【5-图论】4.树【学生版】
离散数学-图论-树

二叉树
• 定义:二元有序树称为二叉树.
– 每个顶点最多有两个子顶点,一般称为左子顶 点和右子顶点. – 类似地,称每个顶点的左子树和右子树. – 每个顶点的出度都是0或2,称为二叉正则树.
二叉树的性质
• 定理:设有二叉树T, (1)第i层最多有2i个顶点; (2)若T高度为h,则T最多有2h11个顶点,最 少有h个顶点; (3)树叶个数出度为2的顶点个数1.
1 2
Huffman树与最优编码
• 若以符号为树叶,符号概率为树叶的权,利 用通过Huffman算法得到的二叉树对符号 编码,则可以保证i pili最小. • 例:对1,1,2,3,5,6,7,8构造Huffman树.
7 3 2 1 1 5 6
8
编码:设 A, B, C, D 的频率(即权值)分别为 17%, 25%, 38%, 20%, 试设计哈夫曼编码(最佳前缀码/最优编码)。
最优编码
• 构成消息的各符号的使用频率是不一样 的,显然常用符号编码短一些,罕用符号编 码长一点,可以使传输的二进制位数最少. • 最优编码问题:给定符号集{a1,a2,...,am}, ai 的出现概率是pi,编码长度为li,要使i pili最 小.
例:如果需传送的电文为 ‘A B A C C D A’,它只用到四种字符, 用两位二进制编码便可分辨。假设 A, B, C, D 的编码分别为 00, 01,10,11,则上述电文便为 ‘00010010101100’(共 14 位), 译码员按两位进行分组译码,便可恢复原来的电文。 数据的最小冗余编码问题 在编码过程通常要考虑两个问题 译码的惟一性问题
5 1 5 6 6
U 1
1 5 6 1 5 5 4 6 5 4 5 5
2
离散数学图论(图、树)常考考点知识点总结

离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
第2章 树

推论2.4.1 每一连通图 都包含一生成树。 每一连通图G都包含一生成树 都包含一生成树。 推论
证明:令 T 为G的极小 minimal)连通生成子图 极小( 极小 连通生成子图 (即 T 的任一真子图都不是G的连通生成子图) (由定义知,T 可在保持连通性 保持连通性的前提下,用逐步 保持连通性 从G中去边的办法求出( ∴所去的边一定在一圈中 边 (即非割边 非割边)(∴每步至少破坏一圈))。 由T的 非割边 定义知,ω(T) = 1 , ω(T - e) = 2 ∀ e ∈ E(T) 。 即 T 的每边为割边,故由定理2.4知T为树。
2.1.4 G为 林 ⇔ ε = ν - ω。 2.1.5 若林G 恰有2k个奇点 奇点,则G 中存在k条边不重 奇点 的路 1 ,P2 ,..,Pk ,使得E(G) = E(P1 )∪E(P2 )∪ ... ∪E(Pk )。 2.1.6 正整数序列 (d 1 ,d 2 ,...,d ν )是一 棵树的度序 ν 列,当且仅当
定理2.5 设 T 为G的一生成树,e为G中不属于 定理 T的边,则T+e 含唯一的圈。 证明: 若e为环(即1-圈),结论显然成立。 不然,由于T 无圈,T + e 中的每个圈(若存 在的话)都包含e 。又,C为 T + e 的一圈 ⇔ C - e 为T 中连接e的两个端点的路。但, 由定理2.1知,T中恰只有一条这样的路,因 此 T + e中包含唯一的圈。
⇔ 不含圈的图。 树(tree) ⇔ 连通无圈图。 叶 (leave) ⇔ 树中度为1的顶点。 例:六个顶点的树
称边e为图G的割边( cut edge) ⇔ ω(G-e) > ω(G) 。 (或即 ω(G-e) = ω(G) + 1 ) (称边e为图G的非割边 ⇔ ω(G-e) = ω(G) 。)
图论 第二章 树(tree)

