固体物理题库及答案
固体物理试题分析及答案

固体物理试题分析及答案一、单项选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是由哪种原子排列形成的?A. 金属原子B. 非金属原子C. 金属原子和非金属原子D. 任意原子答案:C解析:晶体的周期性结构是由金属原子和非金属原子按照一定的规律排列形成的,这种排列方式使得晶体具有长程有序性。
2. 哪种类型的晶体具有各向异性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:C解析:单斜晶体属于三斜晶系,其三个轴的长度和夹角均不相同,因此具有各向异性。
3. 固体物理中,电子的能带结构是由什么决定的?A. 原子核B. 电子C. 原子核和电子D. 晶格答案:C解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。
4. 哪种类型的晶体具有完整的布里渊区?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有完整的布里渊区,这是因为立方晶体的晶格常数相等,使得布里渊区的形状为正八面体。
5. 固体物理中,哪种类型的晶体具有最高的对称性?A. 立方晶体B. 六角晶体C. 单斜晶体D. 等轴晶体答案:A解析:立方晶体具有最高的对称性,这是因为立方晶体的晶格常数相等,且晶格中的原子排列具有高度的对称性。
二、填空题(每题2分,共10分)1. 晶体的周期性结构是由______和______共同决定的。
答案:原子核、电子解析:晶体的周期性结构是由原子核和电子共同决定的,原子核提供了晶格的框架,而电子则填充在晶格中,形成了晶体的周期性结构。
2. 晶体的对称性可以通过______来描述。
答案:空间群解析:晶体的对称性可以通过空间群来描述,空间群是描述晶体对称性的数学工具,它包含了晶体的所有对称操作。
3. 电子的能带结构是由______和______共同决定的。
答案:原子核、电子解析:电子的能带结构是由原子核和电子共同决定的,它们之间的相互作用导致了电子能级的分裂和能带的形成。
大学固体物理试题及答案

大学固体物理试题及答案一、选择题(每题5分,共20分)1. 下列关于晶体结构的描述,错误的是:A. 晶体具有规则的几何外形B. 晶体内部的原子排列是无序的C. 晶体具有各向异性D. 晶体具有固定的熔点答案:B2. 固体物理中,描述电子在晶格中运动的方程是:A. 薛定谔方程B. 牛顿运动方程C. 麦克斯韦方程D. 热力学第一定律答案:A3. 固体中,电子能带的宽度与下列哪个因素有关?A. 电子的电荷B. 电子的质量C. 晶格的周期性D. 电子的自旋答案:C4. 金属导电的原因是:A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在分子答案:A二、填空题(每题5分,共20分)1. 晶体的周期性结构可以用_________来描述。
答案:晶格常数2. 能带理论中,电子在能带之间跃迁需要吸收或释放_________。
答案:光子3. 根据泡利不相容原理,一个原子轨道内最多可以容纳_________个电子。
答案:24. 半导体的导电性介于金属和绝缘体之间,其原因是半导体的_________较窄。
答案:能带间隙三、简答题(每题10分,共30分)1. 简要说明什么是费米能级,并解释其在固体物理中的重要性。
答案:费米能级是指在绝对零度时,电子占据的最高能级。
在固体物理中,费米能级是描述电子分布状态的重要参数,它决定了固体的导电性、磁性等物理性质。
2. 解释为什么金属在常温下具有良好的导电性。
答案:金属具有良好的导电性是因为其内部存在大量的自由电子,这些电子可以在电场作用下自由移动,形成电流。
3. 什么是超导现象?请简述其物理机制。
答案:超导现象是指某些材料在低于某一临界温度时,电阻突然降为零的现象。
其物理机制与电子之间的库珀对形成有关,这些库珀对在低温下能够无阻碍地流动,从而实现零电阻。
四、计算题(每题15分,共30分)1. 假设一个一维晶格,晶格常数为a,电子的有效质量为m*,求电子在第一能带的最低能级。
北科固体物理试题及答案

北科固体物理试题及答案一、单项选择题(每题2分,共20分)1. 固体物理中,描述电子在固体中运动状态的基本方程是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿运动方程D. 热力学第一定律答案:A2. 固体物理中,能带理论描述了()。
A. 电子在固体中的运动状态B. 电子在固体中的分布状态C. 电子在固体中的能级分布D. 电子在固体中的跃迁过程答案:C3. 固体物理中,金属导电的原因是()。
A. 金属内部存在自由电子B. 金属内部存在空穴C. 金属内部存在离子D. 金属内部存在声子答案:A4. 固体物理中,半导体的导电机制是()。
