀坑的宏瞅分集大概组态:A、位错匀称分集B、位错排是位错蚀坑的某一边排列正在一条曲线上的一种位错组态,它是硅单晶正在应力效率下,位错滑移、删殖战散集的截止.位错排沿目标排列.C、星形结构式由一系列位错排沿目标汇集排列而成的.正在{100}里上,星形结构呈井字形组态.2)白中隐微镜战X射线形貌技能3、无位错硅晶体的死少1)缩颈2)安排热场,采用合理的晶体死少参数,保护宁静的固液界里形状3)预防没有溶固态颗粒降进固液界里三、里缺陷里缺陷主要有共种晶体内的晶界,小角晶界,层错,以及同种晶体间的相界等.仄移界里:晶格中的一部分沿着某部分网相对付于另一部分滑动(仄移).堆跺层错:晶体结构中周期性的互相仄止的堆跺层有其固有的程序.如果堆跺层偏偏离了本去固有的程序,周期性改变,则视为爆收了堆跺层错.晶界:是指共种晶体里里结晶圆背分歧的二晶格间的界里,大概道是分歧晶粒之间的界里.按结晶圆背好别的大小可将晶界分为小角晶界战大角晶界等.小角晶界普遍指的是二晶格间结晶圆背好小于10度的晶界.偏偏离角度大于10度便成了孪晶.相界:结构大概化教身分分歧的晶粒间的界里称为相界.1、小角晶界:硅晶体中相邻地区与背没有共正在几分之一秒到一分(弧度)的晶粒间界称为小角度晶界.正在{100}里上,位错蚀坑则以角顶底办法曲线排列.2、层错:指晶体内本子仄里的堆垛序次庞杂产死的.硅单晶的层错里为{111}里. 2.1层错爆收本果:正在暂时工艺条件下,本死硅单晶中的层错是已几睹的.普遍认为,正在单晶死少历程中,固态颗粒加进固液界里,单晶体内存留较大热应力,固液界里附近熔体过热度较大,以及板滞振荡等皆大概成为爆收层错的本果. 2.2层错的腐蚀形态应用化教腐蚀要领隐现硅单晶中的层错时,偶我不妨瞅察到沿目标腐蚀沟槽,它是层错里与瞅察表面的接线.正在{111}里上,层错线互相仄止大概成60o,120o分集,{100}里上的层错线互相仄止大概者笔曲,正在层错线二端为偏偏位错蚀坑.层错不妨贯脱到晶体表面,也不妨终止于晶体内的半位错大概晶粒间界处. 2.3氧化诱死层错产死的根根源基本果:热氧化时硅二氧化硅界里处爆收自间隙硅本子,那些自间隙硅本子扩集至弛应力大概晶格缺陷(成核核心)处而产死OSF并少大.普遍认为,OSF主要成核十硅片表面的板滞益伤处、金属沾污宽重处,其余诸如表面大概体内的旋涡缺陷、氧重淀也是OSF的成核核心它与中延层错相辨别也与由体内应力引起的体层错(bulkstackingfaults)相辨别.常常OSF有二种:表面的战体内的.表面的OSF普遍以板滞益伤,金属沽污、微缺陷(如氧重淀等)正在表面的隐露处等动做成核核心;体内的B-OSF(BulkOSF)则普遍成核于氧重淀.20世纪70年代终,钻研者创造硅晶体中的OSF时常呈环欲分集特性(ring-OSF)后裔的钻研标明,那与晶体死万古由死少参数(死少速度、固液界里处的温度梯度)决断的面缺陷的径背分集相闭联由搞空位战自间隙的相互效率,从而引起氧的非常十分重淀,从而激励OSF.3孪晶 3.1孪晶的形成孪晶是由二部分与背分歧,但是具备一个共共晶里的单晶体组成.它们共用的晶里称为孪死里,二部分晶体的与背以孪死里为镜里对付称,且二部分晶体与背夹角具备特定的值.硅晶体的孪死里为{111}里. 3.2孪晶死成本果晶体死少历程中,固液界里处引进固态小颗粒,成为新的结晶核心,本去没有竭少大产死孪晶.别的,板滞振荡、推晶速度过快大概推速突变也可督促孪晶的产死.四、体缺陷所谓体缺陷,是指正在晶体中三维尺度上出现的周期性排列的混治,也便是正在较大的尺寸范畴内的晶格排列的没有准则.那些缺陷的地区基础上不妨战晶体大概者晶粒的尺寸相比较,属于宏瞅的缺陷,较大的体缺陷不妨用肉眼便不妨浑晰瞅察.体缺陷有很多种类,罕睹的有包裹体、气泡、空洞、微重淀等.那些缺陷地区正在宏瞅上与晶体其余位子的晶格结构、晶格常数、资料稀度、化教身分以及物理本量有所分歧,佳像是正在所有晶体中的独力王国.1嵌晶硅晶体里里存留与基体与背分歧的小晶体(晶粒)称为嵌晶.嵌晶可为单晶大概多晶.正在普遍推晶工艺下,嵌晶很少睹.2夹纯物由中界大概多晶引进熔硅中的固态颗粒,正在推晶时被夹戴到晶体中产死第二相称为夹纯物.应用电子探针战扫描电子隐微镜瞅察到曲推大概者区熔硅单晶中,存留α-SiC 战β-SiC颗粒,其尺寸由几个微米到十几个微米.3孔洞硅单晶中存留的近于圆柱形大概球形的空洞.正在硅单晶板滞加工时,硅片上所睹到的圆形孔洞,大的孔洞曲径有几毫米.五、条纹正在宏瞅上为一系列共心环状大概螺旋状的腐蚀图形,正在100倍大概者更下搁大倍数下是连绝的表面坎坷状条纹.。