定义2.2.2 如果在图G中去掉一个顶点(自然同 时去掉与该顶点相关联的所有边)后图的分 支数增加,则称该顶点为G的割点。
定理2.2.1 当且仅当G的一条边e不包含在G 的 圈中时,e才是割边。
u x
e
v
Hale Waihona Puke yCG推论2.2.1 当且仅当连通图G的每一条边均为 割边时,G才是一棵树。
对割边有下面的等价命题:
推论2.1.3 设G的边数为q,顶点数为p,如果 G无圈且q=p-1,则G是一棵树。
推论2.1.4 在树中至少存在两个度为1的顶点。
关于树有下列的等价命题:
(1)G是一棵树 (2)G的任意两个顶点由唯一道路联结 (3)G是连通的,且q=p-1 (4)G是无圈的,且q=p-1 (5)G无圈,且若G的任意两个不邻接的顶点 联一条边e,则G+e中恰有一个圈。
A directed graph is Eulerian if it is connected and can be decomposed into arc-disjoint directed cycles.
An undirected graph is traversable if it is connected and at most two vertices in the graph are of odd degree
条包含G的所有边的闭链; ❖ (4)两个欧拉图的环和仍是欧拉图。
理定3.1.2和推论3.1.1反映了图的一 个重要性质,即图的连绘性。一个连 绘的图是指这个图可以用一笔画成而 没有重复的笔划。换句话说就是在这 个图中存在一条能过每条边的链。
3.3 哈密顿图
1856 年 hamilton 周游世界的游戏,十 二面体,有20个顶点,三十条边,十二 个面
图论及其应用--树与林

定理 设有完全m叉树,其树叶的数目为t,分支 数为i, 则(m-1)×i=t-1。
证明思路: m位选手,单淘汰赛,每局淘汰(m-1)位,
共比赛i局,最后剩1位选手。因此有:
(m-1)×i+1=t
定义 在根树中,一个结点的通路长度,就是从树 根到该结点的通路中的边数。分支点的通路长度称为 内部通路长度,树叶的通路长度称为外部通路长度。
定理2:任一棵树中至少存在两个叶。
证明: 因T连通则u∈T,deg(u)≥1。设T有k个一
度点,其它点均大于等于2,则 2e=∑deg(vi)≥k+2(v-k)=2v-k。 因e=v-1, 故2(v-1)≥2v-k,则k≥2。
2.2支撑树与支撑林
设F是图D的支撑子图,并且ω(F)=ω(D)。 若F是林,则称F为D的支撑林;若F是树, 则称F为D的支撑树。
例如:
a 19
b5
14 12
18
7
c
16 e 8
3
g
d
27
21
f
求最小生成树的克鲁斯卡尔(Kruskal)算法(避圈法): a)在G中选取最小权的边,记作e1,置i=1。 b)当i=n-1时结束,否则转c)。 c)设已选择边为e1,e2,……ei,此时无回路。在G 中选取不同于这i条边的边ei+1,该边使得{e1,…, ei+1}生成的子图中无回路,并ei+1是满足该条件中权 最小的一条边。
定理2.4 每个连通图都含支撑树。 推论2.4.1每个图都含支撑林或者支撑树。 推论2.4.2每个图均有ε≥ν- ω。 定理2.5设F是G的支撑林。若E(G)\E(F)
非空,则对其中的任何边e,F+e含有且 仅含有一条圈。
图论中的树与树的性质

图论中的树与树的性质图论是数学中的一个分支,研究各种图形的结构和性质。
其中,树是图论中非常重要的一个概念。
本文将介绍树的定义和性质,并探讨它在图论中的应用。
一、树的定义在图论中,树是一种特殊的无向图,它是一个连通的无环图。
这意味着树中的任意两个顶点之间都存在唯一的路径,并且不存在回路。
在树中,有一个特殊的顶点被称为“根”,其他顶点都与根有一条直接的路径相连。
根据根与其他顶点之间的距离可以将树分为不同的层次。
二、树的性质1. 顶点数与边数关系在一个树中,边的数量等于顶点数减1。
这可以通过归纳证明来证明。
2. 树的层次关系在树中,从根开始,每一层的顶点都与上一层的顶点相连。
树的层次关系可以用来刻画树中的信息流动或者依赖关系。
3. 叶子节点在树中,没有子节点的顶点被称为叶子节点。
树的叶子节点是最末端的节点,它们没有子节点与之相连。
4. 子树在一个树中,任意一个顶点都可以看作是一个树的根。
以某个顶点为根的子树包含了该顶点以及与之直接相连的所有顶点。
5. 树的深度树的深度是指树中从根到最深的叶子节点的层数。
树的深度也可以看作是树的高度,表示树的层数。
三、图论中树的应用图论中的树在很多问题中起到了重要的作用,下面列举几个常见的应用。
1. 最小生成树最小生成树是指在一个连通的带权无向图中选择一棵边的子集,使得这棵子树包含了图中的所有顶点,并且权重之和最小。
最小生成树常被用于网络设计、电路布局等问题中。
2. 网络路由在一个网络中,通过树的结构可以确定数据的传输路径,有效地避免了数据的冗余和混乱。
树结构的拓扑设计对于确定最短路径、避免环路等问题非常有帮助。
3. 数据压缩树结构可以用于数据的压缩和解压缩。
通过构建哈夫曼树,可以实现对数据的高效压缩,去除冗余信息,提高存储和传输效率。
4. 优先级队列优先级队列常通过堆这种数据结构来实现,而堆可以看作是一种特殊的树。
通过构建堆结构,可以高效地实现插入和删除操作,常被用于任务调度、最短路径算法等场景。
图论课件第二章_树