A. 自由电子导电B. 空穴导电C. 离子导电D. 声子导电答案:B5. 固体物理中,绝缘体不导电的原因是()。
A. 绝缘体内部没有自由电子B. 绝缘体内部没有空穴C. 绝缘体内部没有离子D. 绝缘体内部没有声子答案:A6. 固体物理中,晶格振动的量子化描述是()。
A. 电子B. 空穴C. 离子D. 声子答案:D7. 固体物理中,晶格振动的类型有()。
A. 长波和短波B. 纵波和横波C. 声波和光波D. 弹性波和塑性波答案:B8. 固体物理中,晶格振动的频率与()有关。
A. 晶格常数B. 晶格质量C. 晶格温度D. 晶格压力答案:A9. 固体物理中,晶格振动的波矢与()有关。
A. 晶格常数B. 晶格质量C. 晶格温度D. 晶格压力答案:A10. 固体物理中,晶格振动的色散关系描述了()。
A. 晶格振动的频率与波矢的关系B. 晶格振动的频率与晶格常数的关系C. 晶格振动的频率与晶格质量的关系D. 晶格振动的频率与晶格压力的关系答案:A二、填空题(每题2分,共20分)1. 固体物理中,电子在固体中的运动状态可以用______方程描述。
答案:薛定谔2. 固体物理中,金属导电的原因是金属内部存在______。
答案:自由电子3. 固体物理中,半导体的导电机制是______导电。
固体物理试题及答案

固体物理试题及答案一、选择题(每题2分,共10分)1. 固体物理中,晶体的周期性结构是通过哪种方式描述的?A. 电子云B. 原子轨道C. 布洛赫定理D. 费米面答案:C2. 以下哪种材料不属于半导体材料?A. 硅B. 锗C. 铜D. 砷化镓答案:C3. 在固体物理中,能带理论描述的是:A. 电子在固体中的自由运动B. 电子在固体中的局域化C. 电子在固体中的能级分布D. 电子在固体中的跃迁过程答案:C4. 固体中的声子是:A. 一种基本粒子B. 一种准粒子C. 一种实际存在的粒子D. 一种不存在的粒子答案:B5. 以下哪种效应与超导现象无关?A. 迈斯纳效应B. 约瑟夫森效应C. 霍尔效应D. 量子隧穿效应答案:C二、填空题(每题2分,共20分)1. 固体物理中,描述电子在周期性势场中的运动的定理是______。
答案:布洛赫定理2. 固体中的能带结构是由______决定的。
答案:电子波函数3. 在固体中,电子的费米能级是______。
答案:电子占据的最高能级4. 固体中的电子输运性质可以通过______来描述。
答案:电导率5. 固体中的晶格振动可以用______来描述。
答案:声子6. 固体中的电子-声子相互作用会导致______。
答案:电子散射7. 固体中的能隙是指______。
答案:价带顶部和导带底部之间的能量差8. 超导体的临界温度是指______。
答案:超导相变发生的温度9. 固体中的霍尔效应是由于______。
答案:电子在磁场中的偏转10. 固体中的磁阻效应是由于______。
答案:电子在磁场中的运动受到阻碍1. 简述固体物理中能带理论的基本思想。
答案:能带理论的基本思想是将固体中的电子视为在周期性势场中运动的量子粒子。
由于周期性势场的存在,电子的能级不再是离散的,而是形成了连续的能带。
这些能带决定了固体的电子结构和性质,如导电性、磁性和光学性质等。
2. 描述固体中的声子是如何产生的。
答案:固体中的声子是由于晶格振动的量子化而产生的准粒子。
固体物理期末复习题目及答案

第一章 晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。
(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以43a R =3334423330.68843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以42a R =3334442330.74642n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.341683n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。
09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。
4、证明正格子晶面 与倒格矢正交。
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补充计算题
19.在离子晶体中,由于,电中性的要求,肖特基缺陷都成对地产生,令n 代表正负离子空位的对数,E 是形成一对肖特基缺陷所需要的能量,N 为整个离子晶体中正负离子对的数目,(1)证明T k E B Ne n
2/-=.(2)试
求有肖特基缺陷后,体积的相对变化V V V ./∆为无缺陷时的晶体体积.
