电源压敏电阻选择方法及计算

合集下载

压敏电阻选择方法及计算

压敏电阻选择方法及计算

压敏电阻选择方法及计算压敏电阻是一种可以根据外界施加的压力或力而改变电阻值的元件。

它广泛应用于电子设备中,用于感测、监测或控制压力、力或挤压变量。

压敏电阻的选择方法和计算需要考虑以下几个因素:1.工作电压范围:压敏电阻的工作电压应小于其额定电压。

工作电压超过额定电压可能导致元件烧毁。

2.额定电阻值:压敏电阻有不同的额定电阻值可供选择。

额定电阻值应根据具体应用需求来确定。

一般来说,选择额定电阻值时应考虑压敏电阻的变化范围。

如果需要感测较小的压力变化,应选择较高的额定电阻值。

3.压力灵敏度:压敏电阻的压力灵敏度指的是单位压力变化时电阻值的变化量。

该指标用于评价压敏电阻的灵敏度。

对于需要高精度压力感测的应用,应选择具有高压力灵敏度的压敏电阻。

4.工作温度范围:压敏电阻的工作温度范围应匹配具体应用环境的温度范围。

高温或低温环境可能影响电阻值和性能。

5.频率响应:压敏电阻的频率响应指的是其在不同频率下的响应特性。

对于需要在高频率下工作的应用,应选择具有较快响应速度的压敏电阻。

在进行压敏电阻的计算时,可以按照以下公式进行计算:1.压力计算:压力=力/面积2.电阻变化计算:电阻变化=压力*压力灵敏度3.最终电阻值计算:最终电阻值=额定电阻值+电阻变化需要注意的是,以上计算只是一个简单的示例,实际应用中还需要考虑一些其他因素,如电压、电流及电源电阻等。