8英寸直拉单晶硅微缺陷的研究

8英寸直拉单晶硅微缺陷的研究摘要:在单晶硅的生长过程中,通过调整单晶生长的V/G比值,控制单晶微缺陷的分布。

关键词:单晶硅微缺陷缺陷控制铜坠饰一、前言单晶硅是一种半导体材料,1918年,切克劳斯基(J,Czochralski)发表了用直拉法从熔体中生长单晶硅的理论,为用直拉法生长半导体材料奠定了理论基础,自此,直拉法飞速发展,成为制造单晶硅的一种重要方法。

目前一些重要的半导体材料,如硅单晶,锗单晶,红宝石,蓝宝石等材料大部分是用直拉法生长获得的,单晶硅由于其本身内部完整的晶体结构,其光电转换效率明显高于多晶硅,是硅基高效太阳能电池的首选。

由于其成熟稳定的生产工艺,亦是半导体行业常用的衬底。

然而,单晶硅生长过程中会不可避免的引入一些微量杂质,同时,由于单晶生长的特殊性,会导致一下原生微缺陷的产生。

在半导体行业中,单晶硅内部杂质和缺陷的存在会严重影响其制程器件的电学特性。

而随着对单晶掺杂剂和氧含量控制工艺的成熟,人们的目光逐渐转向了单晶原生微缺陷的控制。

单晶的原生微缺陷如COP、OISF等点缺陷的存在,会导致漏电流增大,影响栅氧化层品质,导致器件击穿。

越是高附加值的的半导体产品,对消除这类缺陷要求越高,本文旨在通过调整单晶生长过程工艺,控制单晶原生微缺陷的分布。

图1二、原理1990年,Ryuta等人首先在大直径直拉硅片上发现了一种数目随一号液(SC1)清洗次数的增多而增大的颗粒缺陷,并将它命名为“晶体原生粒子(COP)”[1],Voronkov从理论上研究了硅晶体(包括直拉硅和区熔硅)的生长条件与本证点缺陷的形成与分布之间的关系,指出硅片上不同的本征点缺陷区域对应不同的缺陷类型,很好的解释了A/B型螺旋缺陷(A/B Swirl Defects)、D缺陷、空洞型(void)缺陷的成因和分布规律,为控制这些缺陷指明了方向。