[解答]
(1)由N 个正离子中取出n 个正离子形成 n 个空位的可能方式数为 !
)!(!1n n N N W -= 同样.由 个负离子中取出 个负离子形成 个空位的可能方式数也为
!
)!(!2n n N N W -=. 因此,在晶体中形成 对正,负离子空位的可能方式数为 211!)!(!⎥⎦
⎤⎢⎣⎡-==n n N N W W W
与无空位时相比,晶体熵的增量为 !
)!(!121n n N N n k nW k S B B -==∆ 若不考虑空位的出现对离子振动的影响,晶体的自由能
!
)!(!1200n n N N n T k nE F S T nE F F B --+=∆-+=, 其中0F 是只与晶体体积有关的自由能,利用平衡条件
0=⎪⎭⎫ ⎝⎛∂∂T
n F 及斯特林公式
得
[]n n n N nN N n T k E n F B T
1)(12---∂∂-=⎪⎭⎫ ⎝⎛∂∂ 012=--=n
n N n T k E B . 由此得T k E B e n
N n 2/-=-. 由于n N >>,因此得
T k E B Ne n 2/-=.
(2)肖特基缺陷是晶体内部原子跑到晶体表面上,而使原来的位置变成空位,也就是说,肖特基缺陷将引起晶体体积的增大,设每个离子占据体积为v 则当出现 n 对正、负离子空位时,所增加的体积为nv V 2=∆.
而晶体原体积为Nv V 2=.
由以上两式及上题中的结果T k E B Ne n 2/-= 得T k E B e N
n V V 2/-==∆.
问答题补充
18、你认为简单晶格存在强烈的红外吸收吗?
答:实验已经证实, 离子晶体能强烈吸收远红外光波. 这种现象产生的根源是离子晶体中的长光学横波能与远红外电磁场发生强烈耦合. 简单晶格中不存在光学波, 所以简单晶格不
会吸收远红外光波.
19、爱因斯坦模型在低温下与实验存在偏差的根源是什么?
答:按照爱因斯坦温度的定义, 爱因斯坦模型的格波的频率大约为, 属于光学支频率. 但光学格波在低温时对热容的贡献非常小, 低温下对热容贡献大的主要是长声学格波. 也就是说爱因斯坦没考虑声学波对热容的贡献是爱因斯坦模型在低温下与实验存在偏差的根源.
20、在极低温度下,德拜模型为什么与实验相符?
答:在甚低温下, 不仅光学波得不到激发, 而且声子能量较大的短声学格波也未被激发, 得到激发的只是声子能量较小的长声学格波. 长声学格波即弹性波. 德拜模型只考虑弹性波对热容的贡献. 因此, 在甚低温下, 德拜模型与事实相符, 自然与实验相符.
21、为什么行程一个肖特基缺陷所需能量比一个弗伦克尔缺陷所需能量低?
答:形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子,因此形成一个肖特基缺陷所需的能量,可以看成晶体表面一个原子与其他原子的相互作用能,和晶体内部一个原子与其他原子的相互作用能的差值,形成一个弗伦克尔缺陷是,晶体内留下一个空位,多一个填隙原子,因此形成一个弗伦克尔缺陷所需的能量,可以看成晶体内部一个填隙原子与其他原子的相互作用能,和晶体内部一个原子与其他原子相互作用能的差值,填隙原子与相邻原子的距离非常小,它与其他原子的排斥力的相互作用能是负值,所以填隙原子与其它原子相互作用能的绝对值,比晶体表面一个原子与其他原子相互作用能的绝对值要小,也就是说形成一个肖特基缺陷所需能量比形成一个弗伦克尔所需能量要低。
22、晶体的结合能,晶体的内能,原子间的相互作用势能有何区别。
答:自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.
原子的动能与原子间的相互作用势能之和为晶体的内能.
在0K时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.
23、原子间的排斥作用取决于什么原因?
答:相邻的原子靠得很近, 以至于它们内层闭合壳层的电子云发生重叠时, 相邻的原子间便产生巨大排斥力. 也就是说, 原子间的排斥作用来自相邻原子内层闭合壳层电子云的重叠.
24、原子间的排斥作用与吸引作用有何关系?这两种作用起主导作用的范围是什么起主导的范围是什么?