具体的计算方法和公式可能会有所不同,应根据具体的压敏电阻型号和应用场景来选择合适的计算方法。

总而言之,压敏电阻的选择方法和计算应根据具体的应用需求来确定。

参数如工作电压范围、额定电阻值、压力灵敏度、工作温度范围和频率响应等都是需要考虑的因素。

通过适当的计算方法,可以得到合适的压敏电阻型号和参数。

电源压敏电阻选择方法及计算

电源压敏电阻选择方法及计算

电源压敏电阻选择方法及计算朋友们!今天咱们来唠唠电源压敏电阻这个玩意儿的选择方法和计算。

这压敏电阻啊,就像是电源的“保护神”,关键时刻能挺身而出,保护咱们的电路不受那些讨厌的过电压的伤害。

那怎么给咱的电源选个合适的压敏电阻呢?这可得讲究点门道。

首先啊,咱得考虑压敏电阻的标称电压。

这标称电压可不是随便定的,它得根据咱电路的工作电压来选。

一般来说,咱得选一个标称电压比电路的最高工作电压稍微高一点的压敏电阻。

为啥呢?想象一下,如果压敏电阻的标称电压太低,那它可能就会在正常工作电压下就“误动作”,老是以为有过电压来袭,这样就会影响电路的正常运行啦。

就好比一个保安,太敏感了,没事老报警,那不得把大家烦死啊。

接下来,就是压敏电阻的通流容量。

这个通流容量啊,就好比是压敏电阻的“肚量”,它决定了在遇到过电压时,压敏电阻能够承受多大的电流冲击。

如果通流容量选小了,那在遇到比较大的过电压时,压敏电阻可能就会扛不住,直接“壮烈牺牲”啦。

就像一个小水桶,突然来了一大桶水,它哪装得下啊,不就漏了嘛。

所以啊,咱得根据电路中可能出现的最大过电流来选择合适通流容量的压敏电阻。

还有一个重要的参数就是压敏电阻的响应时间。

这响应时间就像是保安的反应速度一样,得快!当有过电压来袭时,压敏电阻得迅速做出反应,把过电压给“制服”。

如果响应时间太长,那过电压可能早就对电路造成伤害了,这时候压敏电阻才慢悠悠地开始工作,那可就晚啦。

那怎么计算呢?比如说计算标称电压,咱们可以先确定电路的最高工作电压,然后再乘以一个安全系数,一般这个安全系数在1.2 1.5左右。

比如说电路的最高工作电压是220V,咱们取安全系数1.3,那压敏电阻的标称电压就可以选220×1.3 = 286V左右的。

对于通流容量的计算,咱得先估算一下电路中可能出现的最大过电流。

这就需要考虑到电源的功率、负载的特性等因素。

比如说,一个功率比较大的电源,在短路的时候可能会产生很大的电流,那咱就得选一个通流容量比较大的压敏电阻。

MOV(压敏电阻)选型和计算

MOV(压敏电阻)选型和计算

压敏电阻器基础知识培训手册(第一版)孙丹峰编着苏州中普电子有限公司二〇〇五年三月第一章通用型氧化锌压敏电阻器什么是“压敏电阻器”“压敏电阻器”是中国大陆通用的名词,在中国台湾地区,它被称为“突波吸收器”;在日本,它被称为“变阻器”;国际电工委员会(IEC)在其标准中称之为“voltage dependent resistor”(简称VDR);而在业界和学术界最广泛使用的名词则是“varistor”(即由variable 和resistor两个英文单词组成的组合词)。

从字面上理解,这些名词的含义为“电阻值随着外加电压敏感变化的电阻器”。

那么压敏电阻器的电阻值是如何随着外加电压变化敏感的呢图1-1-1和表1-1-1可以给我们一个比较直观的说明。

从中我们可以看到,型号为20D201K的压敏电阻器随着外加电压从180V上升到420V,其电阻值从18 MΩ下降为Ω,在这个过程里,电压仅上升了倍,而电阻值下降了4280多万倍。

由此可见压敏电阻器的电阻值对外加电压的变化是非常“敏感”的。

电阻是由电子级粉体材料-氧化锌、氧化铋、氧化锑、氧化钛、氧化钴、氧化锰、氧化镍、氧化铬等多种氧化物合成的,其中,氧化锌的含量最高(约90%),是主基料;其他各种过渡金属氧化物的含量相差很大,较多的占百分之几,较小的仅有十万分之几,被称为添加剂;压敏电阻就是由主基料和添加剂按照配方一一称好后,经球磨、喷雾造粒、干压成型、排胶、烧结、表面金属化、插片、包封、打标等一系列标准的精细电子陶瓷和通用元件工艺制造而成的。

从特性或功能上看,压敏电阻器是一种电阻值随着外加电压敏感变化的电阻器,因此它的主要用途是:异常过电压的感知、抑制和浪涌能量的吸收。

综上所述,我们可以给压敏电阻下这样一个定义:压敏电阻是由在电子级ZnO粉末基料中掺入少量的电子级Bi2O3、Co2O3、MnO2、Sb2O3、TiO2、Cr2O3、Ni2O3 等多种添加剂,经混合、成型、烧结等工艺过程制成的精细电子陶瓷;它具有电阻值对外加电压敏感变化的特性,主要用于感知、限制电路中可能出现的各种瞬态过电压、吸收浪涌能量。

压敏电阻选型

压敏电阻选型

压敏电阻的正确选择和使用.要注意以下几点:1.压敏电压参数的选择。

该参数的选取,要根据实际电路和电源情况而定。

若压敏电阻用于过压保护,其标称电压必须高于实际电路的电压值。

在直流电压Vdc下,一般取V1mA=(1.5~2.2)Vdc;当用于交流电压Vac(有效值)下时.则取VlmA=(1.8~2.5)Vac;若压敏电阻上的电压是脉冲电压,则Vlma=(1.4~2)×脉冲电压幅值。

