遥感图像的种类与特性
遥感影像的判读

覆盖范围和分辨率
根据研究区域的大小和所需的精 度,选择合适的覆盖范围和空间
分辨率的遥感影像。
时相选择
根据目标的变化情况,选择合适 时相的遥感影像,以获取最佳的
监测效果。
注意影像的时间和空间分辨率
时间分辨率
关注遥感影像的时间分辨率,即影像 获取的频率,以确保能够及时监测到 目标的变化。
空间分辨率
地物空间特征
总结词
地物空间特征是指地物在空间分布和形态上的特征,包括大小、形状、纹理、结构等。
详细描述
地物空间特征是遥感影像解译的重要依据之一。不同地物在空间分布和形态上存在差异, 这些差异可以通过遥感影像的几何特征和纹理特征表现出来。通过对这些特征的分析和
识别,可以区分不同的地物类型。
地物动态特征
水体动态监测
通过遥感影像监测水体的 水位、流速和流向等信息, 及时发现水灾和污染等灾 害。
水生态系统调查
通过遥感影像调查水生生 物种类、数量和水域环境 等信息,为水生态保护和 水资源管理提供支持。
05 遥感影像判读的注意事项
选择合适的遥感影像
遥感影像类型
根据任务需求选择合适的遥感影 像类型,如光学影像、雷达影像
遥感影像判读与生态学、环境科学等领域的结合,有助于 深入了解地球生态系统和环境变化,为环境保护和可持续 发展提供科学依据。
遥感影像判读与人工智能、机器学习等领域的结合,将进 一步推动遥感影像判读技术的发展和应用。
THANKS FOR WATCHING
感谢您的观看
作物类型与种植面积
农业资源调查
通过遥感影像识别不同作物的光谱特 征和种植面积,分析农业种植结构和 发展趋势。
通过遥感影像调查农业土地资源、水 资源和农业设施等信息,为农业规划 和生产提供支持。
遥感概论第12章 遥感图像的分类 122.12 第12章 遥感图像的分类

(4)训练样区的选择原则
为了提高训练样区的有效性,需遵循以下选取原则 • 像元的数量:每个类别至少在100个以上 • 训练样区的大小:过大会造成光谱混杂,过小又不能足以
代表信息类别,需要根据研究区的地物复杂程度、影像分 辨率等情况根据实践经验判断 • 训练样区的形状:无具体要求,一般采用矩形 • 训练样区的位置:第一要求每个信息类别的训练样区尽可 能均匀分布整个影像;第二要求训练样区便于在航片或地 面查找,也就是方便地面验证
影像分类是遥感、影像分析和模式识别的重要组成部分
• 影像分类可以作为影像分析的直接目标:如土地利用分类、 农作物种类识别、湿地类型识别等,以分类影像作为成果
• 影像分类也可以作为影像分析的中间环节:如研究森林情 况,需要先提取出森林的范围;研究草地或农业情况,需 要先提取出草地和耕地的范围等
在影像分类过程中,需要用到分类器:即按照一定方法进 行影像分类的计算机程序
(3)训练数据选择的重要性
选取训练样本前,必须对研究区进行充分的了解,不仅要 分析研究区的参考资料,而且要实地调查,才能确定每个 信息类别的训练样本区
有学者认为:训练样本的不同比分类算法的不同对精度的 影响更大
• 相同的训练数据,不同分类算法得到的分类精度差别不大 • 相同的分类算法,不同的训练样本得到的分类精度差别大 研究表明,选择多个随机分布的小面积训练样区比只选少
5 其他分类方法
纹理分类 • 利用相邻像元之间的空间和光谱关系进行分类 • 实际研究也表明,利用影像纹理结构能改善分类效果 分层分类策略 • 指基于一个分类层级(分类树)而逐步分类的过程,即建
立对应类别的提取规则将各种地类逐步分离出来
模糊分类
遥感图像几种分类方法的比较

摘要遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。
遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。
遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。
非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。
非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。
而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。
从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。
但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。
本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。
在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。
关键词:TM遥感影像,图像分类,最大似然法,决策树题目:遥感图像几种分类方法的比较........................................ 错误!未定义书签。
摘要.. (1)第一章绪论 (3)1.1遥感图像分类的实际应用及其意义 (4)1.2我国遥感图像分类技术现状 (5)1.3遥感图像应用于测量中的优势及存在的问题 (6)1.3.1遥感影像在信息更新方面的优越性 (6)1.3.2遥感影像在提取信息精度方面存在的问题 (6)1.4研究内容及研究方法 (8)1.4.1研究内容 (8)1.4.2 研究方法 (8)1.5 论文结构 (9)第二章遥感图像的分类 (9)2.1 监督分类 (9)2.1.1 监督分类的步骤 (9)2.1.2 最大似然法 (11)2.1.3 平行多面体分类方法 (12)2.1.4 最小距离分类方法 (13)2.1.5监督分类的特点 (13)2.2 非监督分类 (14)2.2.1 K-means算法 (14)K-均值分类法也称为 (14)2.2.2 ISODATA分类方法 (15)2.2.3非监督分类的特点 (17)2.4遥感图像分类新方法 (17)2.4.1基于决策树的分类方法 (17)2.4.2 人工神经网络方法 (19)2.4.3 支撑向量机 (20)2.4.4 专家系统知识 (21)2.5 精度评估 (22)第三章研究区典型地物类型样本的确定 (24)3.1 样本确定的原则和方法 (24)3.2 研究区地物类型的确定 (24)3.3样本区提取方案 (25)3.4 各个地物类型的样本的选取方法 (25)3.4.1 建立目视解译标志 (25)3.4.2 地面实地调查采集 (26)3.4.3 利用ENVI遥感图像处理软件选取样本点 (26)第四章遥感图像分类实验研究 (26)4.1遥感影像适用性的判定 (26)4.2分类前的预处理 (28)4.2.1空间滤波的处理 (28)4.2.2 频域滤波处理 (28)4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30)4.3.1监督分类 (30)4.3.2 决策树 (33)4.4分类后的处理 (35)4.5 精度的比较 (36)第五章结论和展望 (37)参考文献 (37)致谢 (39)第一章绪论土地利用研究是全球环境变化研究的重要组成部分,土地利用变化驱动因子的研究也是目前研究的热点之一。
第五章遥感图像处理§5—1遥感信息数据的种类及其传输-遥感技术基础