图论及其应用
应用数学学院
1
第二章 树
本章主要内容
一、树的概念与性质
二、生成树
三、最小生成树
2
本次课主要内容
(一)、树的概念与应用 (二)、树的性质 (三)、树的中心与形心
16
2 m ( G ) d ( v ) k 1 kn 2 ( k ) 2 n 1 2 n 2
v V ( G )
所以,有:m (G)>n-1,与G是树矛盾! 例10 设G是森林且恰有2k个奇数顶点,则在G中有k条 边不重合的路P1, P2 ,…, Pk,使得:
v2 e2 e5 v1 v4 e4 e3 e6 v3
e1
7
该问题归结于在图中求所谓的最小生成树问题。或 称为赋权图中的最小连接问题。 例4 化学中的分子结构与树 例如:C4H10的两种同分异构结构图模型为: h h h h h h h h h h h h h h
h h h
h
h
h
8
例5 电网络中独立回路与图的生成树 早在19世纪,图论还没有引起人们关注的时候,物理学 家克希荷夫就已经注意到电路中的独立回路与该电路中的所 谓生成树的关系。即:如果电路是(n, m)图,则独立回路的 个数为m-n+1.并且,生成树添上生成树外的G的一条边,就 可以得到一独立回路。 例6 通信网络中的组播树 在单播模型中,数据包通过网络沿着单一路径从源主机向 目标主机传递,但在组播模型中,组播源向某一组地址传递数 据包,而这一地址却代表一个主机组。为了向所有接收者传 递数据,一般采用组播分布树描述IP组播在网络里经过的路 径。组播分布树有四种基本类型:泛洪法、有源树、有核树 和Steiner树 。
第五章图论树

[例题] 设G=<V,E>是有p个结点,s条边的连通图,则从G 中删去 条边,才能确定G的一棵生成树。 解:设要删去k条边,s k v 1, k s 1 v [例题] 设G是有6个结点的完全图,从G中删去 C 条 边则能得到树。 A) 6 B) 9 C) 10 D) 15 解:∵G是有6个结点的完全图,∴G中共有6×5/2=15 条边,要使G成为树,G中只应留下5条边,故应删去 10条边,选C。
4。最小生成树 在带权图G中所生成的总权数最小的生成树称为 最小生成树。 5。最小生成树的求法 选取权数最大的边所在的回路,去掉其中权数 最大的边,如此做下去,直到求出生成树为止。这 样求出的生成树一定是最小生成树。 还有一种方法称为克鲁斯特尔算法。先去掉所有 的边,然后从权数最小的边的开始,从小到大逐步选 取,如果所选取的边和已选取的边构成了回路,则不 选取这条边重新选取,直到连接完所有的结点。这样 求出的树就是最小生成树。
b
a
3
d
c
1
[例题] 求图G的一棵最小生成树。 解: 6
7 6
9 13
a
16
7
8
b
6
c
5
6
e
11
4
9 13
11
8
9
d
4
6
8 5
4
7
5
4
6
7
5
4
解法二: 16 6 7 5 用克鲁斯特尔算法做, b e 8 先去掉所有的边。从最小 11 6 4 边(d,e)开始选取,再选取(d,a), 9 c 再选取(e,a)和(b,c),但(e,a)构成 d 13 回路,所以应去掉,再选取(c,a), a 这时已连接了所有的结点,最小 生成树求出。 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程类型数学
“树”
讲义编号:
树是一种重要的图,概念与圈相对,应用极为广泛。
定义没有圈的连通图称为树,n阶的树记为。
一个没有圈的图称为森林,叶(或悬挂点)是指树中度为1的顶点。
图G的一个生成子图是顶点集为V(G)的一个子图。
一棵生成树是一个生成子图并且它是一棵树。
定理
1.n(≥2)阶的树至少有两个悬挂点,从中去掉一个悬挂点得到。
证明
2.对于n阶图G,下面的命题等价:
A.G是连通的并且无圈。
B.G是连通的并且有n-1条边。
C.G有n-1条边并且无圈。
D.G无圈,并且对于任意、,G恰有一条u、v路径。
证明
例1 n个镇,每个镇都可以通过一些中转镇与另一个镇通话。
证明至少有n-1条直通的电话线路,每条连接两个镇。
例2 如果T,T’是连通图G的生成树并且,则存在一条边使得是G的一个生成树。
例3 如果T是一棵具有k条边的树,G是一个简单图且最小的顶点度是,则T是G的一个子图。