如果压敏电阻在电路中处于间断工作状态.以上各式的系数宜取得小一些;若其长时间工作于不间断状态,系数应取大一点。

V1mA的上限则由被保护器件或装置的耐压所决定。

压敏电阻在吸收过电压时的残压应被抑制在器件或装置的耐压以下。

虽然压敏电压选择低一些有利于提高保护效果,但如果选择过低,电压稍一升高压敏电阻就会导通漉过大电流,易引起元件温升加剧甚至被烧毁。

2.通流容量的选取。

为延长压敏电阻的使用寿命并为电子线路提供可靠保护,该参数的选择应留有充分余量。

根据经验,一般用于操作过电压保护时,压敏电阻的通漉容量选择 1 KA~5 KA;如用于防雷浪涌保护,可选用2 KA~20KA的元件。

3.当压敏电阻串联使用时,应确保每只压敏电阻的通流容量相同,特性相近。

串联后的最大允许电路电压等于各只压敏电阻最大允许电路电压之和。

在浪涌电流特别大的情况下也可将若干只压敏电阻并联使用,但要保证每只元件的压敏电压相同和伏安特性一致。

并联后的压敏电压不变,总通流容量为各个压敏电阻的通流容量之和。

由于串并联的只数增加往往使-口可靠性降低,故应控制串并联压敏电阻的数量。

4.由于压敏电阻的固有静态电容从几百到几千徽微法,在频率较高时应选用容值小的压敏电阻,并要在压敏电阻上串接高频阻流圈,以减小高频信号衰减。

此外,使用压敏电阻还要使引线与接线尽可能短。

用作雷浪涌吸收时务必注意要可靠接地。

压敏电阻型号及选用方法

压敏电阻型号及选用方法

压敏电阻型号及选用方法
一、压敏电阻的型号
目前常用的压敏电阻型号有普通型、膜结构型、薄膜结构型、贴片结
构型、聚合物结构型等几种。

1、普通型压敏电阻:该类压敏电阻主要由金属箔片和压敏材料两部
分组成,金属箔片用于增加表面积,以便于更好的传递电流;压敏材料就
是压敏材料,正常工作时,金属箔片经由压敏材料间的表面接触作用形成
电导路,随着压力的变化,其电阻值也随之而变化。

它具有表面电阻低,
价格低等优点,缺点是容易产生接触点腐蚀,电阻变化率低,对振动和温
度变化也敏感,受噪声影响较大等。

2、膜结构型压敏电阻:这类压敏电阻主要由压敏材料和金属包覆膜
组成,金属包覆膜是一种特殊形式的绝缘材料,其压力变化引起压敏材料
表面形变,从而产生电阻变化。

(聚氨酯膜、环氧树脂膜、氟塑料膜等)
该类压敏电阻具有高精度、低失效率、高温稳定性等特点,适用于低频及
高精度应用,在轻触性应用中也有一定用处。

3、薄膜结构型压敏电阻:这类压敏电阻主要由薄膜(主要是金属膜)和压敏材料组成,薄膜提供电阻,压敏材料发挥扭曲作用,使薄膜形变而
变化电阻值。

压敏电阻型号及电感计算公式

压敏电阻型号及电感计算公式

压敏电阻型号及电感计算公式部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑电感计算公式加载其电感量按下式计算:线圈公式阻抗(ohm> = 2 * 3.14159 * F(工作频率> * 电感量(mH>,设定需用360ohm 阻抗,因此:电感量(mH> = 阻抗(ohm> ÷ (2*3.14159> ÷ F (工作频率> = 360 ÷ (2*3.14159> ÷ 7.06 = 8.116mH据此可以算出绕线圈数:圈数 = [电感量* { ( 18*圈直径(吋>> + ( 40 * 圈长(吋>>}] ÷ 圈直径(吋>圈数= [8.116 * {(18*2.047> + (40*3.74>}] ÷ 2.047 = 19 圈空心电感计算公式空心电感计算公式:L(mH>=(0.08D.D.N.N>/(3D+9W+10H>D------线圈直径N------线圈匝数d-----线径H----线圈高度W----线圈宽度单位分别为毫M和mH。

空心线圈电感量计算公式:l=(0.01*D*N*N>/(L/D+0.44>线圈电感量 l单位: 微亨线圈直径 D单位: cm线圈匝数 N单位: 匝线圈长度 L单位: cm频率电感电容计算公式:l=25330.3/[(f0*f0>*c]工作频率: f0 单位:MHZ 本题f0=125KHZ=0.125MHZ谐振电容: c 单位:PF 本题建义c=500...1000pf 可自行先决定,或由Q值决定谐振电感: l 单位: 微亨线圈电感的计算公式1。