凡是既记录电磁波的振幅,又记录位相的胶片都称为遥感波带片。合 成孔径侧视雷达直接获得的就是一种波带片。 在合成孔径侧视雷达系统中,设有一位相稳定的参考波束,每一地面 点的雷达回波与参考波束同时记录在胶片上,实质上,胶片记录的就是两 者的干涉图。用这种方式就能将回波振幅与位相同时记录下来,经激光再 现,便能获得可供解译的雷达图像。 二、遥感磁带的种类 模拟磁带是一种暂时记录工具,它记录的是一种模拟电压曲线,再经 电光转换变成光信号。以扫描方式记录在胶片上,模拟磁带可多次重复使 用,记录并传递大量信息,使星载传感器结构简化,轻便。 2 .数字磁带 探测系统输出的电压信号,经过模数转换器 (A / D) ,对电压曲线分段 读数,然后记录在磁带上,即为数字磁带 (digital tape) 。它又可分为两种: (1) 高密度数字磁带 (HDDT) : 指采用并行记录格式,每英寸记录 10 4 位以上二进制数据的磁带。这 种磁带不能直接输入计算机,需经过磁带转换机处理。 (2) 计算机兼容磁带 (CCT) 指每英寸记录 800 位或 1600 位二进制数据 的磁带。记录密度远远低于 HDDT 。 三、遥感信息数据传输 空中的遥感设备能否将传感器所获取的信息数据适时传送到地面,是 衡量一项遥感计划成败的标准。航空遥感都是直接回收胶卷或磁带,传输 方面不存在什么问题,这里只针对航天遥感而言。 星载传感器的信息数据返回地面的方式有两种,一种是由卫星按地面 指令弹射出资料舱,然后在空中或海上打捞回收;但更多的是通过无线电 信道将信息数据传输到地面,叫视频传输。由于地面站接收范围有限,故 后者又有实时传输和非实时 ( 延时 ) 传输之分。非实时传输是在星上磁带机
[0 ,A] 称为灰度区间,通常将 f(x ,y) = 0 定为黑色 ,f(x ,y)=A 定为白色, 所有中间值都是由黑连续地变为白时的灰度等级。由此可见,所谓光学图 像就是人眼可观察的图像,其基本特点是:它的灰度 ( 或彩色 ) 在像幅几何 空间 ( 二维 ) 和图像灰度空间 ( 第三维 ) 上的分布都是连续的无间断的。 如果我们将一幅光学图像在像幅空间和灰度空间上离散化,即将 其划 分为 M*N 的空间格网,并将在每一格网上量测的平均灰度值数字化,如 图 5 — 5 所示,则我们可得到一个由离散化的坐标和灰度值组成的 M*N 数 字矩阵:
遥感第3章--遥感成像原理与遥感图像特征

遥感车--地面遥感平台
• 高空平台(5-10km)
航摄飞机
运七 运八
其他:里尔、双水獭、 空中国王等
遥感飞机
• 中低空(1-8Km)
航摄飞机
运十二 运五
• 其他飞机(500m)
蜜蜂3 无人机
航摄飞机
GT50 0
航天飞机
遥感卫星
遥感卫星
§3.1 遥感平台与遥感器
3.1.2 遥感器与遥感图像特征参数
❖ 按传感器的工作波段分为:可见光传感器、红外传感器 和微波传感器,从可见光到红外区的光学波段的传感器 统称光学传感器,微波领域的传感器统称为微波传感器。
§3.1 遥感平台与遥感器
二、遥感器的分类
❖ 按工作方式分为
(1)主动方式传感器:侧视雷达、激光雷达、 微波辐射计。
(2)被动方式传感器:航空摄影机、多光谱扫 描仪(MSS)、TM、ETM、HRV、红外扫描仪 等。
❖ 热红外像片:8~14μm。
热红外像片典型特征:热阴影;
高速运动热物体的“拖迹”;
(参见教材P144 )
受风的影响较大。
§3.2 摄影成像
3.2.4 摄影像片的种类与特点
摄影像片特点: (1) 投影方式:绝大部分采用中心投影方式成像; (2) 视觉感受:大部分为大中比例尺像片,像片中各种人造地物 的形状特征与图型结构清晰可辨,从航空像片上可看到地物顶 (冠)的形态; (3) 阴影:本影与落影受地物在相片上的方位影响。 详见教材P145
些情2)况利下用,数波理统段计太方多法,,分选辨择率相关太性高小,、接方收差到大的信 息的量图太像大。熵,,形方成差海大量,数信据息量,大反。而会“掩盖”地物
辐射特性,不利于快速探测和识别地物。
遥感图像的种类与特性

02.
