【5-图论】4.树【学生版】

【5-图论】4.树【学生版】
【5-图论】4.树【学生版】

课程类型数学

“树”

讲义编号:

树是一种重要的图,概念与圈相对,应用极为广泛。

定义没有圈的连通图称为树,n阶的树记为。一个没有圈的图称为森林,叶(或悬挂点)是指树中度为1的顶点。

图G的一个生成子图是顶点集为V(G)的一个子图。一棵生成树是一个生成子图并且它是一棵树。

定理

1.n(≥2)阶的树至少有两个悬挂点,从中去掉一个悬挂点得到。

证明

2.对于n阶图G,下面的命题等价:

A.G是连通的并且无圈。

B.G是连通的并且有n-1条边。

C.G有n-1条边并且无圈。

D.G无圈,并且对于任意、,G恰有一条u、v路径。

证明

例1 n个镇,每个镇都可以通过一些中转镇与另一个镇通话。证明至少有n-1条直通的电话线路,每条连接两个镇。

例2 如果T,T’是连通图G的生成树并且,则存在一条边使得是G的一个生成树。

例3 如果T是一棵具有k条边的树,G是一个简单图且最小的顶点度是,则T是G的一个子图。

电大离散数学作业答案(图论部分)

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2018年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. 2.设给定图G (如右由图所示),则图G 的点割集是 {f}. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点度数之和等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且等于出度. 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于n-1,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W(G-V1)≤∣V 1∣. 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足e=v-1关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i =5. 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回

图论第二次作业

第四章 3(1).有欧拉闭迹和H圈 (2).有欧拉闭迹但没有H圈 (3).有H圈无欧拉闭迹 (4).无欧拉闭迹且没有H圈 4:证:若G不是H图,由chvatal定理知,G度弱于某个图,故: = 这与题目已知条件相矛盾,故G是H图。 8:证:不失一般性,设G是连通图,是G的2k个奇点,连接,得到,则得到图,则是欧拉图,设C是中 的欧拉闭迹,删除C中的,即可得到k条边不重复的迹,使得 . 10(1)若G不是二连通图,那么G不连通或者有割点u,则w,故G是

非H图。 (2). 若G是具有二分类的偶图,且,若假设则,故 G是非H图。 11:设R是G中的H路,则对于每个真子集S,有w,又: w w,故w. 12:设u是G外一点,将u和G中的每个点连接得到图,则G的度序列为 ,故有题意知,不存在小于的正整数m,使得 ,故由Chvatal定理知,图是H图,则G有 H路。 15:(1)由图的闭包定义可知,构作一个图的闭包,可以通过不断在度和大于等于n的非邻接顶点加边得到。故图的闭包算法如下: 第一步:令; 第二步:在中求顶点,使得: 第三步:如果,则转到第四步;否则,停止,则可得到G 的闭包。 第四步:令,转到第二步。 复杂性分析:由其算法我们可得出其总运算量为: 故该算法能够在多项式时间内被解决,故该算法是一个好算法。 (2).设计算法如下: 第一步:在闭包构造中,将加入的边依次加入次序记为 ,在中任意取出一个H圈,令k=N;

第二步:若不在中,令;否则转到第三步。 第三步:设,令;求中两个相邻点u和v使得, u,v依序排列在上,且有:,令: 第四步:若k=1,转到第五步;否则,令k=k-1,转第二步; 第五步:停止。为G的H圈。 算法的复杂性分析:因为该算法进行了N次循环,每次循环中找到满足要求的邻接顶点u和v至多需要n-3次判断,所以总的运算量:N(n-3)。是一个好算法。 第五章 1:(1)证:k方体有2k个顶点,每个顶点可以用长度为k的二进制码来表示,两个顶点连线当且仅当代表两个顶点的二进制码只有一位坐标不同。 若划分k方体的2k个顶点,把坐标之和为偶数的顶点归入X,否则归入Y。显然,X中顶点互不邻接,Y中顶点也如此。所以k方体是偶图。又k方体的每个顶点度数为k,所以k方体是k正则偶图。所以由推论可知:k方体存在完美匹配。 (2).解K 2n 的任意一个顶点有2n-1中不同的方法被匹配。所以K 2n 的不同完美匹 配个数等于(2n-1)K 2n-2,如此推下去,可以归纳出K 2n 的不同完美匹配个数为: (2n-1)!!。同理,K n, n 的不同完美匹配个数为:(n)!。 2:若不然,设M 1与M 2 是树T的两个不同的完美匹配,那么M 1 ΔM 2 ≠Φ,且T[M 1 ΔM 2 ] 每个顶点度数为2,即它存在圈,于是推出T中有圈,矛盾。故一棵树中最多只有一个完美匹配。 7:解:设 作如下四条路: 故其四个生成圈如下:

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

图论基础知识

图论基本知识 对于网络的研究,最早是从数学家开始的,其基本的理论就是图 论,它也是目前组合数学领域最活跃的分支。我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。 本章只给出非平凡的定理的证明,过于简单直观的定理的证明将 留给读者。个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。 图的基本概念 图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。 集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→

y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。以后如果没有特殊的说明,所有出现的图都是简单图。记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。 图2.1:网络拓扑结构示意图。图a 是10阶有向图,顶点集为 {1,2,3,4,5,6,7,8,9,10},边集为{1→2,1→3,1→4,2→5,2→6,2→7,3→6,4→7,4→8,6→9,7→9,8→10};图b 是6阶无向图,顶点集为{1,2,3,4,5,6},边集为{13,14,15,23,24,26,36,56}。 从定义中可以看到,从任意顶点x 到y 不能连接两条或以上 边,本文所讨论的图,均符合上述要求,既均为不含多重边的图。如

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

图论经典问题

常见问题: 1、图论的历史 图论以图为研究对象的数学分支。图论中的图指的是一些点以及连接这些点的线的总体。通常用点代表事物,用连接两点的线代表事物间的关系。图论则是研究事物对象在上述表示法中具有的特征与性质的学科。 在自然界和人类社会的实际生活中,用图形来描述和表示某些事物之间的关系既方便又直观。例如,国家用点表示,有外交关系的国家用线连接代表这两个国家的点,于是世界各国之间的外交关系就被一个图形描述出来了。另外我们常用工艺流程图来描述某项工程中各工序之间的先后关系,用网络图来描述某通讯系统中各通讯站之间信息传递关系,用开关电路图来描述IC中各元件电路导线连接关系等等。 事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟。由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点之间连接与否最重要,而连接线的曲直长短则无关紧要。由此经数学抽象产生了图的概念。研究图的基本概念和性质、图的理论及其应用构成了图论的主要内容。 图论的产生和发展经历了二百多年的历史,大体上可分为三个阶段: 第一阶段是从1736年到19世纪中叶。当时的图论问题是盛行的迷宫问题和游戏问题。最有代表性的工作是著名数学家L.Euler于1736年解决的哥尼斯堡七桥问题(Konigsberg Seven Bridges Problem)。 东普鲁士的哥尼斯堡城(现今是俄罗斯的加里宁格勒,在波罗的海南岸)位于普雷格尔(Pregel)河的两岸,河中有一个岛,于是城市被河的分支和岛分成了四个部分,各部分通过7座桥彼此相通。如同德国其他城市的居民一样,该城的居民喜欢在星期日绕城散步。于是产生了这样一个问题:从四部分陆地任一块出发,按什么样的路线能做到每座桥经过一次且仅一次返回出发点。这就是有名的哥尼斯堡七桥问题。 哥尼斯堡七桥问题看起来不复杂,因此立刻吸引所有人的注意,但是实际上很难解决。 瑞士数学家(Leonhard Euler)在1736年发表的“哥尼斯堡七桥问题”的文章中解决了这个问题。这篇论文被公认为是图论历史上的第一篇论文,Euler也因此被誉为图论之父。 欧拉把七桥问题抽象成数学问题---一笔画问题,并给出一笔画问题的判别准则,从而判定七桥问题不存在解。Euler是这样解决这个问题的:将四块陆地表示成四个点,桥看成是对应结点之间的连线,则哥尼斯堡七桥问题就变成了:从A,B,C,D任一点出发,通过每边一次且仅一次返回原出发点的路线(回路)是否存在?Euler证明这样的回路是不存在的。 第二阶段是从19世纪中叶到1936年。图论主要研究一些游戏问题:迷宫问题、博弈问题、棋盘上马的行走线路问题。一些图论中的著名问题如四色问题(1852年)和Hamilton环游世界问题(1856年)也大量出现。同时出现了以图为工具去解决其它领域中一些问题的成果。1847年德国的克希霍夫(G.R.Kirchoff)将树