针对环行CORE,有以下公式可利用: (IRON>L=N2.AL L= 电感值<H>H-DC=0.4πNI / l N= 线圈匝数(圈>AL= 感应系数H-DC=直流磁化力 I= 通过电流(A>l= 磁路长度<cm>l及AL值大小,可参照Microl对照表。

压敏电阻选择方法及计算

压敏电阻选择方法及计算

压敏电阻选择方法及计算压敏电阻是一种特殊的电阻器件,其电阻值随外界施加的压力变化而变化。

它广泛应用于电子仪器、工业自动化、医疗器械等领域。

在选择压敏电阻的时候,需要考虑以下几个因素:电阻值范围、材料种类、尺寸和灵敏度。

1.电阻值范围:压敏电阻的电阻值一般在几百欧姆到几十兆欧姆之间,根据具体的应用需求确定所需要的电阻值范围。

2.材料种类:常见的压敏电阻材料有氧化锌压敏电阻、硅酸铅压敏电阻等。

不同的材料具有不同的特性和适用范围,需要根据具体应用选择适合的材料种类。

3.尺寸:压敏电阻的尺寸大小会直接影响到其在电路中的应用。

需要根据实际情况选择合适的尺寸,以满足空间需求和电路特性要求。

4.灵敏度:压敏电阻的灵敏度是指其电阻值对外界压力变化的敏感程度。

一般来说,灵敏度越高,对压力变化的响应越灵敏。

根据实际需要,选择适合的灵敏度。

压敏电阻的计算方法可以根据具体的应用需求进行。

以下是一些常见的计算方法:1.电阻分压法:当需要测量或检测一些物体的压力时,可以将压敏电阻作为一个分压电阻,利用电压分压原理进行计算。

根据电压值和电阻分压比例,可以计算出物体施加的压力。

2.桥式电路法:可以使用压敏电阻组成桥式电路,利用电桥平衡原理来测量物体压力。

根据电桥的平衡条件,可以得到物体施加的压力。

3.灵敏度计算法:根据压敏电阻的灵敏度计算压力变化。

灵敏度可以通过压敏电阻的电阻值变化与施加的压力变化之间的关系来得到。

在进行压敏电阻的选择和计算时,需要根据具体的应用要求和电路设计进行考虑。

选择合适的压敏电阻,并根据实际情况进行相应的计算,以满足应用需求。

压敏电阻型号及选用方法

压敏电阻型号及选用方法

压敏电阻型号及选用方法压敏电阻是一种用于电子电路中的电阻器件。

它能够根据外部的压力或电压变化而改变电阻值,因此常常被用于传感器、开关、稳压电路等应用中。

压敏电阻的型号选择需要考虑以下几个方面:1.工作电压范围:不同型号的压敏电阻有不同的工作电压范围。

选用时需要根据实际需求确定工作电压范围,并选择能够满足需求的型号。

2.额定电阻值:压敏电阻的额定电阻值是指在额定工作条件下的电阻值。

根据实际需求确定所需要的额定电阻值,并选择相应的型号。

3.断电电流:压敏电阻在断电状态下会有一个较小的电流通过,这个电流被称为断电电流。

选用时需要考虑断电电流对电路性能的影响,并选择适当的型号。

4.响应时间:压敏电阻的响应时间是指它从受到压力或电压变化到改变电阻值所需要的时间。

选用时需要根据实际需求确定所需要的响应时间,并选择相应的型号。

5.温度特性:压敏电阻的电阻值会随温度的变化而变化,这个变化称为温度特性。

选用时需要考虑温度特性对电路性能的影响,并选择相应的型号。

在选用压敏电阻时,还需要考虑其使用环境和寿命要求。

例如,如果在潮湿的环境中使用,需要选择具有防潮性能的型号;如果需要长时间使用,需要选择具有较长寿命的型号。

以下是几种常见的压敏电阻型号及其特点:1. Varistor(MOV):Varistor是最常见的一种压敏电阻类型,它的电阻值与电压成正比,能够在过电压保护中起到很好的作用。