二.全景式摄影像片特性
㈠.全景像片的空间特性
投影性质与影像畸变 投影性质:全景影像沿缝隙方向的一维中心投影 影像畸变:全景畸变+扫描位置畸变+像移补偿畸变 全景摄影机
摄影畸变—尺度(上下比例,左)与角度(右)
比例尺
地面的连续覆盖 ⊥航迹方向--由缝隙扫描完成 ∥航迹方向--由平台运行完成
旁向重叠
航向重叠
(三)帧幅式航片的空间特性
投影性质及比例尺
投影性质——地面的中心投影
比例尺:各处影像会出现不一致。
中心投影与垂直投影的比较
两种投影方式比较,当投影面倾斜时,像片各部分的比例尺变化不同,像片各部分的位移量(径向距离)不等(倾斜误差)
二者等比例与不等比例之缩小
两种投影方式比较,当地形起伏时,物体的像点位移称为“投影误差”
航片立体观察
㈣.航空像片的波谱特性
航片以色调或色彩以及由它们组合的形态特征反映地物对可摄影波段(0.3-1.3μm)电磁波的反射特征 影像色调或色彩是地物反射波谱特性的表征,是从波谱学角度识别地物的重要解译标志。 黑白全色航片 黑白红外航片 天然彩色片 彩色红外片 多波段航片
指影像上某一线段的长度与地面上相应地物的水平距离的比值。
理想条件下:由遥感光学系统的焦距和遥感平台的航高之比确定,即f/H。 注意:受中心投影性质所限,不同于垂直投影,受地形起伏及在像幅的位置影响,图像各处比例尺可能不一致。
遥感影像均经光学系统聚焦成像,透镜的成像规律和遥感器成像方式决定了遥感图像的投影性质,不同投影性质会产生不同性质的影像几何畸变。
波谱特性(波谱分辨率辐射分辨率)
时间特性
空间特性
3.2.2 遥感图像的基本属性
㈠.波谱特性(波谱分辨率、辐射分辨率)
遥感图像分类常见方法

遥感图像分类常见方法一、前言遥感分类算法大致有三个阶段(1)基于传统数学统计的方法;(2)经典机器学习;(3)深度学习。
按是否有样本可以分为监督分类和非监督分类两种。
实现分类的流程是:特征+算法二、分类之特征工程分类本来就是计算机领域的问题,遥感分类的本质也是图像处理。
遥感分类属于CV领域的一个子集。
不论是监督还是非监督,分类的前提是特征工程。
构建特征工程的目的是突出关注目标和其他目标之间的差异,从而使得分类具有更好的效果。
遥感的特征工程可以大致分为三类:(1)纹理特征,(2)光谱特征,(3)时序特征。
当然,由上述特征还可延伸出LAI等生物量信息,但其本质上是由光谱特征反演出来的。
(1)纹理特征纹理特征一般从高空间分辨率的遥感影像提取才有效果,纹理特征又可以分为以下三种:统计方法:灰度共生矩阵、灰度游程长度法等模型方法:自相关模型、Markov随机场模型、分形模型等数学变换方法:空间域滤波、傅里叶滤波, Gabor和小波模型等。
(2)光谱特征光谱特征包括地物原始光谱反射率和衍生植被指数两种。
光谱特征较纹理特征容易获得,缺点是反射光谱容易受到“同物异谱”和“异物同谱”的影响。
光谱特征:R,G,B,NIR等衍生植被指数:NDVI,EVI等(3)时序特征由多时相遥感数据提取的特征成为时序特征,包括光谱时序和纹理时序。
时序特征可以描述作物在生育进程中动态的生长变化,已成为遥感农作物分类的重要特征支撑。
大量研究表明,生育期内高频次的时间特征会显著提升分类效果;多特征时间序列比单特征时间序列更能表征不同作物之间的差异特征比较特征的计算是基于数学方法计算的。
(1)光谱植被指数就是加、减、乘,除;(2)纹理特征一般通过滤波模板计算;(3)但数学中更高级,更有用的特征应该是偏导,在矩阵中,偏导及其重要。
因为偏导能够综合多个变量,因此个人认为,偏导特征会更具优势。
传统的统计学方法偏导较少,机器学习次之,深度学习偏导参数最多。
遥感知识

遥感知识集锦一. 遥感的基本概念1. 遥感的基本知识“遥感”一词来自英语Remote Sensing,从字面上理解就是“遥远的感知”之意。
