桥梁工程结构病害与加固施工技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈桥梁工程结构病害与加固施工技术

【摘要】本文结合笔者多年施工经验,详细分析了桥梁工程结构的主要病害及成因,并提出相应的加固施工技术,提高桥梁工程质量,并供同行参考。

【关键词】桥梁病害;成因;加固技术

1、引言

目前,随着我国社会经济的不断发展,汽车保有量快速增加,基础建设的大量投入,我国桥梁建造技术已进入世界先进水平的行列。但由于我国大量桥梁工程数量的增加及长期使用,我国公路桥梁的养护、维修、加固、改造技术方面尚有待进一步提高。因此,桥梁的病害分析、诊断及处理成为了今后桥梁养护工作的重点。2、常见桥梁病害分类

(1)桥梁两端处路面开裂,新旧桥连接处路面沿纵向开裂。(2)由于施工工艺和施工质量存在问题,底板预应力钢丝混凝土保护层厚度偏薄,预应力钢丝(多为中丝)外露锈蚀,梁底外观不光滑;普通钢筋混凝土板部分桥梁梁底裂缝渗水;存在纵向裂缝、腹板斜裂缝和横向裂缝,甚至腹板斜裂缝已贯通腹板。

(3)连续梁桥跨中附近存在横向裂缝并贯穿梁底,漏水。

(4)由于基础沉降引起旧桥墩台部分有竖向裂缝,但裂缝形态较陈旧,发展已经稳定,对桥梁运营影响一般不大。

(5)由于桥梁边梁梁底被过往车辆撞伤,伴随有梁间接缝填料剥落,混凝土脱落;预应力钢丝断丝并锈蚀,预应力钢绞线裸露锈

蚀,横向光面钢筋外露;光面箍筋外露锈蚀;梁底有划痕等现象。通过以上病害的表现形式及事例分析并结合静载试验、桥梁受力分析、道路运营状况及偶然事件的发生判定病害主要为以下六类。(1)正常使用状态问题:梁体主要受拉区在荷载作用下开裂或原有裂缝有扩展,钢筋应力较大,结构使用状态出现问题;但梁体本身受压区未破损,受拉筋未损失,结构的极限强度并未减少。(2)极限状态问题:梁体主要受力区在荷载作用下,截面应变符合平截面假定,截面应力较小,梁体在荷载作用下没有开裂或原有裂缝稳定,没有新的扩展,结构的使用状态没有问题;但梁体由于被撞而造成钢筋或预应力钢丝断裂,使梁体现有配筋与原设计相比减少,结构的极限强度降低。

(3)梁体底板混凝土保护层厚度过薄、露筋。

(4)车辆撞伤及部分桥梁设施丢失。

(5)结构出现裂缝。

(6)新旧桥面出现通长的纵向裂缝。

3、加固设计原则

加固设计是以实测数据为依据,以现行规范为标准,对现有结构进行补强设计,使现有结构在补强后能满足原设计的要求或满足规范和正常安全运营的要求。

4、桥梁病害的形成与诊断

4.1环境因素引起的混凝土结构损伤或破坏

4.1.1混凝土的碳化

混凝土的碳化是指混凝土中氢氧化钙与渗透进混凝土中的二氧化碳或其他酸性气体发生化学反应的过程。一般情况下混凝土呈碱性,在钢筋表面形成碱性薄膜,保护钢筋免遭酸性介质的侵蚀,起到了“钝化”保护作用。碳化的实质是混凝土的中性化,使混凝土的碱性降低,钝化膜破坏,在水分和其他有害介质侵入的情况下,钢筋就会发生锈蚀。

4.1.2氯离子的侵蚀

氯离子对混凝土的侵蚀是氯离子从外界环境侵入已硬化的混凝土造成的。海水是氯离子的主要来源,北方寒冷地区冬季道路、桥面撒盐化雪除冰都有可能使氯离子渗入混凝土中。氯离子对混凝土的侵蚀属于化学侵蚀,对结构的危害是多方面的,但最终表现为钢筋的锈蚀。