它的工作电压范围广泛,通常从几伏到几千伏不等。

2.NTC热敏电阻:NTC热敏电阻的电阻值随温度的升高而降低。

它在温度测量和温度补偿应用中广泛使用。

3.PTC热敏电阻:PTC热敏电阻的电阻值随温度的升高而增大。

它在过流保护和温度控制应用中常被使用。

4. Flexiforce压敏电阻:Flexiforce压敏电阻是一种特殊的压敏电阻,它能够测量物体施加的力。

它通常用于力传感器中。

综上所述,选用适合的压敏电阻型号需要考虑工作电压范围、额定电阻值、断电电流、响应时间、温度特性等因素,并根据使用环境和寿命要求进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

尺有所短、寸有所长压敏电阻的选择1、压敏电阻的命名;我国规定压敏电阻用“MY”表示.。

J为家用、后缀字母W -稳压 G-过压 P高频电路 L-防雷 H-灭弧 Z-消噪 B-补偿 C-消磁 N-高性能或高可靠。

2、压敏电阻虽然能吸收很大的浪涌能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。

3、选用压敏电阻时一般选择标称压敏电压(VIma)和通流容量两个参数1)压敏电压;即击穿电压或阀值电压指在规定电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻时测得的电压值,其产品电压范围可从10-9000v不等,可根据需要正确选用。

一般Vima=1.5Vp=2.2VAC (vp是电路额定电流的峰值,VAC是额定交流电压的有效值。

)Zno(氧化锌)压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命,如家电用额定电压是220v则;vima=1.5vp=1.5 ×根号2×220=467v;因此vima值可选;vima =2.2VAC=2.2×220=484v;可在470-484v之间选择。

2)通流容量;指最大脉冲电流的峰值是在环境温度25c°在时规定的冲击电流波形和冲击次数而言,压敏电阻的变化不超过10%时的最大脉冲电流值。

压敏电阻的选择与使用2008年12月26日 星期五 09:11引用 压敏电阻的选择与使用压敏电阻的测量: 压敏电阻一般并联在电路中使用,当电阻两端的电压发生急剧变化时,电阻短路将电流保险丝熔断,起到保护作用。

压敏电阻在电路中,常用于电源过压保护和稳压。

测量时将万用表置10k档,表笔接于电阻两端,万用表上应显示出压敏电阻上标示的阻值,如果超出这个数值很大,则说明压敏电阻已损。

压敏电阻标称参数压敏电阻用字母“MY”表示,如加J为家用,后面的字母W、G、P、L、H、Z、B、C、N、K分别用于稳压、过压保护、高频电路、防雷、灭弧、消噪、补偿、消磁、高能或高可靠等方面。

压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点。

压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。

1、所谓压敏电压,即击穿电压或阈值电压。

指在规定电流下的电压值,大多数情况下用1mA直流电流通入压敏电阻器时测得的电压值,其产品的压敏电压范围可以从10-9000V不等。

可根据具体需要正确选用。

一般V1mA=1.5Vp=2.2VAC,式中,Vp为电路额定电压的峰值。

VAC为额定交流电压的有效值。

ZnO压敏电阻的电压值选择是至关重要的,它关系到保护效果与使用寿命。

如一台用电器的额定电源电压为220V,则压敏电阻电压值V1mA=1.5Vp=1.5××220V=476V,V1mA=2.2VAC=2.2×220V=484V,因此压敏电阻的击穿电压可选在470-480V之间。

2、所谓通流容量,即最大脉冲电流的峰值是环境温度为25℃情况下,对于规定的冲击电流波形和规定的冲击电流次数而言,压敏电压的变化不超过± 10%时的最大脉冲电流值。