Voronkov的理论模型的基本假设有两个:(1)在固液界面除(T=Tm)自间隙原子和空位的实际浓度Ci、Cv分别等于熔点Tm时的平衡浓度Cim、Cvm,Cim略小于Cvm,在T=Tm附近自间隙原子的扩散系数Di远大于空位的扩散系数Dv,因此有DvCve<DiCie,其中Cve和Cie是温度T时空位和自间隙原子的平衡浓度;(2)空位和自间隙原子的符合是足够快的,在熔点温度下的一定温度范围内Cv和Ci是平衡的,即:CvCi=CieCve (2.1)Voronkov等人通过理论和实际计算得出T=Tm附近log(Cve-Cie)与温度的关系,如图1所示[2]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单晶硅缺陷的分析
原作者: 钟丽菲
摘要:晶体硅中的杂质或缺陷会显著地影响各种硅基器件的性能。

用常规化学腐蚀法显示出单晶硅中的缺陷,观察典型的位错。

通过实验发现缺陷分布的一般规律:中间尺寸大,密度小,边缘尺寸小,密度大,验证缺陷对杂质的吸收。

关键字:单晶硅;缺陷;化学腐蚀法;消除与控制
0引言
硅是全球第一产业--电子信息技术产业以及新能源产业--太阳能光伏电池产业的基础材料[1]。

随着网络时代的到来,半导体产业将发展到新的高潮。

为适应深亚微米、亚四分之一微米甚至纳米级集成电路的要求,硅单晶材料在增大直径的同时,对其结构、电学、化学特征的研究也将日益深入;缺陷控制、杂质行为、杂质与缺陷的相互作用以及提高晶片的表面质量仍将是工艺技术研究的主攻方向。

另外,在光伏工业中广泛采用太阳能电池用单晶硅和铸造多品硅,在这些材料中存在着高密度的位错,金属杂质或晶界等缺陷,而这些缺陷和杂质的交互作用使得太阳能电池的转换效率显著下降,因此观察这些硅材料中缺陷和杂质的交互作用对于采用合适的吸杂工艺提高太阳能电池的转化效率有着十分重要的作用[2]。

由于缺陷影响硅单晶的质量,对器件也有不良影响,我们不得不研究其性质、行为。

但是,在研究过程中遇到越来越多的问题:对于已发现的主要缺陷,其机制研究一直没有重大突破;消除和控制方法也还处于探索之中;检测方法、检测手段也有待进一步的提高[3]。

1实验
晶体缺陷的实验观察方法有许多种,如透射电子显微镜、X光貌相技术、红外显微镜及金相腐蚀显示等方法[4]。

由于金相腐蚀显示技术设备简单,操作易掌握,又较直观,是观察研究晶体缺陷的最常用的方法之一。

在本次实验中,我们就采用金相腐蚀显示法,通过使用不同的腐蚀液和腐蚀方法显示单晶硅中各种不同的缺陷蚀坑,然后用金相显微镜来观察、区分和研究各种蚀坑的形态,定量计数比较缺陷密度大小,并用金相显微摄影仪拍摄各种缺陷的典型照片。

1.1化学腐蚀机理
样品在进行光学检测之前,必须经过腐蚀抛光以显露其缺陷。

腐蚀剂的种类繁多,但组分却不外乎氧化剂,络合剂和稀释剂。

常用浓HNO3、CrO3溶液或K2Cr2O溶液作氧化剂,氢氟酸(HF)作络合剂,去离子水或冰醋酸充当稀释剂。

如果氧化成分多,则抛光作用强;如果络合和稀释成分多,则有利于作选择性腐蚀。

通常用的非择优腐蚀剂的配方为:自腐蚀剂,适用于化学抛光,配方为:HF(40-42%):HNO3(65%)=1:2.5
通常用的择优腐蚀剂主要有以下二种:
(1)Sirtl腐蚀液,先用CrO3与去离子水配成标准液,标准液=50gCrO3+100gH2O,然后配成标准液:HF(40-42%)=1:1
(2)Dash腐蚀液,配方为:HF(40·42%):HNO3(65%):CH3COOH(99%以上)=1:2.5:10
1.2金相显微原理
金相显微镜是通过观察不透明物体的反射光来表征物体的表面特征,不同结构和性能的显微镜存在较大差异,其中有以Nomarski式差动干涉反衬显微镜为代表的高级型金相显微镜。