图论第二次作业

图论第二次作业 一、第四章 4.3(1)画一个有Euler闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下: (2)一个有Euler闭迹但没有Hamilton圈的图形如下: (3)一个有Hamilton圈但没有Euler闭迹的图形如下: (4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:

4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 4.10 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 4.12 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于 2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1: G 1的度序列为:),1,,1,1(21n d d d n +???++,由已知:不存在小于2 )1(+n 的正整数

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而 在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

电子科技大学图论及其应用5班第4-5章作业

习题4 3: 1)、画一个有Euler闭迹和Hamilton圈的图。 2)、画一个有Euler闭迹但没有Hamilton圈的图。 3)、画一个有Hamilton圈但没有Euler闭迹的图 4)、画一个既没有Hamilton圈也没有Euler闭迹的图 7、证明: 将G中的孤立点去掉后的图为G1,则G1也是没有奇度点的,且G1的最小度大于等于2.则G1存在一个圈S1,在G1 –S1中去除孤立的点,得到一个新的图G2,显然G2也没有奇度的点,且G2的最小度大于等于2.这样G2中也存在一个圈S2,这样一直下去,指导Gm中有圈Sm,且Gm-Sm都是孤立的点。这样E(G) = E(G1)并E(G2)…..

并E(Gm).命题得证。 10、证明: 1)、如果G不是而连通的图,那么G存在割点v或则G是不连通的,G-v的连通分支数大于等于2.由定理:若G是H图,则对于V的每个飞空真子集S,均有G-S的连通分支数小于等于S的顶点数,知,G是非H图。 2)、G 是2部图,且|X|<|Y|,则有G-X的连通分支数等于|Y|>|X|由上边的定理知,G是非H图。 12、证明: 假设G中新加入的一点,为V,它和G中的每一个顶点均相连,这样得到新的图G^,这样G^的度序列为(d1+1,d2+1……,dv+1,V)。因为不存在正整数m<(v+1)/2,使其满足dm=2)。 假设K方体的顶点坐标为:(x1,x2…,xk),取(x1,x2,….,xk-1,0)和(x1,x2,…,xk-1,1)两个顶点之间的边的全体集合为M,这样M,中的边均不相邻,所以M是一个匹配,且|M| = 2^(k-1)。K方体一共有2^k个顶点,所以K方体的每一个顶点均是M饱和的,所以M是K方体的一个完美匹配。

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G 应该是连通图,可以找出一个反例,比如图G 是一个有孤立结点的图。