答:在原子由分散无规的中性原子结合成规则排列的晶体过程中, 吸引力起到了主要作用. 在吸引力的作用下, 原子间的距离缩小到一定程度, 原子间才出现排斥力. 当排斥力与吸引力相等时, 晶体达到稳定结合状态. 可见, 晶体要达到稳定结合状态, 吸引力与排斥力
缺一不可. 设此时相邻原子间的距离为, 当相邻原子间的距离>时, 吸引力起主导
作用; 当相邻原子间的距离<时, 排斥力起主导作用.
25、共价结合为什么有饱和性和方向性?
答:设N 为一个原子的价电子数目, 对于IV A、V A、VI A、VII A族元素,价电子壳层一共有8个量子态, 最多能接纳(8-N)个电子, 形成(8-N)个共价键. 这就是共价结合的“饱和性”.
共价键的形成只在特定的方向上, 这些方向是配对电子波函数的对称轴方向, 在这个方向上交迭的电子云密度最大. 这就是共价结合的“方向性”.(同时参考书本第86页)
26、共价结合,两原子电子云交迭产生吸引,而原子靠近时,电子云交迭会产生巨大的排斥力,如何解释?
答:共价结合, 形成共价键的配对电子, 它们的自旋方向相反, 这两个电子的电子云交迭使得体系的能量降低, 结构稳定. 但当原子靠得很近时, 原子内部满壳层电子的电子云交迭, 量子态相同的电子产生巨大的排斥力, 使得系统的能量急剧增大.
27、为什么许多金属为密积结构?
答:金属结合中,受到最小能量原理的约束,要求原子实与共有电子电子云间的库伦能要尽可能的低(绝对值尽可能的大)原子实越紧凑,原子实与共有电子电子云靠的就越紧密,库伦能就越低,所以,许多金属的结构为密积结构
28、你认为固体的弹性强弱主要排斥作用决定吗,
还是吸引作用决定?
答:如上图所示, 附近的力曲线越陡, 当施加一定外力, 固体的形变就越小. 附近
力曲线的斜率决定了固体的弹性性质. 而附近力曲线的斜率主要取决于排斥力. 因此, 固体的弹性强弱主要由排斥作用决定.
29、在布里渊区边界上电子的能带有何特点?
答:电子的能带依赖于波矢的方向, 在任一方向上, 在布里渊区边界上, 近自由电子的能带一般会出现禁带. 若电子所处的边界与倒格矢正交, 则禁带的宽度, 是周期势场的付里叶级数的系数.
不论何种电子, 在布里渊区边界上, 其等能面在垂直于布里渊区边界的方向上的斜率为零, 即电子的等能面与布里渊区边界正交.
30、当电子的波矢落在布里渊区边界上时,其有效质量为什么与真实质量有显著区别?
答:晶体中的电子除受外场力的作用外, 还和晶格相互作用. 设外场力为F, 晶格对电子
的作用力为F l, 电子的加速度为
.
但F l的具体形式是难以得知的. 要使上式中不显含F l, 又要保持上式左右恒等, 则只有
.
显然, 晶格对电子的作用越弱, 有效质量m*与真实质量m的差别就越小. 相反, 晶格对电子的作用越强, 有效质量m*与真实质量m的差别就越大. 当电子的波矢落在布里渊区边界上时, 与布里渊区边界平行的晶面族对电子的散射作用最强烈. 在晶面族的反射方向上, 各格点的散射波相位相同, 迭加形成很强的反射波. 正因为在布里渊区边界上的电子与晶格的作用很强, 所以其有效质量与真实质量有显著差别.
31、本征半导体的能带与绝缘体的能带有何异同?
答:在低温下,本征半导体的能带与绝缘体的能带结构相同,但本征半导体的禁带较窄,禁带宽度通常小于2eV,由于禁带窄,本征半导体禁带下满带项的电子可以借助热激发,跃迁到禁带上面空带的底部,使得满带不满,空带不空,二者都对导电有贡献。
32如何解释电子分布函数f(E)的物理意义是:能量为E的一个量子态被电子所占据的平均几率?
答:金属中的价电子遵从费密-狄拉克统计分布, 温度为T时, 分布在能级E上的电子数目
,
g为简并度, 即能级E包含的量子态数目. 显然, 电子分布函数
是温度T时, 能级E的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以的物理意义又可表述为: 能量为E的一个量子态被电子所占据的平均几率.
33、在绝对零度时,价电子与晶格是否交换能量。
答:晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为的格波的声子数
.
从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量.。