4.1.3碱—骨料反应

碱—骨料反应,一般指水泥中的碱和骨料中的活性硅发生反应,生成碱—硅酸盐凝胶,并吸水产生膨胀压力,造成混凝土开裂。碱—骨料反应引起的混凝土结构破坏程度,比其他耐久性破坏发展更快,后果更为严重。碱—骨料反应一旦发生,很难加以控制,一般不到两年就会使结构出现明显开裂,所以有时也称碱-骨料反应是混凝土结构的“癌症”。

碱—骨料反应破坏的最重要特征之一是混凝土表面开裂,裂缝的形态与结构中钢筋形成的限制和约束状态有关:钢筋限制、约束力强的混凝土形成顺筋裂缝;钢筋限制约束作用弱的混凝土形成网状

或地图状裂缝,在裂缝处有白色凝胶物渗出。

4.1.4冻融循环破坏

渗入混凝土中的水有低湿下结冰膨胀,从内部破坏混凝土的微观结构。经多次冻融循环后,损伤积累将使混凝土剥落酥裂,强度降低。冻融循环破坏的混凝土剥落,开始时在混凝土表面出现粒径为2~3 mm的小片剥落,随着使用年限的增加,剥落量及剥落块直径增大,剥落由表及里,发展速度很快。一经发现冻融引起的混凝土剥落,必须密切注意剥落的发展情况,及时采取修补措施。

4.1.5钢筋锈蚀

混凝土中钢筋腐蚀的首要条件是钝化膜的破坏,混凝土的碳化及氯离子侵蚀都会造成覆盖钢筋表面的碱性钝化膜的破坏,加之有水分和氧的侵入,就可能引起钢筋的腐蚀。钢筋腐蚀伴有体积膨胀,使混凝土出现沿钢筋的纵向裂缝,造成钢筋与混凝土之间的粘结力破坏,钢筋截面面积减少,使结构构件的承载力降低,变形和裂缝增大等一系列不良后果,并随着时间的推移,腐蚀会逐渐恶化,最终可能导致结构的完全破坏。

值得注意的是,上述所有侵蚀混凝土和钢筋的作用都需要有水作介质。另一方面,几乎所有的侵蚀作用对混凝土结构的破坏都与侵蚀作用引起的混凝土膨胀,最终导致混凝土的开裂有关。而且当混凝土结构开裂后,腐蚀速度将大大加快。导致混凝土结构的耐久性进一步退化的恶化循环。因此,对新建结构而言,提高混凝土结构耐久性的基本途径是增强混凝土的密实度,防止和控制混凝土开

裂,阻止水分的侵入;加大混凝土保护层的厚度,防止由于混凝土保护层碳化引起钢筋钝化膜破坏。对于在使用结构而言,提高混凝土结构耐久性的基本思路是在清除病害根源的基础上,封堵裂缝,修补破损混凝土;增设防水层,防止水分的侵入。

4.2混凝土结构的裂缝分析

实践表明,混凝土结构的任何损伤与破坏,一般都是首先在混凝土中出现裂缝,裂缝是反映混凝土结构病害的晴雨表。所以,对混凝土结构的损伤检测,首先应从对结构的裂缝调查、检测与分析入手。混凝土结构的裂缝是由材料内部的初始缺陷、微裂缝的扩展而引起的。引起裂缝的原因很多,主要有以下两类:

第一类,由外荷载引起的裂缝,称为结构性裂缝(又称为受力裂缝),其裂缝的分布及宽度与外荷载有关。这种裂缝的出现,预示结构承载力可能不足或存在其他严重问题。

第二类,由变形引起的裂缝,称为非结构性裂缝,如温度变化、混凝土收缩等因素引起的结构变形受到限制时,在结构内部就会产生抗应力,当此应力达到混凝土抗拉强度极限值时,即会引起混凝土裂缝,裂缝一旦出现,变形得到释放,拉应力也就消失了。

两类裂缝有明显的区别,危害效果也不相同,有时两类裂缝融在一起。调查资料表明,在两类裂缝中以变形引起的裂缝占主导的约80%,以荷载引起的裂缝占主导的约20%。对裂缝原因的分析是裂缝危害性评定,裂缝修补和加固的依据,若对裂缝不经分析研究就盲目进行处理,不仅达不到预期的效果,还可能潜藏着突发性事故的

相关文档
最新文档