为了延长器件的使用寿命,ZnO压敏电阻所吸收的浪涌电流幅值应小于手册中给出的产品最大通流量。

然而从保护效果出发,要求所选用的通流量大一些好。

在许多情况下,实际发生的通流量是很难精确计算的,则选用2-20KA的产品。

如手头产品的通流量不能满足使用要求时,可将几只单个的压敏电阻并联使用,并联后的压敏电不变,其通流量为各单只压敏电阻数值之和。

要求并联的压敏电阻伏安特性尽量相同,否则易引起分流不均匀而损坏压敏电阻。

压敏电阻器的应用原理压敏电阻器是一种具有瞬态电压抑制功能的元件,可以用来代替瞬态抑制二极管、齐纳二极管和电容器的组合。

压敏电阻器可以对IC及其它设备的电路进行保护,防止因静电放电、浪涌及其它瞬态电流(如雷击等)而造成对它们的损坏。

使用时只需将压敏电阻器并接于被保护的IC或设备电路上,当电压瞬间高于某一数值时,压敏电阻器阻值迅速下降,导通大电流,从而保护IC或电器设备;当电压低于压敏电阻器工作电压值时,压敏电阻器阻值极高,近乎开路,因而不会影响器件或电器设备的正常工作。

压敏电阻的选用选用压敏电阻器前,应先了解以下相关技术参数:标称电压是指在规定的温度和直流电流下,压敏电阻器两端的电压值。

漏电流是指在25℃条件下,当施加最大连续直流电压时,压敏电阻器中流过的电流值。

等级电压是指压敏电阻中通过8/20等级电流脉冲时在其两端呈现的电压峰值。

通流量是表示施加规定的脉冲电流(8/20μs)波形时的峰值电流。

浪涌环境参数包括最大浪涌电流Ipm (或最大浪涌电压Vpm和浪涌源阻抗Zo)、浪涌脉冲宽度Tt、相邻两次浪涌的最小时间间隔Tm以及在压敏电阻器的预定工作寿命期内,浪涌脉冲的总次数N等。

标称电压选取一般地说,压敏电阻器常常与被保护器件或装置并联使用,在正常情况下,压敏电阻器两端的直流或交流电压应低于标称电压,即使在电源波动情况最坏时,也不应高于额定值中选择的最大连续工作电压,该最大连续工作电压值所对应的标称电压值即为选用值。

对于过压保护方面的应用,压敏电压值应大于实际电路的电压值,一般应使用下式进行选择:VmA=av/bc式中:a为电路电压波动系数,一般取1.2;v为电路直流工作电压(交流时为有效值);b为压敏电压误差,一般取0.85;c为元件的老化系数,一般取0.9;这样计算得到的VmA实际数值是直流工作电压的1.5倍,在交流状态下还要考虑峰值,因此计算结果应扩大1.414倍。

另外,选用时还必须注意:(1) 必须保证在电压波动最大时,连续工作电压也不会超过最大允许值,否则将缩短压敏电阻的使用寿命;(2) 在电源线与大地间使用压敏电阻时,有时由于接地不良而使线与地之间电压上升,所以通常采用比线与线间使用场合更高标称电压的压敏电阻器。

压敏电阻所吸收的浪涌电流应小于产品的最大通流量。

应 用电路浪涌和瞬变防护时的电路。

对于压敏电阻的应用连接,大致可分为四种类型:第一种类型是电源线之间或电源线和大地之间的连接,作为压敏电阻器,最具有代表性的使用场合是在电源线及长距离传输的信号线遇到雷击而使导线存在浪涌脉冲等情况下对电子产品起保护作用。

一般在线间接入压敏电阻器可对线间的感应脉冲有效,而在线与地间接入压敏电阻则对传输线和大地间的感应脉冲有效。

若进一步将线间连接与线地连接两种形式组合起来,则可对浪涌脉冲有更好的吸收作用。

第二种类型为负荷中的连接,它主要用于对感性负载突然开闭引起的感应脉冲进行吸收,以防止元件受到破坏。

一般来说,只要并联在感性负载上就可以了,但根据电流种类和能量大小的不同,可以考虑与R-C串联吸收电路合用。

第三种类型是接点间的连接,这种连接主要是为了防止感应电荷开关接点被电弧烧坏的情况发生,一般与接点并联接入压敏电阻器即可。

第四种类型主要用于半导体器件的保护连接,这种连接方式主要用于可控硅、大功率三极管等半导体器件,一般采用与保护器件并联的方式,以限制电压低于被保护器件的耐压等级,这对半导体器件是一种有效的保护。