顾名思义,遥感就是不直接接触物体,从远处通过探测仪器接受来自目标物体的电磁波信息,经过对信息的处理,判别出目标物体的属性。
实际工作中,重力、磁力、声波、机械波等的探测被划为物理探测(物探)的范畴,因此,只有电磁波探测属于遥感的范畴。
根据遥感的定义,遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用这五大部分。
1. 目标物的电磁波特性任何目标物体都具有发射、反射和吸收电磁波的性质,这是遥感探测的依据。
2. 信息的获取接受、记录目标物体电磁波特征的仪器,称为“传感器”或者“遥感器”。
如:雷达、扫描仪、摄影机、辐射计等。
3. 信息的接收传感器接受目标地物的电磁波信息,记录在数字磁介质或者胶片上。
胶片由人或回收舱送至地面回收,而数字介质上记录的信息则可通过卫星上的微波天线输送到地面的卫星接收站。
4. 信息的处理地面站接收到遥感卫星发送来的数字信息,记录在高密度的磁介质上,并进行一系列的处理,如信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换为用户可以使用的通用数据格式,或者转换为模拟信号记录在胶片上,才能被用户使用。
5. 信息的应用遥感技术是一个综合性的系统,它涉及到航空、航天、光电、物理、计算机和信息科学以及诸多应用领域,它的发展与这些科学紧密相关。
2. 遥感的分类1)按遥感平台分地面遥感:传感器设置在地面上,如:车载、手提、固定或活动高架平台。
航空遥感:传感器设置在航空器上,如:飞机、气球等。
航天遥感:传感器设置在航天器上,如:人造地球卫星、航天飞机等。
2)按传感器的探测波段分紫外遥感:探测波段在0.05~0.38μm之间。
可见光遥感:探测波段在0.38~0.76μm之间。
红外遥感:探测波段在0.76~1000μm之间。
微波遥感:探测波段在1mm~10m之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分辨率:5米,地面上每5米的物品在影像中占1个像素, 相当于视角高度约为4km
分辨率:2米,地面上每2米的物品在影像中占1个像素,相 当于视角高度约为1.8km
分辨率:1米,地面上每1米的物品在影像中占1个像素, 相当于视角高度约为500m
分辨率:0.5米,地面上每0.5米的物品在影像中占1个像素, 相当于视角高度约为300m
Google Earth的影像是卫星影像与航拍的数据整合. 卫星影像部分:QuickBird(快鸟)、LANDSAT-7等; 航拍部分:BlueSky公司(英国公司,以航拍、GIS/GPS相关业务为主)、Sanborn公
司、美国公DigitalGlobe公司的QuickBird(快鸟)、美国IKONOS及法国的SPOT5。
• (一)波谱特性(波谱分辨率辐射分辨率) • (二)空间特性 • (三)时间特性
㈠.波谱特性(波谱分辨率、辐射分辨率)
• 影像灰度或色彩差异——遥感图像上波谱特性差异。 实为其响应( 感测) 波段内电磁辐射能量大小的反映。
黑白全色像片 天然彩色像片 黑白红外像片 彩色红外像片
热红外图像
成像雷达图像
地形起伏越大,重叠率相应要加大。
旁向重叠
航向重叠
(三)帧幅式航片的空间特性
1.投影性质及比例尺 • 投影性质——地面的中心投影 • 比例尺:各处影像会出现不一致。
– 在地形起伏地区:各影像点相对航高不同--不同高程处地物影像比例尺不 同→地形起伏地区航片只能概略表示
中心投影与垂直投影的比较
◆两种投影方式比较,当投影面倾斜时,像片各部 分的比例尺变化不同,像片各部分的位移量(径向 距离)不等(倾斜误差)
二 者 等 比 例 与 不 等 比 例 之 缩 小