其关键部件是用于分离光束的棱镜,经棱镜分离后,光束变成极化向互相垂直,中心不重合的两束光;由此而引入相差,最后经检偏器后发生干涉。

干涉图样能够反映试样的表面是否平整;且不同材料组成的区域,即使有相同的高度和坡度但由于它们对入射波的延迟作用不同,也会产生附加衬度[5]。

1.3图象数据采集
将观察到的缺陷图形通过与显微镜相连的计算机数据采集卡读入计算机,就可以完成晶体缺陷的在线测量,从而大大提高材料检测的效率。

2实验结果及分析
2.1不同腐蚀条件下显示的各种缺陷的比较
在实验过程中我们拍摄到一些典型的缺陷图片,主要包括各种形状的位错,层错及微缺陷等。

对于位错来说,不同晶面上的位错坑的形态不一样,例如:位错腐蚀坑的形状在硅单晶<111>晶面呈正三角形腐蚀坑,(100>晶面上呈正方形,<110>晶面上是矩形(较难显示)。

下面两幅图很好的说明了这一点:
而同一晶面在不同的腐蚀剂中腐蚀,位错坑的形态也不完全一样;甚至腐蚀长短也影响到位错坑的形态。

比如在非择优腐蚀剂(如Dash腐蚀剂)情况下硅单晶<111>面位错坑为圆形的凹坑;在晶向择优腐蚀剂中硅单晶<111)面位错呈三角形锥体,这是由于择优腐蚀剂在晶体中的各个方向的腐蚀速度不同所造成的。

如图4、图5所示,硅单晶<111>在被不同的腐蚀液腐蚀后显示出不同的形状。

2.2缺陷对杂质的吸收
位错是一种线状的高应力区,有吸收杂质原子的能力,引起沿位错线的局部地区杂质浓度增加。

这种作用将严重影响到器件工艺的控制,并从而影响到器件性能和成品率的提高等。

从以上两幅图中可以明显的看到,缺陷存在的地方,有明显的金属色,这是吸收了金属杂质的缘故。

这两张图片很好的说明了缺陷对杂质的吸收作用。

2.3缺陷的分布规律
在实验中拍摄到下面一组图片
在硅片的边缘观察到了大量的缺陷,如图8,在硅片的中心则观察到少量的缺陷,如图9,这反应出了单晶硅缺陷分布的规律,即:中心缺陷的尺寸大,密度少;边缘缺陷的尺寸小,密度大。

3结论
应用化学腐蚀硅片然后在金相显微镜下观察,可以对硅片的缺陷做有效的观察。

为了得到清晰的图象,选择金相放大400倍最为合适。

而化学腐蚀剂的选择应该根据不同的半导体材料及其晶体学属性而定,其中Dash试剂对硅片各向都有良好的腐蚀效果,在简单实验条件下对位错仍然有良好的腐蚀放大效果。

在实验过程中我们用常规的化学腐蚀法,显示了单晶硅中的各种典型缺陷,验证了缺陷对杂质的吸收作用,还发现了缺陷分布的规律性,即:中心缺陷的尺寸大,密度少;边缘缺陷的尺寸小,密度大。

参考文献:
[1]张文毓.单晶硅产业技术经济综合分析[J].新材料产业,2010,(6):15.
[2]贾英霞.单晶硅与太阳能光伏产业[J].化学工程与装备,2010,(8):147.
[3]席珍强.晶体硅中缺陷和沉淀的红外扫描仪研究[J].半导体技术,2005,30(7):18.
[4]王旗,陈振等.国外硅单品质量研究进展[J].半导体光电,1996,17(3):224.
[5]上海市机械制造工艺研究所.金相分析技术[M].上海:上海科学技术文献出版社,1987.148-151.。

相关文档
最新文档