氧化锌压敏电阻存在的问题现有压敏电阻在配方和性能上分为相互不能替代的两大类:1 高压型压敏电阻高压型压敏电阻,其优点是电压梯度高(100~250V/mm)、大电流特性好(V10kA/V1mA≤1.4)但仅对窄脉宽(2≤ms)的过压和浪涌有理想的防护能力,能量密度较小,(50~300)J/cm3。

2 高能型压敏电阻高能型压敏电阻,其优点是能量密度较大(300J/cm3~750J/cm3),承受长脉宽浪涌能力强,但电压梯度较低(20V/mm~500V/mm),大电流特性差(V10kA/V1mA>2.0)。

这两种配方的性能差别造成了许多应用上的“死区”,在10kV电压等级的输配电系统中广泛采用了真空开关,由于它动作速度快、拉弧小,会在操作瞬间造成极高过压和浪涌能量,如果选用高压型压敏电阻加以保护(如避雷器),虽然它电压梯度高、成本较低,但能量容量小,容易损坏;如果选用高能型压敏电阻,虽然它能量容量大,寿命较长,但电压梯度低,成本太高,是前者的5~13倍。

在中小功率变频电源中,过压保护的对象是功率半导体器件,它对压敏电阻的大电流特性和能量容量的要求都很严格,而且要同时做到元件的小型化。

高能型压敏电阻在能量容量上可以满足要求,但大电流性能不够理想,小直径元件的残压比较高,往往达不到限压要求;高压型压敏电阻的大电流特性较好,易于小型化,但能量容量不够,达不到吸能要求。

中小功率变频电源在这一领域压敏电阻的应用几乎还是空白。

压敏电阻器简称VSR,是一种对电压敏感的非线性过电压保护半导体元件。

它在电路中用文字符号“RV”或“R”表示,图1-21是其电路图形符号。

(一)压敏电阻器的种类压敏电阻器可以按结构、制造过程、使用材料和伏安特性分类。

1.按结构分类压敏电阻器按其结构可分为结型压敏电阻器、体型压敏电阻器、单颗粒层压敏电阻器和薄膜压敏电阻器等。

结型压敏电阻器是因为电阻体与金属电极之间的特殊接触,才具有了非线性特性,而体型压敏电阻器的非线性是由电阻体本身的半导体性质决定的。

2.按使用材料分类压敏电阻器按其使用材料的不同可分为氧化锌压敏电阻器、碳化硅压敏电阻器、金属氧化物压敏电阻器、锗(硅)压敏电阻器、钛酸钡压敏电阻器等多种。

3.按其伏安特性分类压敏电阻器按其伏安特性可分为对称型压敏电阻器(无极性)和非对称型压敏电阻器(有极性)。

(二)压敏电阻器的结构特性与作用1.压敏电阻器的结构特性压敏电阻器与普通电阻器不同,它是根据半导体材料的非线性特性制成的。

图1-22是压敏电阻器外形,其内部结构如图1-23所示。

普通电阻器遵守欧姆定律,而压敏电阻器的电压与电流则呈特殊的非线性关系。

当压敏电阻器两端所加电压低于标称额定电压值时,压敏电阻器的电阻值接近无穷大,内部几乎无电流流过。

当压敏电阻器两端电压略高于标称额定电压时,压敏电阻器将迅速击穿导通,并由高阻状态变为低阻状态,工作电流也急剧增大。

当其两端电压低于标称额定电压时,压敏电阻器又能恢复为高阻状态。

当压敏电阻器两端电压超过其最大限制电压时,压敏电阻器将完全击穿损坏,无法再自行恢复。

2.压敏电阻器的作用与应用压敏电阻器广泛地应用在家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。

图1-24是压敏电阻器的典型应用电路。

(三)压敏电阻器的主要参数压敏电阻器的主要参数有标称电压、电压比、最大控制电压、残压比、通流容量、漏电流、电压温度系数、电流温度系数、电压非线性系数、绝缘电阻、静态电容等。

1.压敏电压:所谓压敏电压,即击穿电压或阈值电压。

相关文档
最新文档