两种投影方式比较,当地形起伏时,物体的像点位移 称为“投影误差”
二 者 投 影 点 相 对 位 置 变 化 比 较
• 主比例尺:以航测高差仪记录的像底点的 航高(航摄技术鉴定书提供)计算的比例尺。
——通常以主比例尺代表像片比例尺。
2.地形起伏引起的像点位移与影像畸变
图
像
固体自扫描图像
天线扫描图像
红外扫描图像(中、远红外) 多波段扫描图像(紫外-远红外) 超多波段扫描图像(可见光-近红外)
固体自扫描图像(可见光-近红外)
成像雷达图像(微波)
热红外图像 MSS、TM图像 成像波谱仪图像
HRV图像 合成孔径雷达图像
既能体现影像特征又能揭示影像的信息内涵
3.2.2 遥感图像的基本属性
⑴.中心投影 地面上各物点的投影光线都通过一个 固定点(S)投影到投影面(P1 、 P2)上形成 的透视影像称中心投影。 负像(负片) -- P1与地物位于S两侧 正像(正片) -- P2与地物位于S同侧
(2).多中心投影(扫描中心 投影)
• 光机扫描影像为逐点行式扫 描成像,每个像点都有各自 的投影中心,但同一扫描线 上各像元成像时间相差甚小, 可认为每一扫描行有一个投 影中心,光机扫描影像为多 中心投影。
Panchromatic
Black and White Infrared
Normal Color
False-color Infrared
1.黑白全色航片:
地物影像色调一般规律
消色物体——与物体本色一致或接近
彩色物体——与物体本色有一定的对应关系
2.黑白红外航片:色调取决于地物对近红外波的反射程 度,与人眼对物体的感受无关
象。 • 遥感影像:由遥感器对地球表面摄影或扫描获得的影像。 • 遥感图像:遥感影像经过处理或再编码后产生的与原物相似的形象。 • 光学摄影成像的二维连续的图像----像片(Photograph). • 扫描成像的一维连续一维离散或二维离散的图像----图像 (Im遥感图像分类表
4.地面的连续覆盖
⊥航迹方向--由缝隙扫描完成 ∥航迹方向--由平台运行完成
㈡.全景像片的波谱特性
• 取决于所用胶片类型和特性 如: 国土卫星地物像机使用的: 黑白全色胶片(0.4~0.7μm):色调特征与全色黑白航片相似 彩红外反转片(0.5~0.8μm):色调特征与彩红外航片相似
遥感艺术欣赏—— Google Earth拍摄的奇特地貌照
(一)帧幅式航空像片种类
• 航空像片 --航空摄影获取的反映地面特征的影像像片 • 航空摄影 --指运用安装在航空平台上的帧幅式航空摄影机
对地面进行光学成像,用感光胶片直接记录地物反射的 0.3~1.3μm 波段电磁波,并取得像片的整个过程 按工作波段和所使用的胶片,可分为: • 全色黑白 • 天然彩色 • 红外黑白 • 红外彩色 • 多波段航空像片……
成像方式
工作波段
实例
光
常规摄影像片
学
摄
影
像 片 非常规摄影像片
电子扫描图像
黑白全色像片(可见光) 天然彩色像片(可见光)
黑白红外像片(近红外) 彩色红外像片(近红外)
紫外像片 (紫外) 多波段像片(紫外-近红外) 全景像片(可见光-近红外)
电视摄像图像(可见光)
航空像片 航天像片
RBV图像
扫
描
光机扫描图像
常规摄影畸变现象——
畸变对成像的影响
摄影畸变—地形
㈢.时间特性
遥感影像是成像瞬间地物电磁辐射能量的记录,而地物具有时相变化: • 自然变化过程:即发生--发展--演化过程 • 节律:即事物的发展在时间序列上表现出某种周期性重复的规律--亦即地物
的波谱特性随时间的变化而变化。 所以:遥感影响的时间特性与遥感器时间分辨率;成像季节及时间有关。
分辨率:25厘米,地面上每25厘米的物品在影像中占1个像素, 相当于视角高度约为150m
分辨率:12.5厘米,地面上每12.5厘米的物品在影像中占1个 像素,相当于视角高度约为80m