图论的起源和发展

大 众 文 艺大34 摘要:图论是数学领域中发展最快的分支之一,数学史上著名的七桥问题欧拉只用了一步就证明了不重复地通过7座桥的路线是根本不存在的!这是拓扑学研究的先声。图的染色问题一直是图论研究的焦点问题。数学家赫伍德(Hedwood)成功地运用肯普的方法证明了五色定理,即一张地图能够用五种或者更少的颜色染色。美国伊利诺斯大学的黑肯(W.Haken)和阿佩尔(Appel),经过四年的艰苦工作,终于完成了四色猜想的证明。正是上述那些似乎没有多大意义的游戏的抽象与论证的方法,开创了图论科学的研究。 关键词:团论;染色体;四色猜想 图论是组合数学的—个分支,与其他的数学分支,如群论、矩阵论、概率论、拓扑学、数值分析等有着密切的联系(参见文献[1])。图论中以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系。事实上,任何一个包含了某种二元关系的系统都可以用图形来模拟,而且它具有形象直观的特点。由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点间连接与否尤为重要,而图形的位置、大小、形状及连接线的曲直长短则无关紧要。 20世纪后,图论的应用渗透到许多其他学科领域。从20世纪50年代以后,由于计算机的迅速发展,有力地推动了图论的发展,使图论成为数学领域中发展最快的分支之一。 一、图论的起源 图论是一个古老的但又十分活跃的数学学科,也是一门很有实用价值的学科,它在自然科学、社会科学等各领域均有很多应用。近年来它受计算机科学蓬勃发展的刺激,发展极其迅速。应用范围不断拓广,已渗透到诸如语言学、逻辑学、物理学、化学、电讯工程、计算机科学以及数学的其它分支中。 1736年是图论的历史元年。这一年,欧拉(L?Euler)研究了哥尼斯堡城(K?nigsberg)的七桥问题,发表了图论的首篇论文。欧拉也因此被称为图论之父。 古老而美丽的哥尼斯堡城濒临蓝色的波罗的海,是著名的哲学家康德(Immanuel Kant)的出生地,城中有一条普莱格尔(Pregel)河,河的两条支流在这里汇合,然后横穿全城,流入大海。河水把城市分成4块,于是,人们建造了7座各具特色的桥,把哥尼斯堡城连成一体,如图1.1(a)所示。 早在18世纪,这些形态各异的小桥吸引了众多的游客,游人在陶醉于美丽风光的同时,不知不觉间,脚下的桥触发了人们的灵感,一个有趣的问题在居民中传开。 谁能够从两岸A,B或两个小岛C,D中任一个地方出发一次走遍所有的7座桥,而且每座桥都只通过一次?这个问题似乎不难,谁都乐意用这个问题来测试一下自己的智力。可是,谁也没有找到一条这样的路线。这个问题极大的刺激了德意志人的好奇心,许多人热衷于解决这个问题,然而始终未能成功。“七桥问题” 难住了哥尼斯堡城的所有居民。哥尼斯堡城也因“七桥问题” 而出了名。这就是数学史上著名的七桥问题。 问题看来不复杂,但谁也解决不了,也说不出其所以然来。1736年,当时著名的数学家欧拉仔细研究了这个问题,他将上述四块陆地与七座桥间的关系用一个抽象图形来描述(见图1.1(b)),其中A、B、C、D分别用四个点来表示,而陆地之间有桥相连者则用连接两个点的连线来表示,这样,上述的哥尼斯堡七桥问题就变成了由点和边所组成的如下问题: 试求从图中的任一点出发,通过每条边一次,最后返回到该点,这样的路径是否存在?于是问题就变得简洁明了多了,同时也更一般、更深刻。这样一来,七桥问题就转变为图论中的一个一笔画问题。即能不能一笔不重复的画出图1.1(b)中的这个图形。 原先人们是要求找出一条不重复的路线,欧拉想,成千上万的人都失败了,这样的路线也许根本不存在。于是,欧拉接下来着手判断:这样不重复的路线究竟存不存在?由于这么改变了一下提问的角度,欧拉抓住了问题的实质。最后,欧拉认真考虑了一笔画图形的结构特征。 欧拉发现,凡是能用一笔画成的图形,都有这样一个特点:每当用笔画一条线进入中间的一个点时,还必须画一条线离开这个点。否则,整个图形就不可能用一笔画出。也就是说,单独考察图中的任何一点(起点和终点除外),这个点都应该与偶数条线相连;如果起点与终点重合,那么,连这个点也应该与偶数条线相连。 在七桥问题的几何图中,A、B、D三点分别与3条线相连,C 点与5条线相连。连线都是奇数条。因此,欧拉断定:一笔画出这个图形是不可能的。也就是说,不重复地通过7座桥的路线是根本不存在的!天才的欧拉只用了一步就证明了这个难题,从这里我们也可以看到图论的威力有多么的强大! 欧拉对七桥问题的研究,是拓扑学研究的先声。 1750年,欧拉又发现了一个有趣的的现象。欧拉得到了后人以他的名字命名的“多面体欧拉公式”。正4面体有4个顶点、6 条棱,它的面数加顶点数减去棱数等于2;正6面体有8个顶点、12条棱,它的面数加顶点数减去棱数也等于2。接着,欧拉又考察了正12面体、正24面体,发现都有相同的结论。于是继续深入研究这个问题,终于发现了一个著名的定理: 这个公式证明了多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体五种。这个定理成为拓扑学的第一个定理,这个公式被认为开启了数学史上新的一页,促成了拓扑学的发展。 二、图论的发展 从19世纪中叶开始,图论进入第二个发展阶段。这一时期图论问题大量出现,诸如关于地图染色的四色问题、由“周游世界”游戏发展起来的哈密顿(W.Hamilton)问题等。 图的染色问题一直是图论研究的焦点问题。最早记载染色问题的是英国伦敦大学(University of London)的数学教授德?摩根(D.Morgan)。 1852年,一位刚从伦敦大学毕业的学生费南西斯?古色利(F.Guthrie)在研究英国地图时想到了一个奇怪的问题。这个问题被称为世界近代三大数学难题之一,这就是著名的“四色猜想”。问题的起源是这样的: 古色利望着挂在墙上的英国地图发呆,他边数着英国的行政区域,边查找它们的位置,同时还注意各区域的地图着色,看着看着他突然发现,该地图仅用四种不同的颜色便可以将地图中相邻的区域分开。古色利无法解释这一现象,于是他写信给仍在大学读书的弟弟,让他向该校有名的数学家德?摩根请教。摩根首先注意到:区分地图上的不同区域少于四种颜色不行。但遗憾的是摩根本人也未能解决这个问题。于是向自己的好友、著名数学家哈密顿爵士请教。哈密顿接到摩根的信后,对四色问题进行论证。但直到1865年哈密顿逝世,问题也没有能够解决。 1878年,英国数学家凯莱(Cayley)在伦敦数学年会上正式提出该问题——平面或球面上的地图仅需四种颜色可以将任何相邻的两区域分开——且征求解答,人称“四色猜想” 的问题便引起了世界数学界的重视。许多一流的数学家纷纷参加了四色猜想的大会战。1878—1880年,著名的律师兼数学家肯普(Kempe)和泰勒(Taylor)两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。但是数学家赫伍德(Hedwood)仍然花费毕生精力致力于四 图论的起源和发展 李 冰 (河北省唐山第五中学 063000) 图1.1(a) A D C 图1.1(b) 理论研究