分辨率:10厘米,地面上每10厘米的物品在影像中占1个像素, 相当于视角高度约为60m,或20楼的高度
2.影像比例尺
多波段、超多波段图像
反映地物对可见光的反射能量
反映地物在部分可见光和摄影 红外波的反射能量
反映地物在热红外波段的热辐 射能量(辐射温度) 反映地物对人工发射微波后向散 射回波的强度 其灰度是其各自响应波段辐射 能量大小的反映
㈡.空间特性 (几何特性)
——是从形态学方面识别地物、测绘地图、建 立解译标志、图像几何校正及增强处理的重 要依据
Normal Color
False-color Infrared
5.多波段航片
• 取决地物对相应通道工作波段的电磁波反射程 度,与地物色彩有关。
(五)帧幅式航片影像质量评定
• 黑白航片:清晰、黑度适中、反差正常、色调层次丰富、色调均匀、无黑斑 与云影、无伤痕。
• 彩色航片:色别清晰、色差正常、地物各部分明度变化明显、色彩丰富、饱 和度较高。
3.2 遥感图像的种类与特性
3.2.1 遥感图像的种类 3.2.2 遥感图像的基本属性 3.2.3 光学摄影像片特性 3.2.4 光机扫描图像特性 3.2.5 固体自扫描图像特性 3.2.6 成像雷达图像特性
3.2.1 遥感图像的种类
几个概念: • 影像:由地物反射或自身发射的电磁辐射,通过成像系统处理后产生与原物相似的形
• 指影像上某一线段的长度与地面上相应地物 的水平距离的比值。
理想条件下:由遥感光学系统 的焦距和遥感平台的航高之比 确定,即f/H。
注意:受中心投影性质所限, 不同于垂直投影,受地形起伏 及在像幅的位置影响,图像各 处比例尺可能不一致。
3.投影性质与影像几何畸变
• 遥感影像均经光学系统聚焦成像,透镜的成像规律和遥感器 成像方式决定了遥感图像的投影性质,不同投影性质会产生 不同性质的影像几何畸变。
• 强反射近红外地物--健康植物--明亮的浅色调
• 强吸收近红外地物--水体--暗(黑)色调
黑 白 全 色
Panchromatic
黑 白 红 外
Black and White Infrared
-
(美,哈德逊河)
3.天然彩色片--真彩色 影像色彩与地物原色一致 4.彩色红外片--假彩色 其色彩只具象征性,而非地物原色
• 涉及:
– 成像遥感器的空间分辨率; – 图像投影性质、比例尺、几何畸变等
1.空间分辨率 • 指图像能分辨具有不同反差、相距一定距离相邻目标的能力 。 • 表示方法: ⑴.影像分辨率:指用显微镜观察时,1mm宽度内能分辨出的相间排列的黑白线对数。 • 影响因素:感光材料(显示器)分辨率、影像比例尺、 相邻地物间的反差 ⑵.地面分辨率:指遥感影像上能分辨的地物间的最小距离。(非识别)
• 像点位移(δh) (投影差): 由中心投影造成,在地面上平面坐标 相同但高程不同的点,在像平面上的像点坐标不同 --这种像 点位置的移动,称像点位移。 影像畸变
像平面
基准面
3.空间分辨率 • 航片影像分辨率一般在25~100线对/mm • 地面分辨率(m)
4.航片立体观察 • 是目视解译的一种重要手段。 • 在满足立体观察条件时,可以将二维影像转化为三维空间的光学立体模型,突出地
全景摄影机
摄影畸变—尺度(上下比例,左)与角度(右)
2.比例尺
• 与航向(xx’)平行的各条横线间的比例尺不同,但每条横线上 比例尺相同;
• 航迹上的主横线比例尺最大, 向两侧对称状变小; • 与航向垂直的纵线上各点比例尺不同,向两侧对称状变小。
3.地面分辨率
∵斜距随扫描角变化 ∴不同扫描角处影像地面分辨率不同→同一面积像平面覆盖 的地面面积不同。
(二)帧幅式航空像片的地面覆盖与影像重叠
• 面积航空摄影:由许多平行直线性航线组成
为保证连续覆盖和像对立体观察--相邻像片间需要有部分影像重叠: • 航向重叠:沿航向方向的影像重叠,重叠率>60%