离散数学及其使用图论部分课后习题答案

作业答案:图论部分 P165:习题九 1、给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形 表示。 (1),, 111,G V E =<>112345{,,,,}V v v v v v =11223343345{(,),(,),(,),(,),(,)} E v v v v v v v v v v =(2),,222,G V E =<>21V V =11223344551{(,),(,),(,),(,),(,)} E v v v v v v v v v v =(3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,} E v v v v v v v v v v =<><><><><>(4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,} E v v v v v v v v v v =<><><><><>解答:(1 ) (2 ) 10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。 (1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点

。 14、设G 是阶无向简单图,是它的补图,已知,求 (2)n n ≥G 12(),()G k G k δ?==, 。 ()G ?()G δ解答:;。 2()1G n k ?=--1()1G n k δ=--15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。 解答: (c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1 (d )同构,同构函数为 12()3 45 x a x b f x x c x d x e =??=??==??=?=??16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。 解答: (1)三条边一共提供6度;所以点度序列可能是 ①3,3,0,0,0,0;②3,2,1,0,0,0;③3,1,1,1,0,0;④2,2,2,0,0, 0;⑤2,2,1,1,0,0;⑥2,1,1,1,1,0;⑦1,1,1,1,1,1; 由于是简单图,①②两种情形不可能 图形如下:

5经典图论问题

5经典图论问题 5.1 一笔画问题 一笔画算法即是从起点a开始选择关联边(第一这条边不是往回倒,第二这条边在前面延伸路上没有出现过)向前延伸,如果到达终点b,得到a—b迹,判断路上的的边数是否为图的总边数,是就终止,否则选择迹上某个关联边没有用完的顶点v,用同样方式再搜索v—v的闭迹,添加到a—b迹上,即得到a—v---v—b迹,如果这个迹的边数还没有达到总边数,则再选择迹上某个关联边没有用完的顶点。。。。。。逐步扩展即可。

二、弗罗莱(Fleury )算法 任取v 0∈V(G),令P 0=v 0; 设P i =v 0e 1v 1e 2…e i v i 已经行遍,按下面方法从中选取e i+1: (a )e i+1与v i 相关联; (b )除非无别的边可供行遍,否则e i+1不应该为G i =G-{e 1,e 2, …, e i }中的桥(所谓桥是一条删除后使连通图不再连通的边); (c )当(b )不能再进行时,算法停止。 5.2 中国邮递员问题(CPP ) 规划模型: 设ij x 为经过边j i v v 的次数,则得如下模型。 ∑∈= E v v ij ij j i x z ? min ∑ ∑ E ∈E ∈∈=j i i k v v i v v ki ij V v x x , E ∈∈≤j i ij v v N x ,1

5.3旅行推销员问题(TSP,货郎担问题)(NPC问题) 定义:包含图G的所有定点的路(圈)称为哈密顿路(圈),含有哈密顿圈得图称为哈密顿图。 分析:从一个哈密顿圈出发, 算法一:(哈密顿圈的充要条件:一包含所有顶点的连通子图,二每个顶点度数为2) 象求最小生成树一样,从最小权边加边,顶点度数大于3以及形成小回路的边去掉。 算法二: 算法三:

图论及其应用答案电子科大

图论及其应用答案电子 科大 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通,而在G 中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1):

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15 . 2.设给定图G(如右由图所示),则图G的点割集是 {f} . 3.设G是一个图,结点集合为V,边集合为E,则 G的结点度数之和等于边数的两倍. 4.无向图G存在欧拉回路,当且仅当G连通且等于出 度. 5.设G=是具有n个结点的简单图,若在G中每一对结点度数之和大于等于n-1 ,则在G中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V的每个非空子集S,在G中删除S中的所有结点得到的连通分支数为W,则S中结点数|S|与W满足的关系式为W(G-V1) ≤∣V1∣. 7.设完全图K n 有n个结点(n≥2),m条边,当n为奇数时,K n 中存在欧拉回路.姓名:学号:得分:

8.结点数v与边数e满足e=v-1 关系的无向连通图就是树. 9.设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G是无向图,且其结点度数均为偶数,则图G存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G应该是连通图,可以找出一个反例,比如图G是一个有孤立结点的图。 2.如下图所示的图G存在一条欧拉回路. (2) 不正确,图中有奇数度结点,所以不存在是欧拉回路。 3.如下图所示的图G不是欧拉图而是汉密尔顿图. 解:正确 因为图中结点a,b,d,f的度数都为奇数,所以不是欧拉图。

图论及其应用第三章答案(电子科大)

习题三: ● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对 12,u V v V ?∈?∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必 含。 必要性:取 12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 : 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此 得到新图 ,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈 上,于是 中u 与边都位于同一个圈上。 : 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e , 若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,

显然 的是阶数大于3的块,则两条边的三个不同点在同一条路上。 : 连通,若不是块,则中存在着割点,划分为不同的子集块,,,无 环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。 证明:是单图的割点,则 有两个连通分支。现任取, 如果不在的同一分支中,令是与 处于不同分支的点,那么,与在的补图中连通。若在的同一分支中,则它们在 的补图中邻 接。所以,若是的割点,则不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通 度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可 能k(H)> k(G). 解: 通常.

图论习题及答案

作业解答 练习题2 利用matlab编程FFD算法完成下题: 设有6种物品,它们的体积分别为:60、45、35、20、20和20单位体积,箱子的容积为100个单位体积。 解答一: function [num,s] = BinPackingFFD(w,capacity) %一维装箱问题的FFD(降序首次适应)算法求解:先将物体按长度从大到小排序, %然后按FF算法对物体装箱 %输入参数w为物品体积,capacity为箱子容量 %输出参数num为所用箱子个数,s为元胞数组,表示装箱方案,s{i}为第i个箱子所装 %物品体积数组 %例w = [60,45,35,20,20,20]; capacity = 100; % num=3,s={[1,3],[2,4,5],6}; w = sort(w,'descend'); n = length(w); s = cell(1,n); bin = capacity * ones(1,n); num = 1; for i = 1:n for j = 1:num + 1 if w(i) < bin(j) bin(j) = bin(j) - w(i); s{j} = [s{j},i]; if j == num + 1 num = num + 1; end break; end end end s = s(1:num); 解答二: clear; clc; V=100; v=[60 45 35 20 20 20]; n=length(v); v=fliplr(sort(v)); box_count=1; x=zeros(n,n);

V_Left=100; for i=1:n if v(i)>=max(V_Left) box_count=box_count+1; x(i,box_count)=1; V_Left=[V_Left V-v(i)]; else j=1; while(v(i)>V_Left(j)) j=j+1; end x(i,j)=1; V_Left(j)=V_Left(j)-v(i); end temp=find(x(i,:)==1); fprintf('第%d个物品放在第%d个容器\n',i,temp) end output: 第1个物品放在第1个容器 第2个物品放在第2个容器 第3个物品放在第1个容器 第4个物品放在第2个容器 第5个物品放在第2个容器 第6个物品放在第3个容器 解答三: function box_count=FFD(x) %降序首次适应算法 v=100; x=fliplr(sort(x)); %v=input('请输入箱子的容积:'); n=length(x); I=ones(n); E=zeros(1,n); box=v*I; box_count=0; for i=1:n j=1; while(j<=box_count) if x(i)>box(j) j=j+1; continue; else

相关文档
最新文档